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Abstract

Accurate protein structure prediction from amino acid sequence is still an unsolved problem. The most
reliable methods centre on template based modelling. However, the accuracy of these models entirely depends
on the availability of experimentally resolved homologous template structures. In order to generate more
accurate models, extensive physics based molecular dynamics (MD) refinement simulations are performed to
sample many different conformations to find improved conformational states. In this study, we propose a deep
recurrent network model, called DeepTrajectory, that is able to identify these improved conformational states,
with high precision, from a variety of different MD based sampling protocols. The proposed model learns
the temporal patterns of features computed from the MD trajectory data in order to classify whether each
recorded simulation snapshot is an improved conformational state, decreased conformational state or a none
perceivable change in state with respect to the starting conformation. The model is trained and tested on 904
trajectories from 42 different protein systems with a cumulative number of more than 1.7 million snapshots.
We show that our model outperforms other state of the art machine-learning algorithms that do not consider
temporal dependencies. To our knowledge, DeepTrajectory is the first implementation of a time-dependent
deep-learning protocol that is re-trainable and able to adapt to any new MD based sampling procedure,
thereby demonstrating how a neural network can be used to learn the latter part of the protein folding funnel.
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Introduction

Protein structure prediction from sequence tries to
overcome the limitations of experimental structure de-
termination, which are often time consuming and in-
feasible for certain types of proteins. Furthermore,
construction of protein models seems to be the only
practical solution for structural genomics where a high
rate of newly discovered protein sequences demands for
automated structure determination [1]. Current state-
of-the-art methods which make use of template based
modelling (TBM) are partially successful [2-8]. How-
ever, the quality of these TBMs is completely depen-
dent on the presence of homologous proteins where the
structure has been experimentally determined. An ex-
tension to TBM are so-called physics-based refinement
methods that further try to improve the initial models
by extensively sampling new conformations; essentially,
emulating the later part of the protein folding pathway.
Methods which make use of conformational sampling
with molecular dynamics (MD) simulations with an all-
atom physical force field have proven to be successful in
sampling improved conformational states. Currently,
the most successful refinement simulations are based on
multiple replicated simulations in the nanosecond scale
with position restraints on parts of the protein to pre-
vent drifts [9-11]. Yet, the most challenging problem

is the reliable identification of improved quality con-
figurations from this time-series trajectory data, from
millions of possible solutions [12-14].

The continued progress in deep-learning research has
demonstrated success for a number of noisy sequence or
time-series problems [15-17]. In this work, a temporal
deep-learning model for snapshot classification of MD
trajectory data is formalized that makes explicit use
of the time-dependent nature of MD based trajectory
data. In particular, the interest lies in whether it is
possible to identify when, or if, improved quality con-
formations of a protein are reached, from a variety of
starting model qualities. Progress in this area is impor-
tant for high accuracy model building that is, for ex-
ample, required for biomolecular understanding of pro-
tein function and in-silico rational drug design. From
the generated trajectory of conformational snapshots,
predictions about a protein’s conformational states are
based on energies and distance metrics in time. To this
end, a deep recurrent neural network (RNN) [18] with
gated recurrent units (GRUs) [19] is trained to classify
each snapshot into one of three classes: improved qual-
ity, no-change in quality, and decreased quality. The
change of quality is defined as an increase or decrease
in the global distance test total score (GDTTS) [20,21]
from the starting configuration, as measured with re-
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spect to the reference crystal structure.

The results show that it is possible to train a RNN
model that identifies improved and decreased quality
states in different MD based refinement protocols with
nanosecond time-scale. Furthermore, the proposed
model outperforms classic machine learning models
and deep learning models that do not consider tem-
poral dependencies during their training task. To be
precise, our model achieves a mean cross-validation
precision on the improved state assignment of 41.5%
compared to 14.0%, 12.1% and 0.0% for random forest
(RF) [22], k-nearest neighbours (KNN) [23], and logis-
tic regression (LR) [24], respectively. The results also
show that a deep representation and temporal patterns
learned by the RNN are important and contribute to a
higher precision of identifying improved quality snap-
shots.

Results

The DeepTrajectory model

The DeepTrajectory model is summarized in Fig. 1.
The model takes as input the computed features from
the sampled MD trajectory data and tries to predict
the state change relative to the starting configura-
tion for each snapshot. The three classes learned by
the classifier are improved state (I), no-change state
(N) and decreased state (D), and reflect whether a
more accurate conformation of the protein is reached
with respect to the reference crystal structure (See
Fig. 1A). The trajectory is quantified via 19 metrics.
These are 17 different potential energy terms and scor-
ing functions (quantifying the energetics of the protein
structure); and 2 distance-metrics known as root mean
square deviation (RMSD) and GDTTS (measuring the
deviation to the starting configuration at time-step 0).
Details about the features are summarized in SI Table
S1. Essentially, the DeepTrajectory model learns the
temporal patterns of the input features in order to dis-
tinguish correct fold state changes from incorrect fold
state changes. The trajectory data from the different
protein systems and sampling runs used for training is
presented to the network in mini-batches of 60 ps (30
steps) that continue after each iteration of training un-
til the end of the training data is reached. The Deep-
Trajectory model is an RNN with GRUs (Fig. 1B).
Each 2ps time-step is represented by a standardized
feature vector containing the values of the 19 features.
The predicted state assignment for every snapshot by
the RNN, i.e. I, N and D, is expressed as a probability
distribution and the class with the highest probability
is used as the final prediction.

Data-set and performance criteria

The performance of DeepTrajectory was compared to
a RF classifier, a KNN classifier and a LR classifier.
The data used for training and testing accumulates to
904 trajectories and a total simulation time of 3419 ns
from 42 different protein monomers. The used protein
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Fig. 1: DeepTrajectory method overview. The method predicts
improved conformational states, that more closely resemble the
crystal structure observed conformation, in molecular dynamics
(MD) trajectory data of template based models. (A) During
sampling of the initially folded proteins with different MD based
sampling protocols, transitions to conformations can be observed
that represent an improved conformational state (AGDTTS
> 0.01), decreased conformational state (AGDTTS < —0.01)
and no-change in conformational state (JAGDTTS| < 0.01). Ev-
ery 2 ps a snapshot of this trajectory is saved. (B) The trajectory
of snapshots of different sampled conformational states is quanti-
fied by 19 features (F1,--- , Fz) that measure different energetic
contributions or distance metrics of the protein structure at a
particular time-point. (C) These temporal features are used to
perform supervised mini-batch training (b1,--- ,bg) to train an
RNN with several layers of GRUs that is able to classify each
snapshot of the trajectory into three classes: improved state (1),
no-change state (N), decreased state (D). Predictions for the
trajectory of a new protein system, for which this state change
assignment is unknown, are assigned by applying the trained
DeepTrajectory model to every snapshot. Full details of the
model and training procedure are available in the SI text.


