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SUMMARY  

Post-translational lysine methylation has been found to play a fundamental role in the 

regulation of protein function and the transmission of biological signals. We present 

the development of a machine learning model for predicting lysine methylation sites 

among human proteins. The model uses fully-alignment-free features encoding se-

quence-based information. A total of 57 novel predicted histone methylation sites were 

selected for evaluation by targeted mass spectrometry, with 51 sites positively re-

assigned as true methylated sites, while one site was also found to be dynamically re-

sponsive to DNA damage. To gain insight into the cellular function of the lysine meth-

ylation system, we reveal links between cellular metabolic and GTPase signal trans-

duction, demonstrating a dynamic hypoxia-responsive methylation of the inducible ni-

tric oxide synthase (NOS2). With the growing implication of lysine methylation in hu-

man health and disease, the development of methods that help to target its discovery 

will become of critical importance to understanding its biological implications.  
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INTRODUCTION 

Post-translational modifications (PTMs) are reversible chemical modifications 

that play a crucial role in the regulation of protein function and the transmission of bio-

logical signals (Mann and Jensen, 2003). This diversity in available chemical protein 

modifications greatly expands the information potential within the PTM code, allowing 

cells to exert much greater control over crucial cellular processes. For example, his-

tone proteins and their diverse array of PTMs have been subject to exquisite evolu-

tionary conservation in eukaryotes, and one of the main types of PTMs occurring on 

histones is the reversible methylation of lysine residues (Martin and Zhang, 2005). Alt-

hough lysine methylation is commonly known as a PTM of histone proteins, the preva-

lence of the methylation of non-histone proteins has received considerable attention in 

recent years, and has been found to play crucial roles in a number of human diseases, 

including cancer (Zhang et al., 2012; Arrowsmith et al., 2012; Biggar and Li, 2015; 

Hamamoto et al., 2015). Given the importance of PTMs in protein regulation and cellu-

lar function, and the prevalence of its dysregulation in human health and disease, the 

development of identification technologies have received considerable attention. As a 

result, there has been a significant effort placed on the development of both in silico 

and mass spectrometry-based enrichment methods to aid in the discovery and explo-

ration of the methyl-lysine proteome (Liu et al., 2013; Carlson et al., 2014; Shi et al., 

2015; Wen et al., 2016; Audagnotto and Peraro, 2017).  

The number of known methylated proteins and modification sites has grown 

tremendously in recent years. Indeed, recent advances in identification technologies 

(i.e., affinity enrichment methods and high-resolution mass spectrometry) have pro-

vided insight into a large number of non-histone proteins that undergo lysine methyla-

tion, with many of these methylation events shown to have important regulatory func-

tions for the respective proteins (Liu et al., 2013; Carlson et al., 2014). Furthermore, it 

is now known that the methylation of proteins is extremely dynamic and is involved in 

a growing number of cellular processes (Wu et al., 2017). These studies suggest a 

broad role for lysine methylation in regulating protein function, well beyond controlling 

chromatin dynamics via histone methylation. For example, the tumor suppressor p53 

is methylated on multiple lysine residues and individual modifications have the capaci-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/274688doi: bioRxiv preprint 

https://doi.org/10.1101/274688
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

ty to regulate p53 function through a surprisingly diverse array of mechanisms (West 

and Gozani, 2011). Further, the catalytic subunit of DNA-dependent protein kinase 

(DNA-PK), an important regulator of DNA damage repair, is methylated on multiple 

lysine residues and methylation status dictates its ability to effectively repair damaged 

DNA (Liu et al., 2013). 

