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ABSTRACT	

Understanding	the	difference	in	genetic	regulation	of	gene	expression	between	brain	and	blood	

is	important	for	discovering	genes	associated	with	brain-related	traits	and	disorders.	Here,	we	

estimate	the	correlation	of	genetic	effects	at	the	top	associated	cis-expression	(cis-eQTLs	or	cis-

mQTLs)	between	brain	and	blood	for	genes	expressed	(or	CpG	sites	methylated)	in	both	tissues,	

while	accounting	for	errors	in	their	estimated	effects	(rb).	Using	publicly	available	data	(n	=	72	to	

1,366),	we	find	that	the	genetic	effects	of	cis-eQTLs	(PeQTL	<	5´10-8)	or	mQTLs	(PmQTL	<	1´10-10)	

are	highly	correlated	between	independent	brain	and	blood	samples	(𝑟" 	=	0.70	with	SE	=	0.015	

for	 cis-eQTL	 and	 𝑟" 	=	 0.78	 with	 SE	 =	 0.006	 for	 cis-mQTLs).	 Using	 meta-analyzed	 brain	

eQTL/mQTL	data	(n	=	526	to	1,194),	we	identify	61	genes	and	167	DNA	methylation	(DNAm)	

sites	associated	with	4	brain-related	traits	and	disorders.	Most	of	these	associations	are	a	subset	

of	the	discoveries	(97	genes	and	295	DNAm	sites)	using	data	from	blood	with	larger	sample	sizes	

(n	 =	 1,980	 to	 14,115).	 We	 further	 find	 that	 cis-eQTLs	 with	 tissue-specific	 effects	 are	

approximately	 uniformly	 distributed	 across	 all	 the	 functional	 annotation	 categories,	 and	 that	

mean	difference	in	gene	expression	level	between	brain	and	blood	is	almost	independent	of	the	

difference	 in	 the	corresponding	cis-eQTL	effect.	Our	 results	demonstrate	 the	gain	of	power	 in	

gene	discovery	for	brain-related	phenotypes	using	blood	cis-eQTL	or	cis-mQTL	data	with	large	

sample	sizes.	
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INTRODUCTION	

Genome-wide	 association	 studies	 (GWAS)	 have	 discovered	 thousands	 of	 genetic	 variants	

associated	 with	 complex	 traits	 and	 diseases1-3.	 Most	 trait-associated	 variants	 reside	 in	 non-

coding	 regions	 of	 the	 genome4,5,	 suggesting	 that	 genetic	 variants	may	 affect	 the	 trait	 through	

regulation	of	gene	expression6,7.	With	the	advances	in	microarray	and	sequencing	technologies,	

genome-wide	genotype	and	gene	expression	data	available	 from	relatively	 large	samples	have	

been	generated	to	identify	genetic	variants	affecting	transcription	abundance8-10,	i.e.	expression	

Quantitative	 Trait	 Loci	 (eQTLs).	 Current	 eQTL	 studies	 are	 biased	 toward	 the	most	 accessible	

tissues	(e.g.	blood),	which	are	often	not	 the	most	relevant	 tissues	 to	 the	 traits	and	diseases	of	

interest.	The	Genotype-Tissue	Expression	(GTEx)	project11-13	provides	a	comprehensive	resource	

of	data	to	investigate	the	genetic	variation	of	gene	expression	across	a	broad	range	of	tissues	and	

cell	types.	Recent	studies	have	utilized	the	GTEx	data	to	demonstrate	that	the	genetic	correlation	

of	gene	expression	between	tissues	in	local	regions	(i.e.	±1Mb	of	the	transcription	start	site)	is	

much	higher	than	that	in	distal	regions14,	consistent	with	the	conclusions	from	the	latest	GTEx	

release13,	 and	 that	 there	 is	 no	 evidence	 for	 the	 tissue-relevant	 eQTLs	 being	 enriched	 for	

associations	with	complex	traits15.		