https://doi.org/10.1101/275008
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/275008; this version posted March 3, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A B
5 50 > 100
£3 40 §% 80
> 8 30 z 8 60
g3 £ 3
=2 20 = 2 40
8= 10 2= 20
0
N ON OO
QO VOOV
GDTTS

C

g __ 1500 773

ST

2 5 1000

v >

< 2 500 145

as 8.2

< o =B

I N D
State

Fig. 2: Trajectory dataset. (A) Histogram of GDTTS in the
trajectory data. (B) Histogram of AGDTTS in the trajectory
data. A positive value indicates an improvement and a nega-
tive value a decrease in model quality. (C) Absolute frequency
of the three different states improved, I, no-change, N, and de-
creased, D. (D) Markov chain model of the three states improved,
I, no-change, N, and decreased, D, visualised as circles and their
directed transition probabilities shown as labelled arrows.

systems and their starting model quality were collected
from the refinement category in rounds 11 and 12 from
the Critical Assessment of protein Structure Prediction
(CASP) experiment. The dataset consists of a wide
range of GDTTS values from 0.3 to 0.9 (Fig. 2A). The
sampled AGDTTS, that expresses the relative change
in model quality relative to the starting model, ranges
from —0.3 to 0.12 (Fig. 2B), details for each trajectory
are shown in SI Table S5. The class assignment of each
snapshot, shown in Fig. 2C, into one of the three dif-
ferent states I, N and D, have a relative distribution
of 8.2, 14.5 and 77.3 percent, respectively. An anal-
ysis of the trajectory data as a Markov chain model
shows the transition probabilities between the differ-
ent states (Fig. 2D). These show that increased and
decreased conformational states are more stable with
a probability of 0.806 and 0.947 to remain in the same
state, compared to no-change state with 0.626. This
is also expressed by the observation that these states
sample with higher frequency longer continuous seg-
ments, see SI Fig. S3A (improved state) and SI Fig.
S3C (decreased state).

The aim of the classifier is to learn a temporal model
in order to identify improved conformational states
(I) with high precision, and decreased conformational
states (D) with high recall. Thus, during training we
are trying to minimize the number of false positive pre-
dictions for the improved state and the number of false
negative predictions for the decreased state class. This
results in a model with higher confidence that the pre-
dicted I state is correct and that a large number of
D states could be identified. Additionally, the metric
F1 is computed that is the harmonic mean of preci-
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Fig. 3: RNN performance comparison. (A)-(C) Comparison of
validation-set performance for the 3 different states improved,
no-change and decreased. Shown are the recurrent neural net-
work (RNN) against k-nearest neighbours (KNN), random forest
(RF) and logistic regression (LR) on the full cross-validation sets.
The shown performance is the mean value of all seven validation
sets. The error bars indicate the standard deviation computed
from all 7 folds. (D)-(E) Classification precision, recall and F1 as
a function of training steps for the three different states. Shown
is the training progress for CV fold 4. The vertical lines indicate
the best performance for each metric based on a moving average
with a window-size of 30.

sion and recall. We compare this to all three base-line
machine learning models. A detailed definition of the
used performance metrics is given in the SI text.

Comparison of model performance to
other classifiers

The bar-plots seen in panels Fig.
3A-C quantify the classification performance for all
three classes I, N and D of the temporal RNN model
and compare it to KNN, RF and LR. Most notably
is the prediction performance of the RNN for the im-
proved state. The RNN is able to identify improve-
ments in folds with a markedly better precision than
classical machine learning models. To be precise, the
mean cross-validation precision for RNN, KNN, RF
and LR have values of 0.415, 0.121, 0.139 and 0.000,
respectively. For recall on the improved class the val-
ues are 0.037, 0.065, 0.001 and 0.000 for RNN, KNN,
RF and LR, respectively. Values for the decreased class
performance are similar for all models (Fig. 3C). For
this class the models RNN, KNN, RF and LR produce
a mean cross-validation precision of 0.790, 0.798, 0.778
and 0.777, respectively. The recall is 0.960, 0.888, 0.985
and 0.987 for RNN, KNN and RF and LR, respectively.
The confusion matrix (CM) in SI Table S3 shows the
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miss-assignment of predicted classes versus the actual
class for all 4 tested models for validation-fold 4 of the
cross validation (CV). For example, the RNN model
predicted the correct true positive assignment for im-
proved snapshots 1636 times and assigned the label
improved incorrectly 314 times to no-change snapshots
and 1653 times to decreased snapshots (see SI Table
S3A). Compared to the three other models KNN, RF
and LR this represents a notably better performance
at identifying improved snapshots. For KNN, seen in
SI Table S3B, a similar number, i.e. 1556, of true
positive improved snapshot assignments compared to
RNN could be achieved. However, this comes with a
large number of false positive assignments where the
KNN incorrectly assigns the improved label to 2386 no-
change snapshots and 6690 decreased snapshots. The
RF model is hardly predicting the improved class (SI
Table S3C). This model generates 34 true positive as-
signments for the improved class. The number of false
positive predictions, where the actual class is differ-
ent from the predicted, is 25 and 39 for no-change and
decreased, respectively. The LR model is not able to
predict improved snapshots at all, i.e. the number of
assignments is zero (SI Table S3D).

Fig. 3D-F shows the validation score for precision, re-
call and F1 as functions of training steps for the three
classes (I, N and D). The improved class shown in Fig.
3D indicates that several million training steps are nec-
essary to reach the best running average precision of
0.507. The best precision and recall for classes no-
change (Fig. 3E) and decreased (Fig. 3F) are reached
early on during training. Furthermore, for these two
classes the validation score stays stable during the 300
epoch training process.

Analysis of prediction performance

Fig. 4A shows DeepTrajectory’s true positive (TP),
false negative (FN) and false positive (FP) predictions
as cumulative distributions of AGDTTS for the im-
proved state class. The results show a marked increase
of FP predictions as AGDTTS tends towards the lower
bound of the increased state definition (AGDTTS =
0.01). TP predictions have the highest increase in den-
sity for AGDTTS in the range from 0.01 to 0.05. For
FN predictions of the improved state, the curve is less
steep in the range 0.025 to 0.1 compared to TP, indi-
cating fewer FN assignments. The no-change state cu-
mulative distribution of FP predictions shows a rapid
increase in the AGDTTS range from -0.05 to -0.01,
with only a shallow increase for 0.01 to 0.05 (SI Fig.
S4A). The cumulative distribution of FN and TP fol-
low the same trend for no-change state predictions (SI
Fig. S4A). For decreased state predictions most FP are
distributed in the range from AGDTTS -0.01 to 0.01.
The cumulative distribution of FN stays below the dis-
tribution of TP for the AGDTTS range -0.15 to -0.01
(SI Fig. S5A).