Given the extensive regulatory importance that is beginning to be realized for 

lysine methylation, the successful identification of modification sites has become in-

creasingly important. One of the largest challenges placed on the discovery of lysine-

methylated proteins has been limitations in identification technology. It has proven to 

be difficult to develop specific affinity strategies that are able to enrich for the lysine 

methylation modification (Liu et al., 2013; Carlson et al., 2014). As a result, the identi-

fication of lysine methylation sites has not experienced the same growth in discovery 

as other PTMs, such as serine/threonine and tyrosine phosphorylation, lysine acetyla-

tion, or arginine methylation. However, the development of both new in silico predic-

tion resources combined with targeted enrichment strategies will help to aid in the ini-

tial annotation of the methyllysine proteome on a proteome scale. Although several 

affinity strategies that utilize natural methyl-binding domains have been remarkably 

successful in the identification of new lysine methylation events when coupled with 

mass spectrometry (Liu et al., 2013; Carlson et al., 2014), these approaches are in-

herently biased towards the biologically-relevant binding specificity of the domain used 

for the initial enrichment. In silico prediction methods help to overcome this issue by 

predicting methylation events based on general underlying characteristics of all known 

modification sites. During the past decade, there have been several attempts to de-

velop methyllysine and methylarginine computational predictors (Table S1) (Chen et 

al., 2006; Hu et al., 2011; Qiu et al., 2014; Shao et al., 2009; Shi et al., 2012; Shi, et 

al., 2015; Shien et al., 2009). These studies built their models from the available in-

formation of methylated sites extracted from UniProtKB, PhosphoSite-Plus, and Pub-

Med, gathering only a few hundred methylation sites. Therefore, these predictors are 

limited to approximately 200 non-redundant methyllysine sites for building and as-

sessing their models. Critically, the expected diversity of methyllysine sites can un-

doubtedly not be represented with such a few number of examples given the impres-
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sive growth of validated methylated sites in recent years (Cao and Garcia, 2016). Most 

notably, there has been a stark lack of experimental validation highlighting the pro-

spective use of such in silico methods to aid in vivo discovery. 

We address these limitations by conducting a model learning approach based, 

first, on alignment-free features to directly capture the physical and chemical proper-

ties of the peptides, rather than relying on domain-specific features that often fail due 

to the limited amount of available data. At the same time, we enlarged the size of our 

training dataset to approximately two thousand sites that have been gathered from 

years of experimental studies on the lysine methylation and deposited in the 

PhosphoSite database (www.phosphosite.com). Secondly, we treat imbalance by us-

ing cost-sensitive learning, thus the datasets are kept in their intrinsic imbalanced ratio 

during cross-validation and hold-out tests rather than introducing synthetic training da-

ta nor losing valuable exemplars through under-sampling. In summary, our method of 

methyllysine prediction has resulted in a number of promising methylation sites based 

on comparisons with other existing methods using common independent tests. More-

over, our proteome-wide predictions provide a valuable resource to gain functional in-

sight into the methyllysine proteome, and for the experimental validation of new meth-

ylation sites and for the generation of useful hypotheses. The MethylSight user inter-

face, source code, datasets and support vector machine (SVM) models can be freely 

found at http://methylsight.com. 

 

 

MATERIALS AND METHODS 

Preparing the data sets 

The generation of training, calibration, and test datasets are described in the 

supplemental methods and summarized in Table S2. Feature extraction was accom-

plished using ProtDCal properties, groups, modifiers and aggregators, as follows: 

amino acid properties are first computed over different grouping subsets of amino ac-

ids within each input sequence window (Ruiz-Blanco et al., 2015). For example, the 

hydrophobicity of all charged amino acids within a sequence window could form the 

basis for a ProtDCal descriptor. In this case, 12 amino acid properties were used to 
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numerically encode the physical-chemical characteristics of the residues. These prop-

erties are found in the AAindex database (Kawashima and Kanehisa, 2000) and are 

also described in the ProtDCal documentation. Fourteen residue groups are used 

based on either side chain structure or using specific residue positions within the input 

sequence window. The properties can then be modified by the computed properties of 

neighboring amino acids, before applying an aggregation operation to reduce the vec-

tor down to a scalar quantity, known as a descriptor or feature. Two modification oper-

ators for capturing vicinity information and twelve aggregation operators ultimately 

transform the property vector of each amino acid group into the final scalar features. 

The project files with the lists of indices, groups, modification and aggregation opera-

tors as well as other parameters for the calculations are provided on the 

http://methylsight.com website. The above configuration leads to an initial set of 3720 

descriptors, which is subsequently filtered to identify those features most useful for 

methyllysine prediction using a pipeline of supervised and unsupervised feature selec-

tion processes. 

Feature selection begins with information gain (IG) analysis, which retains only 

those features whose distribution across all sites in the training data correlates with 

class label. All the attributes with a non-zero IG value were extracted in this step. Sub-

sequently, an unsupervised redundancy filter is applied, using a single-linkage cluster-

ing algorithm with the Spearman correlation coefficient as the similarity measure. Fea-

tures exhibiting pair-wise correlation above 0.9 are clustered together and only one 

representative feature from each cluster is kept. Ultimately, the supervised 

WrapperSubsetEval method, implemented in Weka 3.7.11 (Hall et al., 2009), is used 

to extract an optimum subset of features for modelling. This method was configured 

using a Genetic Search for exploring the feature space and potential feature sets are 

evaluated using the classification F-measure of the positive class in 5-fold cross-

validation tests using SVM classifiers with a linear kernel. The cost-sensitive sequen-

tial minimal optimization (SMO) algorithm (Cai and Cherkassky, 2012) was used to 

train all SVM classifiers in this work. The cost matrix reflected the relative class imbal-

ance in the data, such that the false negative error cost is equal to the number of 
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negative instances and the cost of false positive errors was fixed at the number of 

positive instances in the data (Table S2). 

 

Training the support vector machine predictor 

Following feature selection, a grid-based optimization of SVM hyperparameters 

was conducted using the training and calibration data. The final model is selected ac-

cording to the prediction accuracy (in terms of F-measure, precision, and recall). The 

optimal model is selected based on strong performance in both cross-validation test-

ing and in hold-out calibration testing.  

 

Multiple reaction monitoring mass spectrometry (MRM-MS) 

To validate the status of predicted methylation sites, isolated proteins were di-

gested with trypsin and the digest was analyzed by positive ESI LC-MS/MS on a triple 

quadrupole mass spectrometer (4000 QTRAP, Applied Biosystems Inc.) utilizing Q3 

as a linear ion trap. A nanoAcquity UPLC system (Waters) equipped with a C18 ana-

lytical column (1.7 µm, BEH130, 75 µm×250 mm) was used to separate the peptides 

at the flow rate of 300 nl/min and operating pressure of 8000 psi. Peptides were eluted 

using a 62 min gradient from 95% solvent A (H2O, 0.1% formic acid) and 5% B (ace-

tonitrile, 0.1% formic acid) to 50% B in 41 min, 6 min at 90% B, and back to 5% for 10 

min. Eluted peptides were directly electrosprayed (Nanosource, ESI voltage +2000V) 

into the mass spectrometer. The instrument was set to monitor up to 200 transitions in 

each sample with a dwelling time of at least 25 msec/transition. 

The in silico protease digest patterns (i.e. to generate precursor ions) and the 

corresponding MRM transitions were compiled using the Skyline™ software made 

freely available to us by the McCoss Lab, Department of Genome Sciences University 

of Washington School of Medicine (MacLean et al., 2010). Transitions that are larger 

than the precursor ion was selected based on the Skyline predictions and the specific 

b/y ions that allow unambiguous identification of the methylated lysine site were in-

cluded. Positive identification of a new methylation site required the successful detec-

tion of at least three transitions. All transitions used to identify methylation sites are 

listed in Table S3. An internal NOS2-specific peptide (NH2-QQNESPQPLVETGK-
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COOH) was used as a standard to normalize relative NOS2 methylation data to pro-

tein abundance. 