The cumulative density of TP, FN and FP as a func-
tion of absolute GDTTS is visualized in Fig. 4B for
improved state predictions. A more rapid increase in
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Fig. 4: Performance analysis of DeepTrajectory. (A) Cumula-
tive distribution of true positive (TP), false negative (FN) and
false positive (FP) predictions for the improved state as a func-
tion of AGDTTS. The background colours red, gray and green
indicate the AGDTTS regions for the improved, no-change and
decreased states, respectively. (B) Cumulative distribution of
true positive (TP), false negative (FN) and false positive (FP)
predictions for the improved state as a function of GDTTS. (C)
Shows the distribution of assigned probabilities for improved
state predictions.

FP predictions for GDTTS in the range 0.45 to 0.7 as
compared to TP and FN is observed. This indicates
that correct predictions of lower starting model quali-
ties are less likely. However, TP predictions markedly
increase for GDTTS in the range 0.7 to 0.85, showing
the successful prediction of the descent to the native
state of the latter part of the folding funnel. The cu-
mulative TP distribution of the no-change state shows
a similar behavior, where only higher quality models
with GDTTS of 0.5 or more produce an increase in TP
(SI Fig. S4B), whereas the decreased state distribution
of TP, FN and FP shows a linear growth for all three
curves (SI Fig. S5B).

In order to obtain an understanding of the confi-
dence of DeepTrajectory to assign the three different
states the predicted probabilities are considered as a
variable and the probability density function of these
probabilities were constructed from the whole data-set.
Our model produces a wide range of assigned proba-
bilities for predicted classes improved and no-change
state (Fig. 4C and SI Fig. S4C) where the majority of
probabilities are uniformly distributed from values of
0.5 to 0.9, with a slight increase in density in the range
from 0.9 to 1.0. The probability density function for
predicted decreased states is markedly different, most
of the RNN’s computed probabilities are observed in
the range from 0.9 to 1.0, whereas the range from 0.4
to 0.9 has a low density (SI Fig. S5C).
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Fig. 5: (A)-(D) Effect of sequence lengths 1, 5, 30 and 50 on

precision and recall for the improved state class as a function of

training steps tested on validation fold 4. (E)-(H) Effect of number of hidden layers with values 1, 2, 3 and 10 on precision and
recall for the improved state class as a function of training steps tested on the 4th validation fold. The vertical lines indicate the
best performance based on a moving average with a window-size of 30. (I) Trajectory trace of target TR821, the AGDTTS is
shown as a function of its 3ns simulation time. Sampling of the green colored regions indicate an improved state, grey regions a
no-change state and red a decreased state. Visualizations of the last hidden layer where the data-points are colored by (J) time,
(K) ground truth and (L) predicted labels. The 1024-dimensional last hidden layer was projected to 2-dimensions with t-SNE.

Temporal and deep representation is im-
portant for precision and recall

We analyzed how important the temporal aspect of
our RNN for classification success is. An RNN with
sequence length of 1 (Fig. 5A) and 5 (Fig. 5B) experi-
ence training instability and a drastic drop in precision
and recall for the improved state class compared to a
model of length 30 (Fig. 5C) and 50 (Fig. 5D). The
depth of the RNN is an important aspect too. An
RNN with 1 (Fig. 5E) or 2 (Fig. 5F) layers results in a
drop in precision and recall compared to 3 layers (Fig.
5@G). Furthermore, a drop is observed when 10 layers
(Fig. 5H) are used within the tested training time of
300 epochs.

In order to better understand how the temporal as-
pect of our trajectory data is learned by the RNN, we
analysed the output of the last hidden layer. We exam-
ined the internal feature representation learned by the
RNN using t-distributed Stochastic Neighbour Embed-
ding (t-SNE) [25]. As an example, a trajectory of one
protein system is visualised. In Fig. 51, the AGDTTS
change as a function of time for a 3ns simulation is
shown. The learned representation by the RNN of this
trajectory is shown in Fig. 5J-L, where each point rep-
resents a projection from 1024 to 2 dimensions from
the output of the last hidden layer. The projection in
Fig. 5J is coloured by simulation time. We can see that
points close in time also cluster together close in the

projected space. The projections in Fig. 5K and L are
coloured by the ground truth label and the predicted
label, respectively. The projections of the predicted
improved class shows pattern of aggregation into the
same region.

Discussion

The results show that the proposed RNN model with
GRU cells is able to outperform classical machine
learning methods such as RF, LR and KNN, which
are representative of state-of-the-art classical machine
learning algorithms and have been successfully applied
to other bioinformatic domains [26-28]. In particular,
the model presented here achieves a mean precision
of 0.415 on the validation set of the CV compared to
0.121, 0.140 and 0.000 for KNN, RF and LR, respec-
tively. This suggests that learned temporal dependen-
cies of the used energy terms and distance metrics as
input features are important to identify sections of fold
improvements in the trajectory. This claim is further
supported by inspection of the transition probabilities
between I, N and D in Fig. 2D that are not random.
The transition probabilities of staying in their respec-
tive states from time-step t to t+1 are 0.806, 0.626
and 0.947 for I, N, D respectively, and indicates that
sequential state awareness is important for this partic-
ular classification problem.

A major application of DeepTrajectory would be


https://doi.org/10.1101/275008
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/275008; this version posted March 3, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

in on-line classification of MD refinement simulations.
Here, the model would be applied in parallel to a MD
simulation to classify each snapshot of the trajectory.
This would allow to probe whether the sampling has
yielded enough improved conformational states and
can be stopped, or vice versa, if no snapshots are clas-
sified as improved during the sampling run the simula-
tion could be continued or restarted with different con-
ditions. Moreover, the presented methodology could be
extended to complete folding simulations by guiding
the sampling process from a partially folded state to a
near native state [29]. For example, this could be used
in combination with molecular dynamics and Markov-
state models in order to classify micro-states [30, 31].
This would allow for selecting the correct micro-states
that point to a descent of the folding funnel. Finally,
similar to the RNN applied to trajectories of protein
monomers, the proposed model could be trained on
the trajectories of protein-protein assemblies [32, 33].
Input features for such a method would need to fo-
cus on molecular descriptors that specifically describe
protein-protein interactions [34,35].

We believe DeepTrajectory makes an important con-
tribution to the field of protein structure refinement, an
important area in structural bioinformatics with appli-
cations in rational drug design [36] and systems biol-
ogy [37]. Our work has shown that a temporal model
based on a RNN can predict, with high precision, the
state changes to improved protein conformations. This
opens the door for more application driven research ex-
ploiting deep learning as means to improve accuracy of
protein structure prediction.

Materials and Methods

The DeepTrajectory model is described in Fig. 1. The
model is implemented and tested on the TensorFlow
Python library in version 1.0.0 [38]. A detailed descrip-
tion of the model is available in the SI text. The used
904 trajectories originate from MD simulations of 42
different protein systems; detailed sampling protocols
are described in the SI text.

The training and testing of the DeepTrajectory
model is based on a seven fold cross-validation where
in each fold the trajectories for 6 protein systems are
selected for validation and 36 for training. In total a
cumulative number of & 1.7 million snapshots are used.
Training of the model is done in mini-batches that are
continued without overlap in each training step until
the epoch is finished. During training, the model is
provided with a feature vector of size 19, that consists
of 17 different energy functions, or terms, and the dis-
tance metrics, RMSD and GDTTS that relate the cur-
rent snapshot to the starting model at time zero. For
each snapshot the model is asked to predict whether
an improved conformational state, no-change in con-
formational state or a decreased conformational state
with respect to the reference crystal structure is sam-
pled. The output softmax vector, and the ground truth
assignment, are used to compute the weighted cross-

entropy loss function. The model is trained with the
Adam optimizer [39]. More details of the training pro-
cedure can be found in the SI text.

Data and source code availability

The source code of the model as well as an example
of how to train it is available from https://github.
com/OneAngstrom/DeepTrajectory. The data used
in this work is available for download from https:
//zenodo.org/record/1183354. This data contains
the PDB files of the raw trajectories, starting models
and reference PDB structures; and a comma separated
file that contains the pre-computed trajectory features
and labels.
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Supplemental Information

Model Definition and Training

The model learns via a supervised learning-task to assign the class y from a set of given input features, x, for
each time-point, [7];, of a trajectory v. Here, the three possible classes are improved, no-change and decreased.
The ground truth assignment, denoted as 3/, is then formalized such that

i if AGDTTS > 0.01
y ={n if AGDTTS < 0.01 and AGDTTS > —0.01 (1)
d if AGDTTS < —0.01,

where 4, n and d represent one-hot encoded probability vectors [1,0,0], [0,1,0] and [0, 0, 1], respectively. The
variable AGDTTS is the difference between GDTTS from the starting model at time-point zero and the GDTTS
from the snapshot at time-point ¢ as computed to the reference crystal structure. A negative AGDTTS value
reflects a decrease in model quality and a positive AGDTTS value an increase in model quality.

The model is based on an RNN with GRU that adaptively learns long and short term dependencies of inputs
to assign the class y [19]. The layout of the RNN is illustrated in Fig. S1A, where starting from the input
sequence x, ..., T+ the predictions yq, ..., y¢ are produced via stacking hidden layers of GRU cells and by a layer
with a softmax activation function 2 that normalizes the output hl (at time ¢ of the last layer [) to a probability
vector y such that

exp (lehi)
Zg exp (WJZ, hi) ,

vl = (1) = 2)

for all j =1,...,C classes, where le are the rows of the weight matrix of the last layer. The activation and its
output, hl in layer [ at time ¢, of a GRU cell is computed as

hy=2®hi_y + (1—2)©h. (3)

This represents a linear interpolation of the activation at time-point ¢ — 1 denoted as h!_; and its candidate
activation hl. The update gate, z, controls how much the cell updates its state, such that

z=0 (Wihi™ +Ulhi ), (4)
where the activation function o is sigmoidal. The candidate state ﬁi is computed such that
hy=¢ (Wt + U (rohi_y)). (5)

Here, ¢, r and ® denote a hyperbolic tangent activation function, a reset gate and an element wise multiplication,
respectively. The reset gate, r, is computed with the same formulation as z but different weight matrices, i.e.

r=o (Wﬁhi_l +ULhL_y). (6)

An illustration of these equations is shown in Fig. S1B.
During training the weight matrices W', U, W!, Ul, W! and U! are learned for each layer I. The weight
matrices are shared through time ¢. The loss function L

Ly(y) = - Z w; (yj 1og(yj)) : (7)

is minimized during training and represents the weighted cross entropy. The vector w encodes the weights for
classes j = 1,...,C. The objective of this classifier is to achieve a high precision for the improved class (i.e.
reducing the false positive rate) and a high recall for the decreased class (i.e. reducing false negative rate). This
is achieved by setting w = [0.05, 1, 10].

The RNN model is trained with the Adam optimizer [39] on input features z from the set of trajectories v
selected for training. In order to achieve one sequential input for the training, all n trajectories are concatenated
to size 7 X n. The training is performed on k mini-batches b of the data where in each training iteration the
batch by continuous without overlap to the previous batch iteration till the epoch is finished. This process is
visualized in Fig. S1C and S1D.
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Fig. S1: RNN model description. (A) Schematic overview of the RNN with GRU cells. (B) GRU cell, visualisation of Equations
3,4, 6 and 5. (C) & (D) Visualisation of the trajectory data v and the process of mini-batch creation and propagation to the RNN.
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Data Set

The trajectory data originates from our own laboratory’s refinement method in CASP11 and CASP12 for which
the reference crystal structure is available in the PDB. These targets are listed in SI Table S4 The detailed
description of the sampling process is described in SI Section ”Sampling procedure”. In total, the trajectory data
consists of 3419 ns cumulated simulation time and 1,709, 704 snapshots with At = 2 ps from 30 CASP11 and 12
CASP12 targets for which crystal structures were available. A detailed overview of the generated trajectories
for each target and their snapshot composition is provided in SI Table S5.

Computation of Molecular Descriptors and Feature Construction

In total 19 features were used. 17 of these features originate from ten different potential energy functions and
two features are the distance metrics GDTTS and RMSD that measure for each snapshots the difference to the
starting model. All molecular descriptors are normalized per target to zero mean and unit standard deviation.
The complete list of features is given in SI Table S1.

Table S1: RNN features. Table lists the feature name, the descriptor that produced the feature and the reference for the descriptor.