 

Functional analysis of prediction methyllysine proteome 

To functionally annotate the biological functions enriched in the dataset of 

known and predicted human lysine methylation sites, we initially used Gene Ontology 

enrichments to identify biological processes enriched in lysine-methylated proteins. To 

functionally annotate clusters of interacting proteins within the predicted methyllysine 

interactome, we used the spatial analysis of functional enrichment (SAFE) component 

of Cytoscape (v.3.5.1) (Baryshnikova, 2016) using STRING interactions (v.10.5). 

Functional enrichments based on known protein interactions were carried out at rec-

ommended settings.  

 

 

RESULTS 

Demonstrating effectiveness of prediction framework 

The achievable prediction recall, precision, and specificity are presented in Fig-

ure 2A as a function of decision threshold. As with previous studies, those lysine resi-

dues appearing on proteins that have been investigated for methylation, but which 

have not been reported to be methylated, are here assumed to be negative when 

training and evaluating predictors. Considering that the number of methylation sites 

continues to grow significantly, this assumption is known to be flawed (i.e. many of the 

assumed-negative instances are expected to actually be undocumented positive 

sites). This leads to a pessimistic estimation of the precision of the obtained model. 

Therefore, we also computed the precision using a high confidence negative test sub-

set (see Supplemental Methods). Shown as yellow in Figure 2A, this can be consid-

ered an optimistic estimator of prediction precision, with the true precision expected to 

lay between the yellow and grey curves. 

The model is subsequently evaluated in the hold-out test set, and the perfor-

mance is contrasted with other available methylation prediction servers (Figure 2B). In 

general, the performance of all the methods is very low, which could be a reflection of 
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the limited training data used to create most of the other servers and the erroneous 

information of assumed-negative instances that are supplied to the training algorithms. 

Our method achieved significantly better performance in identifying methylated sites 

as is shown by our much higher sensitivity. The precision is slightly higher than other 

predictors which mean that overall, we are able to predict more positive sites than the 

other methods without sacrificing the false positive prediction rate. 

 

Validation of histone lysine methylation sites 

Given effective enrichment methods for the isolation and purification of histone 

proteins, we chose to validate the methylation status of positively predicted lysine 

methylation sites in histone proteins. MRM-MS was carried out on purified histone pro-

teins using transitions that were designed for the detection of specific methylation 

sites. It should be noted that given the high lysine content within histones, it was not 

possible to validate all predicted methylation sites from trypsin-digested peptides as 

some sites exist on peptides that are simply too short for proper detection and site-

specific identification. Within histone proteins, a total of 74 lysine methylation sites 

were predicted (Table S4). Given that histone proteins are rich in lysine residues sus-

ceptible to trypsin cleavage, from these peptides, only 57 methylation sites were iden-

tified to exist on trypsin-digested peptides that we deemed suitable for detection on 

the QTRAP 4000 MS as determined by the Skyline software. Of these peptides, tran-

sitions were selected and optimized for the detection of either the unmethylated or the 

Kme1, 2, or 3 methyl-modified lysine residues. A total of 51 new histone methylation 

sites containing 81 different methyl-modifications were successfully validated by 

MRM-MS and are listed in Table 1. Remarkably, 89% of the sites were found to be ac-

tually positive cases of lysine methylation, which outperforms the expected precision 

and is, therefore, a corroboration of the bias introduced in the model by mislabeled in-

stances assumed to be negative. 

 

DNA damage response of histone H2B(K43) methylation 

Given the proximity of the histone H2B(K43) methylation to bound DNA, and a 

known role of H2B during repair of DNA damage (Hung et al., 2017), we explored the 
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dynamics of H2B(K43) methylation in response to doxorubicin-induced DNA damage 

(Figure 3). Histone methylation sites with a known response to periods of DNA dam-

age, specifically histone H3(K4me3) and H3(K9me3), were also included in the analy-

sis to provide a broader scope of analysis (Sun et al., 2009; Faucher et al., 2010; 

Ayrapetov et al., 2014). Relative methylation status of histone H2B(K43me2 and 3) 

were found to decrease in response to increasing doxorubicin concentrations following 

24 hr treatment (Figure 3C). In contrast, the methylation status of histone H3(K4me3) 

and H3(K9me3) both dynamically increased in response to increasing concentration of 

doxorubicin treatment, corroborating with previous studies (Figure 3C). These findings 

suggest a dynamic response of a previously undocumented H2B methylation site in 

response to DNA damage. 