Feature Descriptor Reference
N_DDFIRESUM DFIRE [40]
N_DDFIRETERM1 DFIRE [40]
N_DDFIRETERM2 DFIRE [40]
N_DDFIRETERM3 DFIRE [40]
N_DDFIRETERM4 DFIRE [40]
N_DOPE DOPE [41]
N_DOPE_HR DOPE [41]
N_RMSD_SM RMSD to starting model ~NA
N_GDTTS_SM GDTTS to staring model NA
N_DOOP DOOP [42]
N_CALRW calRW [43]
N_CALRWP calRWplus [43]
N_GOAP GOAP [44]
N_GOAPAG GOAP [44]
N_BOND Modeller [45]
N_ANGLE Modeller [45]
N_DIHEDRAL Modeller [45]
N_IMPROPER Modeller [45]
N_MOLPDF Mol. PDF [45]

Cross-Validation

The CV set is made up of 7 folds, where for each fold the training set consists of trajectories of 36 targets and
the validation set for 6 targets. The assignment of a proteins trajectories to a fold is random. However, the
relative distribution of classes of snapshots between training and validation set is enforced to be similar with a
maximum difference of 6 percent as shown in Table S2 columns I, N and D. A detailed overview of each targets
fold assignment is given in SI Table S5.

Model Hyper-Parameter

The RNN model was trained for every fold of the CV for 300 epochs with the following hyper-parameter:
sequence length = 30, batch-size = 50, internal size = 1024, number of layers = 3, learning rate = 0.0001 and
dropout with p-keep = 0.9.

Baseline Model

The RNN model was compared to the following baseline models:
Random Forest [22]: The training of the classifier uses 500 trees where samples are bootstrapped and the

gini impurity criterion is used to judge the quality of the split when building the trees. No restriction for
the maximum depth of the tree is imposed, however, for each internal node in a tree the minimum sample
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Table S2: Cross validation summary. Summary of each fold of the 7-fold CV of the trajectory data. Shown are the number of
targets (# TR), number of trajectories (# Trj), number of snapshots (# Snap.), percentage of snapshots with improved quality (I
(%)), percentage of snapshots with no change in quality (N (%)), percentage of snapshots with decreased quality (D (%)).

Training Set
Fold # TR # Trj. # Snap. I (%) N (%) D (%)

0 36 780 1,463,580  8.38 15.00 76.62
1 36 772 1,451,572  8.39 14.07 77.54
2 36 772 1,451,672  8.54 14.00 77.46
3 36 772 1,451,672  7.47 14.38 78.14
4 36 780 1,462,780  8.09 14.46 77.45
5 36 782 1,499,782  8.22 14.90 76.88
6 36 766 1,477,366  8.35 14.87 76.78

Validation Set
Fold # TR # Trj. # Snap. I (%) N (%) D (%)

0 6 124 246,124 7.16 11.74 81.10
132 258,132 7.17 17.14 75.70
132 258,132 6.34 17.49 76.17
132 258,132 12.34 15.35 72.31
124 246,924 8.90 14.93 76.17
122 209,922 8.12 11.87 80.01
138 232,338 7.31 12.36 80.33

ST W N~
DI D

size must be greater than 30. The number of features for each tree is /n where n=19, i.e. the total number
of features.

K Nearest Neighbour [23]: Number of neighbours and the leaf-size was set to 5 and 30, respectively. A
uniform distribution where all points are weighted equally in each neighbourhood was chosen. The algorithm
to search for the nearest neighbours was set to ’auto’ where the best algorithm from ball-tree [46], kd-
tree [47] and a brute force approach was selected for fitting the model with the Minkowski distance metric
with p = 2, which is equivalent to the Euclidean distance.

Logistic Regression [24]: Fitting of the model is performed with L2 regularization with a strength of 1.0 and
with a tolerance of le — 4 as the stopping criteria. In order to make the multi-class predictions with LR,
the training task is translated into a binary classification problem where for each label a fit of the LR is
performed.

The python package scikit-learn [48] in version 0.18.1 was used to perform the training and testing. The same
features, class-labels and CV folds as shown in Table S2 were used.

Classifier Performance Metrics

In order to quantify the performance of the RNN and to compare it to other classifiers the metrics recall,
precision and F1 (i.e. harmonic mean between precision and recall) were computed. For these three metrics the
performance from all three classes are reported. These metrics are defined as follows:

TP
l= ————. 8
reca TP 7 N (8)
TP
precision = TP FP (9)
Fl—9x precision x recall (10)

precision + recall’

Where TP is the number of true positives, FN the number of false negatives and FP the number of false
positives.
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Structural Model Assessment Metrics

The model quality of the snapshots is quantified by the two metrics GDTTS and Ca-RMSD which are defined
as follows

RMSD: The root mean square deviation quantifies the disagreement of the predicted model to the reference
structure. A lower value indicates a better fit to the reference structure. The definition is such that

1 n
RMSD (v, w) = EZHm—w”P, (11)
=1

where v, w are the set of atom coordinates for the model and reference structure, respectively. An optimal
superimposition of v to w is performed prior to RMSD calculation.

GDTTS: The global distance test total score is a model quality metric that evaluates quality based on the
percentage of residues under different distance cutoffs given by

GDTp, + GDTp, + GDTp, + GDTp,

GDTTS = 1

(12)

where P, is the percentage of residues below distance cutoff n in A with respect to a reference structure.
A higher value indicates a better fit to the reference structure.

Sampling procedure

The targets and starting models for the refinement simulations are given by the CASP committee and originate
from rounds 11 and 12. These structures represent a diverse set of proteins with different folds and initial model
quality ranging from 30 to 90 GDTTS.

The trajectories used for training and testing the RNN originate from 5 different MD-based sampling proce-
dures. These are known as (i) Unrestrained sampling (no_rst), no position or distance restraints to the residues
of the starting are applied; (ii) position restraint sampling (point_rst), position restraints to the Ca-atom of
structurally conserved residues are applied; (iii) distance restraint sampling (dist_rst), residue-residue distance
restraints are applied to residues that are structurally conserved; (iv) metadynamic sampling with exclusive
residue-residue contacts (cm_excl), sampling with position restraints and in contact map space (CMS) with
metadynamics of unique residue-residue contacts; (v) metadynamic sampling with minimum distance residue-
residue contact (cm_min), sampling with position restraints and in CMS of residue contact pairs of the minimum
initial distance.

Position and distance restraint generation and sampling

The generation of restraints is outlined in Fig. S2A. For every CASP refinement target models from all par-
ticipating predictors were downloaded. The number of models varies from target to target, but on average 180
submissions were available. Often, a substantial part of these submissions were physically implausible, i.e. they
contained long extended stretches. In order to avoid including these into the analysis a 10 A Ca-RMSD cutoff
to the provided starting model was applied.

From this filtered set, position and distance restraints for structurally conserved regions were generated and
applied to Ca-atoms. Position restraints were applied if the per-residue Ca-RMSF calculated from the filtered
set is < 3 A (see Fig. S2C for an example). In order to determine conserved residue-residue distances all possible
combinations of Ca-Ca pairs were measured and distance restraints were applied if all of the following criteria
are true: a) the Ca-Ca pairs are at least 5 residues apart; b) the Ca-Ca distance is below 9 A; ¢) the standard
deviation of the distance is below 1 A (see Fig. S2D for an example).

For each target three different simulation setups are executed: a) 3ns long MD run without restraints,
replicated 8 times; b) 3ns long MD run with position restraints, replicated 8 times; ¢) 3ns long MD run with
distance restraints, replicated 8 times (see Fig. S2B). All MD simulations were computed with GROMACS,
using version 4.6 [49], and the G54a7 force field [50]. For all initial target structures hydrogen atoms were
added and the systems were neutralized with Na™ and CI™ counter ions. A cubic simulation system with a 12 A
buffer between the edge of the box and the protein was solvated with TIP3P water molecules [51]. All targets
were then subject to an energy minimisation using the steepest decent algorithm with a maximum of 50000
steps. This was followed by an equilibrium phase to relax the structure and its solvent. MD simulations (a)
and (b) were subject to a 2 step equilibrium protocol where all heavy atoms were position restrained by a force
of 1000 kJ mol~'nm~! throughout the equilibration. In the first phase an NVT equilibration of the system was
performed to increase the temperature from 0 K to 300 K in 100 ps using V-rescale [52] for temperature coupling.
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Fig. S2: Sampling Protocol. (A) Flowchart outlining the generation of the restraints and contact maps. (B) Flowchart outlining
the different MD sampling procedures (C) Example of point restraints applied to a protein. (D) Example of residue-residue distance
restraints applied to a protein. (E) Definition of residue-residue contact (F) Contact map definition for CMey and CMmin.
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The second phase consisted of a 300 ps long NPT equilibration of the system’s pressure to 1 bar using Parrinello
Rahman pressure coupling [53]. For MD simulation (¢) a second NPT equilibration was applied, where the first
step consisted of a 200 ps long equilibration with full heavy atoms position restraints and distance restraints,
and the second step of a 200 ps equilibration with distance restraints only.

For all simulation setups a leap-frog integrator with a At of 2 fs was used and coordinates, velocities, energies,
and forces were saved every 2 ps. Long range electrostatic interactions were treated with the Particle Mesh Ewald
method [54] with a cutoff of 10 A. Temperature and pressure coupling were controlled by the V-rescale and the
Parrinello-Rahman method and were set to 300 K and 1 bar, respectively.

Contact map generation and sampling

All available models from participating predictors of a target are downloaded from the prediction center server.
Each model is compared to the starting model and the Ca-RMSD is calculated, models with a Ca-RMSD >
10 A are removed from the set. This was done in order to remove outliers from the set.

The filtered set is used to determine structurally conserved residues. These are identified by computing the
per residue root mean square fluctuation (RMSF) of Ca atoms. Residues with a RMSF < 3A are considered
conserved and movements are restraint during the sampling process.

From the structures in the filtered set of CASP predictions, residue-residue contacts are identified with a
Ca or CpS distance below 8A (Fig. S2E), with the exception of direct neighbours, which are removed from
the list. From these contacts two contact maps (CM) are generated, namely CMy, and CM;, (Fig. S2F).
CM,y contains contacts that are exclusive to one model from the filtered set, whereas the map CM,,;, contains
contacts with the lowest Ca/CfS distance. From these CMs we can define two CVs describing the CMS:

CVIR) = 1/N 3 (Dy(R) = Dy (Ryep))? (13)
YECMey

CVAR) =1N 3 (Dy(R) = Dy(Rpe))? (14)
YECMpmin

L= (o /rd)"

L= (ry/r)™

The sigmoid distance function D, (R) is used to quantify the formation of a contact 7 in structure R, where
. is the contact distance in structure R and 7"2 is the contact distance in reference structure R..f which denotes
to one of the models from the filtered set of CASP12 models where the contact was observed. Variables n and
m are constant and set to n = 6 and m = 10.

The preparation of the starting model prior to the sampling process follows a GROMACS standard procedure
where the system is solvated, energy minimized and equilibrated for 300 ps. The sampling with metadynamics
in CMS is performed at 300 K for 10 ns with 5 replicas for each CM definition, resulting in 100 ns sampling data
for each target. The sampling of the CMS was performed with the GROMACS plug-in PLUMED2 [55] where
a Gaussian addition is deposited every 2 ps with o = 0.5, a bias factor of 10 and an initial height of 5kJ/mol.

D (R) (15)
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Table S3: Confusion matrix. The four different sub-tables show CV (validation-fold 4) of the predicted and actual class assignment
for improved (I), no change (N) and decreased (D) for (A) RNN, (B) KNN, (C) RF and (D) LR.

(a) RNN (b) KNN
Predicted Predicted
I N D I N D
Tg 1636 5497 14844 Tg I 1556 3311 17110
£ N 314 3230 33327 £ N 2386 6872 27613
< D 1653 6360 179923 < D 6690 12971 168415
(c) RF (d) LR
Predicted Predicted
I N D I N D
75:5 I 34 614 21329 Tg I 0 884 21093
£ N 25 2253 34593 £ N 0 1526 35345
< D 39 1644 186393 < D 0 1756 186320

Table S4: Protein target overview of which several MD trajectories were generated

Target PDB Description

TR217/T0817 4WED Crystal structure of ABC transporter
substrate-binding protein from Sinorhizobium
meliloti

TR228/T0828 4729 Crystal structure of the magnetobacterial protein
MtxA C-terminal domain

TR283/T0783 4CVH Crystal structure of human isoprenoid synthase
domain-containing protein

TR759/T0759 4Q28 Crystal Structure of the Plectin 1 and 2 Repeats of

the Human Periplakin. Northeast Structural
Genomics Consortium (NESG) Target HRI083A

TR760/T0760 4PQX Crystal structure of a NigD-like protein
(BACCAC_02139) from Bacteroides caccae ATCC
43185 at 2.39 A resolution

TR762/T0762 4Q5T Crystal structure of an atmB (putative membrane
lipoprotein) from Streptococcus mutans UA159 at
1.91 A resolution

TR765/T0765 4PWU Crystal structure of a modulator protein MzrA
(KPN_03524) from Klebsiella pneumoniae subsp.
pneumoniae MGH 78578 at 2.45 A resolution

TR768/T0768 40JU Crystal structure of a leucine-rich repeat protein
(BACCAP_00569) from Bacteroides capillosus
ATCC 29799 at 2.00 A resolution

TR769/T0769 2MQ8 Solution NMR Structure of De novo designed
protein LFR1 1 with ferredoxin fold, Northeast
Structural Genomics Consortium (NESG) Target

ORA414

TR774/T0774 4QB7 Crystal structure of a fimbrial protein (BVU_2522)
from Bacteroides vulgatus ATCC 8482 at 2.55 A
resolution