 

Prediction of the human methyllysine proteome 

To provide insight into the potential scale of the predicted methyllysine proteo-

me, we used our framework to identify proteins harbouring high confidence lysine 

methylation sites throughout the whole human proteome. A prediction score of 0.7 

was chosen for threshold used for the predicted methyllysine sites as this score corre-

sponds to a 95% specificity of the MethylSight algorithm (Figure 2A). A total of 35,973 

lysine residues were predicted to be methylated at this threshold; all predicted lysine 

methylation sites identified within the human proteome are listed in Table S5.  

To provide deeper information into the potential biological functions of lysine 

methylation, the STRING database was used to identify and build networked clusters 

of interacting proteins that contain predicted methylation sites (Figure 4C). The cellular 

function of clusters was identified based on the GO enrichment analysis. Results indi-

cated that predicted lysine methylation events were significantly enriched in the regu-

lation of complement activation, positive regulation of the immune response, 

endonucleolytic cleavage of tricistronic rRNA transcripts, amino acid metabolism, nu-

clear-transcribed mRNA catabolism, calcium-independent cell-cell adhesion, nuclear 

protein export, intracellular protein transport, regulation of GTPase mediated signal 

transduction, among other histone-related biological processes. The VEGF signalling 

was used as a well-studied GTPase mediated signal transduction example to map 
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both known (black) and predicted (red) lysine methylation events that may play a role 

in its regulation (Figure 5A). Predicted NOS2 methylation events were chosen for 

MRM-MS validation, given the role of NOS2 in nitric oxide production in angiogenesis 

and hypoxia adaptation.   

 

Validation of NOS2 lysine methylation and hypoxia response 

Next, we validated the predicted NOS2 lysine methylation events from NOS2 IP 

samples obtained from MCF7 cells. The site-specific methylation status of NOS2 at 

lysine residues K12, K520, and K531 sites was determined in a manner similar as de-

scribed above using MRM-MS. Although methylation at K12 and K531 could not be 

detected, the monomethylation of K520 was positively identified as a validated meth-

ylation site from MCF7 cells (Figure 5B). Neither the dimethylated or trimethylated 

state of NOS2(K520) were detected by MRM-MS. As the K520 methylation site is 

within the calmodulin binding region of NOS2, we then examined the effect of hypoxia 

on NOS2(K520me1) methylation status. In response to 24hr of 1% oxygen, relative 

NOS2(K520me1) levels decreased to only 47% of normoxic (i.e., 20% oxygen) levels 

(Figure 5C).   

 

 

DISCUSSION 

Traditionally, the disease context of lysine methylation has mostly been viewed 

via its roles in epigenetics, where the aetiology invariably stems from dysregulated his-

tone-dependent transcription programs. Apart from the contribution of histone meth-

ylation events, a growing number of lysine-methylated non-histone proteins are being 

found to directly contribute to cellular dysfunction. For example, the discovery of 

MAP3K2 methylation at K260 by SMYD3 was shown to be instrumental in the activa-

tion of oncogenic Ras/Raf/MEK/ERK signalling and the progression of Ras-driven 

cancers (Mazur et al., 2014). This example highlights the importance of developing 

tools that are able to successfully identify new lysine methylation sites for their func-

tional annotation in human health and disease. Indeed, a remarkable amount of atten-
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tion has been drawn to the analysis and discovery of non-histone lysine methylation 

events.  

Though many efforts have been devoted to the investigation of protein methyla-

tion, the analysis of non-histone methylation at proteome level is still a great chal-

lenge. The discovery and mechanistic insight into new lysine modifications will un-

doubtedly pave the way for the future development and therapeutic application of "epi-

drugs" in cancer. However, the alteration of protein/peptide physicochemical proper-

ties caused by methylation is very small and it is difficult to develop highly efficient en-

richment approaches to separate the methylated peptides from the pool of diverse 

background peptides (Wu et al., 2017). The MethylSight program was developed to 

help in the efficient discovery of new lysine methylation sites that can then be validat-

ed through targeted mass spectrometry.   