TR776/T0776 4Q9A Crystal structure of a putative GDSL-like lipase

(PARMER_00689) from Parabacteroides merdae
ATCC 43184 at 2.86 A resolution

TR780/T0780 4QDY Crystal structure of a YbbR-like protein (SP_1560)
from Streptococcus pneumoniae TIGR4 at 2.74 A
resolution

TR782/T0782 4GRL Crystal structure of a autoimmune TCR-MHC
complex

TR783/T0783 4CVH Crystal structure of human isoprenoid synthase

domain-containing protein
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Table S4: Protein target overview of which several MD trajectories were generated

Target PDB Description

TR786/T0786 4QVU Crystal structure of a DUF4931 family protein
(BCE0241) from Bacillus cereus ATCC 10987 at
2.65 A resolution

TR792/T0792 5A49 Crystal structure of the LOTUS domain (aa
139-222) of Drosophila Oskar in C222

TR795/T0795 5FJL Crystal structure of raptor adenovirus 1 fibre head,
wild-type form

TR803/T0803 40GM MBP-fusion protein of PilA1 residues 26-159

TR810/T0810 5JP6 Bdellovibrio bacteriovorus peptidoglycan
deacetylase Bd3279

TR816/T0816 5A1Q Crystal structure of Archaeoglobus fulgidus Af1502

TR817/T0817 4AWED Crystal structure of ABC transporter
substrate-binding protein from Sinorhizobium
meliloti

TR821/T0821 4R7S Crystal structure of a tetratricopeptide repeat
protein (PARMER_03812) from Parabacteroides
merdae ATCC 43184 at 2.39 A resolution

TR828,/T0828 4729 Crystal structure of the magnetobacterial protein
MtxA C-terminal domain

TR829/T0829 4RQL Crystal structure of a human cytochrome P450 2B6
(Y226H/K262R) in complex with a monoterpene -
sabinene

TR833/T0833 4R03 Crystal structure of a DUF3836 family protein
(BDI_3222) from Parabacteroides distasonis ATCC
8503 at 1.50 A resolution

TR837/T0837 5TF3 Crystal Structure of Protein of Unknown Function
YPO2564 from Yersinia pestis

TR848,/T0848 4R4Q) Crystal structure of RPA70N in complex with C31
H23 CI2 N3 06

TR854,/T0854 4RN3 Crystal structure of a HAD-superfamily hydrolase,
subfamily TA, variant 1 (GSU2069) from Geobacter
sulfurreducens PCA at 2.15 A resolution

TR856/T0856 4QT6 Crystal structure of the SPRY domain of human
HERC1

TR857/T0857 2MQC NMR structure of the protein BVU_0925 from
Bacteroides vulgatus ATCC 8482

TR862,/T0862 5J5V CdiA-CT from uropathogenic Escherichia coli in
complex with cognate immunity protein and CysK

TR868,/T0868 5J4A CdiA-CT toxin from Burkholderia pseudomallei
E479 in complex with cognate Cdil immunity
protein

TR869,/T0869 5J4A CdiA-CT toxin from Burkholderia pseudomallei
E479 in complex with cognate Cdil immunity
protein

TR870/T0870 5J5V CdiA-CT from uropathogenic Escherichia coli in
complex with cognate immunity protein and CysK

TR872/T0872 5JMB The Crystal structure of the N-terminal domain of
a novel cellulases from Bacteroides coprocola

TR&79/T0879 5JMU The crystal structure of the catalytic domain of
peptidoglycan N-acetylglucosamine deacetylase
from Eubacterium rectale ATCC 33656

TR891/T0891 4YMP Crystal structure of the Bacillus anthracis Hal
NEAT domain in complex with heme

TR893/T0893 5IDJ Bifunctional histidine kinase CckA (domains
DHp-CA) in complex with ADP/Mg2+

TR921/T0921 5A07Z High resolution SeMet structure of the third

cohesin from Ruminococcus flavefaciens scaffoldin
protein, ScaB
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Table S4: Protein target overview of which several MD trajectories were generated

Target PDB Description

TR928,/T0928 5TF2 CRYSTAL STRUCTURE OF THE WD40
DOMAIN OF THE HUMAN PROLACTIN
REGULATORY ELEMENT-BINDING PROTEIN

TR944/T0944 5K0O9 Crystal Structure of the SRAP Domain of Human
HMCES Protein
TR945/T0945 SLEV Crystal structure of human

UDP-N-acetylglucosamine-dolichyl-phosphate
N-acetylglucosaminephosphotransferase (DPAGT1)
(V264G mutant)

Table S5: Trajectory and cross validation overview for all protein targets.

Traj. Name Fold # Snap. # Traj. 1 N D
TR759_dist_rst 0 12008 8 7401 1995 2612
TR759_no_rst 0 11208 8 4260 2231 4717
TR759_point_rst 0 11208 8 5517 1701 3990
TR782_no_rst 0 11208 8 30 171 11007
TR782_point_rst 0 11208 8 149 948 10111
TRS810_dist_rst 0 12008 8 18 474 11516
TR&810_no_rst 0 11208 8 55 690 10463
TR810_point_rst 0 11208 8 92 7104 4012
TR856_dist_rst 0 12008 8 0 1 12007
TR856_no_rst 0 11208 8 0 3 11205
TR856_point_rst 0 11208 8 0 267 10941
TR869_cm _excl 0 24505 5 18 3077 21410
TR869_cm_min 0 24505 5 3 882 23620
TR869_point_rst 0 11208 8 35 2599 8574
TR&891 _cm _excl 0 24505 5 4 1895 22606
TR&891_cm_min 0 24505 5 28 2622 21855
TR891 _point_rst 0 11208 8 12 2230 8966
TR283_dist_rst 1 12008 8 318 1074 10616
TR283_no_rst 1 11208 8 19 531 10658
TR283_point_rst 1 11208 8 0 8 11200
TR780_dist_rst 1 12008 8 4242 1940 5826
TR780-no_rst 1 11208 8 1167 1191 8850
TR780_point_rst 1 11208 8 5729 4651 828
TR&37_dist_rst 1 12008 8 1268 886 9854
TR837_no_rst 1 11208 8 1329 1448 8431
TR837_point_rst 1 11208 8 727 1336 9145
TRS854_dist_rst 1 12008 8 329 991 10688
TR854_no_rst 1 11208 8 376 1084 9748
TR854 _point_rst 1 11208 8 2943 6376 1889
TR879_cm _excl 1 24505 5 0 11 24494
TR&79_cm_min 1 24505 5 0 27 24478
TR879_point_rst 1 11208 8 0 40 11168
TR921 _cm_excl 1 24505 5 17 6751 17737
TR921_cm_min 1 24505 5 27 9337 15141
TR921 _point_rst 1 11208 8 13 6552 4643
TR217_dist_rst 2 12008 8 0 13 11995
TR217_no_rst 2 11208 8 0 15 11193
TR217_point_rst 2 11208 8 583 6864 3761
TR760_dist_rst 2 12008 8 0 8 12000
TR760_no_rst 2 11208 8 0 8 11200
TR760_point_rst 2 11208 8 381 5509 5318
TR786_dist_rst 2 12008 8 2 74 11932
TR786_no_rst 2 11208 8 1 60 11147
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Table S5: Trajectory and cross validation overview for all protein targets.