 Currently, state-of-the-art methods for the prediction of post-translational lysine 

methylation do not provide adequate specificity for the efficient discovery of new in 

vivo methylation events. The AutoMotif server was the first prediction tool for methyla-

tion (Plewczynski et al., 2005). Methylated sites with 9 flanking residues were used as 

a positive dataset, while negative datasets were created using the unmodified corre-

sponding sequences. These data were utilized to train an SVM classifier for the pre-

diction of novel methylation sites. An improvement to this method was published later 

that year by Daily et al., who proposed that methylated events occur in disordered 

structures and incorporated this feature into their predictions thereby increasing accu-

racy (Daily et al., 2005). In the years following, several other prediction algorithms 

have been developed using an increasing number of features characteristic of known 

methyllysine sites (such as solvent-accessible surface area and secondary structure). 

However, these in silico approaches require high quality, large methylation site data-

bases using experimentally validated modification sites as positive datasets, a re-

source which remains elusive. Given the exceptional growth and availability of newly 

validated lysine methylation sites, we used fully-alignment-free features, which are 

able to encode structural information from the lysine sites, to train the MethylSight al-

gorithm, a highly accurate SVM-based prediction tool.  
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A total of 51 new histone methylation sites containing 81 different methyl-

modifications were successfully validated by MethylSight (Table 1). To demonstrate 

the applicability of MethylSight to uncover methylation sites with possible functional 

implications. Interestingly, analysis of the histone H2B crystal structure (PDB 1AOI) 

identified the K43 methylation site within 5 angstroms to bound DNA (Figure 3A). Us-

ing antibodies designed specifically for the methylated form of histone 

H2B(K43me2/3), we monitored the response of this methylation to periods of doxoru-

bicin-induced DNA damage (Hung et al., 2017). Indeed, the relative methylation of his-

tone H2B(K43me3) was found to be a response to DNA damage in a doxorubicin 

concentration-dependent manner (Figure 3C). Previous studies have shown that the 

H2B(K43) site is also ubiquitinated and has also been shown to have an acetylated 

variant (Vlaming et al., 2014). The contribution of H2B(K43) methylation to the DNA 

damage response not directly known at this point, however, H2B is known to be glob-

ally ubiquitinated at multiple sites in response to DNA damage (Hung et al., 2017). 

Specifically, H2B(K123Ub) by Bre1/Rad6 helps to direct DOT1 methylation on H3(K4) 

methylation. The crosstalk between H2B ubiquitination and H3(K4) and H3(K79) 

methylation is evolutionarily conserved from yeast to metazoans. Since many other 

chromatin proteins are also subject to ubiquitination, an important question is which 

molecular features of ubiquitinated H2B are important for this trans-histone 

crosstalk in vivo. It is possible that H2B(K43me3) could also represent a modification 

helping to direct site-specific PTM competition between lysine modifications such as 

Ub, acetylation, and methylation during periods of DNA damage. 

To facilitate the high-throughput in silico prediction of methylation sites on a 

proteomic scale, we used MethylSight to screen the complete human proteome from 

the UniProtKB/Swiss-Prot database (version 2017_07). Our analysis predicted 35,973 

methyllysine sites (Table S5). To gain functional insight into the predicted human 

methyllysine protein network, we used a spatial analysis of functional enrichment 

(SAFE) (Baryshnikova, 2016) (Figure 4). SAFE was developed as a systematic meth-

od for annotating biological networks and examining their functional organization. Our 

analysis identified our methyllysine network to be enriched in the regulation of com-

plement activation, positive regulation of the immune response, endonucleolytic 
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cleavage of tricistronic rRNA transcripts, amino acid metabolism, nuclear-transcribed 

mRNA catabolism, calcium-independent cell-cell adhesion, nuclear protein export, in-

tracellular protein transport, regulation of GTPase mediated signal transduction, 

among other well-studied histone-related biological processes. This analysis agrees 

with reports demonstrating a role for lysine methylation in the nuclear localization of 

heat shock proteins (Cho et al., 2012), calcium signalling events mediated by 

calmodulin methylation (Haziza et al., 2015), and the regulation of Ras/Raf/MEK/ERK 

signaling through the methylation of MAP3K2 (Mazur et al., 2014). Indeed such prote-

ome-wide analyses represent a valuable resource for the experimental validation of 

novel methylation substrates and generation of useful hypotheses. 

Given the recent implication of lysine methylation on several examples of 

GTPase mediated signal transduction, including MAP3K2(K260) and VEGFR1(K831) 

methylation, we mapped the known and predicted lysine-methylated sites to the 

VEGFR signal transduction pathway to provide new insight into potential regulation by 

post-translational lysine methylation (Figure 5A). Indeed MethylSight identified poten-

tial methylation site on a number of proteins with direct regulation influence on signal-

ling, including several additional sites on proteins previously known to be lysine-

methylated such as VEGFR1 and the guanidine exchange factor, SOS1. To demon-

strate the ability of MethylSight to identify methylated sites on non-histone proteins, 

several predicted sites on NOS2 were selected for MRM-MS based validation. The 

NOS2 protein was selected for validation given its biologically relevant role in angio-

genesis and hypoxia adaptation (Heinecke et al., 2014). Monomethylation at the 

MethylSight predicted NOS2(K520) site was detected from NOS2 IP samples obtained 

from MCF7 cells by MRM-MS (Figure 5B). Given that this new methyllysine modified 

residue is within the calmodulin binding region of NOS2, a region critical for NOS2 

function and nitric oxide production, we explore a possible hypoxia-responsive regula-

tion of this methylation site. Indeed, in response to 24hr hypoxia relative 

monomethylation levels decreased to 47% of normoxic control levels (Figure 5C). 

These results indicate a possible role of NOS2 methylation in the regulation of its hy-

poxia-responsive activity, likely dictated by calmodulin binding.      
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The advances in analyses of lysine methylation at proteome level have been 

slow compared with other well studied PTMs, such as serine and threonine phosphor-

ylation. Fortunately, progress in this field has been achieved along with advances in its 

identification technology. Exploiting the recent expansion of publicly available 

methyllysine datasets, and our combination of in silico and wet-lab experiments, we 

were able to develop and use the MethylSight pipeline to evaluate several new meth-

ylation sites. With the further development of novel analytical methods, in-depth explo-

ration of protein lysine methylation can be achieved more easily using in silico predic-

tion tools (e.g., MethylSight) that contribute to the deeper understanding of how pro-

tein methylation regulates diverse cellular processes.  
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FIGURES LEGENDS 

 

Figure 1. Overview of the MethylSight program.  

  

Figure 2. Prediction framework validation. (A) Performance measures of the 

MethylSight algorithm. The grey and yellow lines are pessimistic and optimistic esti-

mators for true precision (see text), such that the true precision falls between these 

lines. (B) Comparison of precision and sensitivity of publicly available methyllysine 

predictors to the MethylSight algorithm. 

 

Figure 3. Characterization of the histone H2B(K43) methylation site. (A) Crystal 

structure of histone H2B in complex with bound DNA (PDB 1AOI) demonstrating the 

proximity of the K43 methylation site to bound DNA. Interactions modeled with PyMol. 

(B) Representative transitions used for the methylation state-specific detection of 

H2B(K43) methylation patterns for validation by MRM-MS. All mass spectrometry was 

carried out using an AB SCIEX QTRAP 4000 linear ion trap mass spectrometer. (C) 

Immunoblot images showing the dynamic H3(K9me3), H3(K4me3), total H2B protein, 

H2B(K43me2), and H2B(K43me3) methylation in response to periods of doxorubicin-

induced DNA damage.   