Traj. Name Fold # Snap. # Traj. 1 N D
TR786_point_rst 2 11208 8 3451 4746 3011
TR816_dist_rst 2 12008 8 1017 488 10503
TR816_no_rst 2 11208 8 1598 1024 8586
TR816_point_rst 2 11208 8 1409 1754 8045
TR862_cm_excl 2 24505 5 422 3323 20760
TR862_cm_min 2 24505 5 2444 4205 17856
TR862_point_rst 2 11208 8 595 2900 7713
TR872_cm_excl 2 24505 5 2201 6844 15460
TR872_cm_min 2 24505 5 1488 4055 18962
TR872_point_rst 2 11208 8 767 3268 7173
TR762_dist_rst 3 12008 8 0 8 12000
TR762 _no_rst 3 11208 8 0 8 11200
TR762_point_rst 3 11208 8 0 1656 9552
TR765_dist_rst 3 12008 8 11107 551 350
TR765_no_rst 3 11208 8 8259 963 1986
TR765_point_rst 3 11208 8 10719 425 64
TR828_dist_rst 3 12008 8 3 13 11992
TR828 no_rst 3 11208 8 1 15 11192
TR828_point_rst 3 11208 8 7 57 11144
TR833_dist_rst 3 12008 8 2 83 11923
TR833 no_rst 3 11208 8 1 64 11143
TR833_point_rst 3 11208 8 1232 4336 5640
TR928_cm_excl 3 24505 5 0 0 24505
TR928_cm_min 3 24505 5 0 0 24505
TR928 _point_rst 3 11208 8 0 0 11208
TR945_cm_excl 3 24505 5 139 13368 10998
TR945_cm_min 3 24505 5 116 10678 13711
TRI45 _point_rst 3 11208 8 265 7400 3543
TR817_dist_rst 4 12008 8 843 958 10207
TR817 _no_rst 4 11208 8 326 576 10306
TR817_point_rst 4 11208 8 73 6538 4597
TR821 _dist_rst 4 12008 8 5115 1530 5363
TR821 no_rst 4 11208 8 5235 1458 4515
TR829_dist _rst 4 12008 8 84 425 11499
TR829_no_rst 4 11208 8 41 371 10796
TR829_point_rst 4 11208 8 3213 4337 3658
TR857_dist _rst 4 12008 8 1933 2781 7294
TR857_no_rst 4 11208 8 1734 1944 7530
TRS857_point_rst 4 11208 8 1870 3345 5993
TR&70_cm_excl 4 24505 5 17 343 24145
TR870_cm_min 4 24505 5 617 2950 20938
TR870_point_rst 4 11208 8 153 1718 9337
TR944 _cm_excl 4 24505 5 86 2461 21958
TR944_cm_min 4 24505 5 578 3006 20921
TR944 _point _rst 4 11208 8 59 2130 9019
TR769_dist_rst 5 12008 8 2004 1537 8467
TR769_no_rst 5 11208 8 3089 1880 6239
TR774 _dist_rst 5 12008 8 1 46 11961
TR774 no_rst 5 11208 8 1 44 11163
TR774_point_rst 5 11208 8 6 1028 10174
TR792_dist _rst 5 12008 8 2815 2383 6810
TR792 _no_rst 5 11208 8 3906 2620 4682
TR792_point_rst 5 11208 8 2811 4515 3882
TR795_dist_rst 5 12008 8 373 1367 10268
TR795_point_rst 5 11208 8 1956 7702 1550
TR848_dist _rst 5 12008 8 1 22 11985
TR848 no_rst 5 11208 8 2 53 11153
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Table S5: Trajectory and cross validation overview for all protein targets.

Traj. Name Fold # Snap. # Traj. 1 N D

TR848_point_rst 5 11208 8 7 1541 9590
TR&93_cm _excl 5 24505 5 0 121 24384
TR893_cm_min 5 24505 5 0 21 24484
TR893_point_rst 5 11208 8 0 45 11163
TR228_dist_rst 6 12008 8 3073 3563 5372
TR228_no_rst 6 11208 8 4852 2362 3994
TR228_point_rst 6 11208 8 5893 2875 2440
TR768_dist_rst 6 12008 8 50 591 11367
TR768_no_rst 6 11208 8 59 491 10658
TR768_point_rst 6 11208 8 1190 4161 5857
TR776_dist_rst 6 12008 8 0 20 11988
TR776_no_rst 6 11208 8 0 15 11193
TR776_point_rst 6 11208 8 312 7811 3085
TR783_dist_rst 6 12008 8 10 49 11949
TR783_no_rst 6 11208 8 0 55 11153
TR783_point_rst 6 11208 8 93 1640 9475
TR803_dist_rst 6 12008 8 215 1387 10406
TR803_no_rst 6 11208 8 8 351 10849
TRS803_point_rst 6 11208 8 228 1006 9974
TR868_cm _excl 6 24505 5 329 542 23634
TR868_cm_min 6 24505 5 76 503 23926
TR868_point_rst 6 11208 8 592 1293 9323
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Fig. S3: Histogram of the continues segmentation length of the three different states in all trajectories. Frequency as a function
of continuous segment length with (A) improved quality, (B) no change in quality and (C) decreased quality.
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Fig. S4: (A) Cumulative distribution of true positive (TP), false negative (FN) and false positive (FP) predictions for the no-change
state as a function of AGDTTS. The background colours red, gray and green indicate the AGDTTS regions for the improved,
no-change and decreased states, respectively. (B) Cumulative distribution of true positive (TP), false negative (FN) and false
positive (FP) predictions for the no-change state as a function of GDTTS. (C) Show the distribution of assigned probabilities for
no-change state predictions.
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Fig. S5: (A) Cumulative distribution of true positive (TP), false negative (FN) and false positive (FP) predictions for the decreased
state as a function of AGDTTS. The background colours red, gray and green indicate the AGDTTS regions for the improved,
no-change and decreased states, respectively. (B) Cumulative distribution of true positive (TP), false negative (FN) and false
positive (FP) predictions for the decreased state as a function of GDTTS. (C) Show the distribution of assigned probabilities for
decreased state predictions.
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