 

Figure 4. The predicted functional Human methyllysine proteome network. Hu-

man Gene Ontology (GO) enrichments of biological processes for both the (A) current-

ly annotated, and (B) predicted methyllysine proteome. The currently annotated 

methyllysine-modified proteins were downloaded from the PhosphoSitePlus database. 

(C) To obtain a functional annotation of interacting proteins to reveal functionally rele-

vant groups of lysine methylated proteins, a spatial analysis of functional enrichment 

was used and visualized using Cytoscape (v.3.5.1). All clusters are differentially col-

oured and annotated used human GO terms.  
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Figure 5. Role of lysine methylation on non-histone proteins. (A) known (black) 

and predicted (red) methylation sites within proteins involved in VEGFR1/2 signal 

transduction. (B) Representative transitions used for the methylation state-specific de-

tection of NOS2(K520) monomethylation patterns for validation by MRM-MS. (C) Dy-

namic methylated status of NOS2(K520) in response to a 24hr hypoxic (1% oxygen) 

environment as monitored by relative peak area of selected transition ions specific for 

the NOS2(K520me1) peptide. Data normalized to the relative intensity of an internal 

NOS2 peptide to control for changes in protein expression. All mass spectrometry was 

carried out using an AB SCIEX QTRAP 4000 linear ion trap mass spectrometer. 
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Table 1. MethylSight predicted lysine methylation sites validated by multiple re-

action monitoring mass spectrometry.  All mass spectrometry was carried out us-

ing an AB SCIEX QTRAP 4000 linear ion trap mass spectrometer. 

    Methylation state 

Uniprot ID Protein Score Site Mono- Di- Tri- 

P07305 H1F0 0.948 171  ✓ ✓ 

  0.94 135 ✓   

  0.937 158 ✓ ✓  

  0.937 138  ✓ ✓ 

  0.937 136  ✓ ✓ 

  0.928 143  ✓ ✓ 

  0.909 121   ✓ 

Q8IZA3 H1FOO 0.932 188 ✓ ✓ ✓ 

  0.921 163 ✓  ✓ 

  0.92 171 ✓ ✓  

  0.91 173 ✓ ✓  

  0.9 215  ✓  

  0.894 263 ✓   

  0.88 138 ✓ ✓ ✓ 

  0.872 152  ✓  

  0.847 297  ✓  

Q92522 H1FX 0.927 194 ✓ ✓  

  0.919 184   ✓ 

  0.912 165 ✓  ✓ 

  0.91 173  ✓ ✓ 

  0.903 178  ✓ ✓ 

  0.875 145 ✓   

O75367 H2AFY 0.863 7 ✓   

P16401 HIST1H1B 0.96 160 ✓ ✓ ✓ 

  0.956 132 ✓ ✓ ✓ 

  0.955 206 ✓ ✓ ✓ 

  0.951 193 ✓ ✓  
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  0.949 167 ✓   

  0.947 140 ✓   

  0.931 121  ✓  

  0.901 111 ✓   

  0.881 99  ✓ ✓ 

  0.841 77  ✓  

  0.826 66 ✓   

P16402 HIST1H1D 0.942 206  ✓  

  0.931 149   ✓ 

  0.927 160 ✓ ✓ ✓ 

  0.924 140   ✓ 

  0.903 136   ✓ 

  0.899 119   ✓ 

P10412 HIST1H1E 0.952 129 ✓   

  0.95 148   ✓ 

  0.945 196 ✓   

  0.942 139   ✓ 

  0.909 116 ✓ ✓ ✓ 

  0.871 89  ✓ ✓ 

  0.85 33 ✓   

Q96A08 HIST1H2BA 0.845 13 ✓   

O60814 HIST1H2BK 0.724 43  ✓ ✓ 

Q6FI13 HIST2H2AA4 0.859 5 ✓  ✓ 

Q5QNW6 HIST2H2BF 0.884 34 ✓   
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