	

For	studies	that	integrate	GWAS	results	with	eQTL	or	methylation	QTL	(mQTL)	data	to	identify	

putative	functional	genes	and	regulatory	elements	for	brain-related	phenotypes	and	diseases16,17,	

the	statistical	power	is	limited	by	the	small	sample	sizes	of	the	brain	eQTL	or	mQTL	data	(often	

in	the	order	of	100s).	On	the	other	hand,	there	are	blood	eQTL	and	mQTL	data	available	 from	

thousands	of	 individuals8,9	and	the	sample	sizes	of	some	of	the	ongoing	projects	have	reached	

10,000s	 (e.g.	 the	GoDMC and eQTLGen consortia).	The	questions	are	 to	what	 extent	 the	 cis-

genetic	effects	on	gene	expression	and	DNA	methylation	(DNAm)	in	blood	differ	from	those	in	

brain	and	whether	we	can	gain	power	for	detecting	associations	of	genes	(or	DNAm	sites)	with	

brain-related	 traits	 by	 using	 the	 cis-eQTL	 (or	 cis-mQTL)	 effects	 estimated	 from	 a	 large	 blood	

sample	 as	 proxies	 for	 those	 in	 brain.	 In	 this	 study,	we	 use	 a	 summary-data-based	method	 to	

estimate	the	correlation	of	effect	sizes	of	cis-eQTLs	(or	cis-mQTLs)	between	blood	and	brain	for	

genes	 expressed	 (or	 CpG	 sites	 methylated)	 in	 both	 tissues,	 accounting	 for	 errors	 in	 their	

estimated	effects.	We	then	test	whether	there	 is	an	enrichment	of	 the	cis-eQTLs	or	cis-mQTLs	

with	tissue-specific	effects	between	blood	and	brain	in	the	epigenomic	states	annotated	by	the	

ENCODE	project18	 and	 the	Roadmap	Epigenomics	Mapping	 Consortium	 (REMC)19.	We	 further	

implement	 a	 method	 (meta-analysis	 of	 eQTL	 data	 from	 correlated	 samples,	 MeCS)	 to	 meta-

analyze	 cis-eQTL	 summary	 data	 from	 all	 the	 GTEx	 brain	 regions	 to	 maximize	 the	 power	 of	

detecting	 eQTLs	 in	brain.	We	demonstrate	by	 simulation	and	analysis	of	 real	data	 the	gain	of	

power	by	using	cis-eQTL	or	cis-mQTL	effects	estimated	in	blood	as	proxies	of	those	in	brain	to	
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identify	putative	 functional	genes	 for	brain-related	complex	traits	and	diseases.	Almost	all	 the	

analyses	were	performed	based	on	summary-level	data	from	previous	studies.	

	

RESULTS	

Estimating	the	correlation	of	cis-eQTL	effects	between	brain	and	blood	

To	 quantify	 the	 similarity	 of	 genetic	 effects	 at	 the	 top	 associated	 cis-eQTLs	 (or	 cis-mQTLs)	

between	two	tissues,	we	used	a	summary-data-based	approach	to	estimate	the	correlation	of	cis-

effects	between	two	tissues	(rb)	correcting	 for	errors	 in	 the	estimated	cis-eQTL	(or	cis-mQTL)	

effects	 and	 sample	 overlap	 (Supplementary	 Fig.	 1	 and	 Methods).	 We	 show	 by	 simulation	

(Supplementary	Note)	 that	𝑟" 	is	a	good	estimator	of	 the	correlation	of	 the	 true	values	of	 cis-

genetic	effects	(Supplementary	Fig.	2).	Note	that	the	rb	method	is	distinct	from	the	Spearman	or	

Pearson	correlation	approach13	because	the	latter	does	not	account	for	errors	in	the	estimated	

eQTL	effects	and	thereby	leads	to	an	underestimation	of	the	correlation	of	true	eQTL	effects.	We	

applied	 our	 method	 to	 estimate	𝑟" 	at	 the	 top	 cis-eQTLs	 between	 different	 brain	 regions	 and	

between	brain	and	blood	 in	one	data	set,	and	between	brain	and	blood	 in	two	data	sets	using	

summary-level	 data	 from	 GTEx	 v6	 (whole	 blood	 and	 10	 brain	 regions)11,	 the	 CommonMind	

Consortium	(CMC;	dorsolateral	prefrontal	cortex)20,	the	Religious	Orders	Study	and	Memory	and	

Aging	Project	(ROSMAP)21,	and	the	Brain	eQTL	Almanac	project	(Braineac;	10	brain	regions)22	

(Methods	and	Supplementary	Table	1).	All	eQTL	effects	were	in	standard	deviation	(SD)	units.	

For	 the	 GTEx,	 CMC	 and	 ROSMAP	 data,	 which	 are	 based	 on	 RNA	 sequencing	 (RNA-Seq),	 we	

matched	 the	 data	 sets	 by	 Ensembl	 Gene	 IDs.	 For	 the	 Braineac	 data	 that	 are	 based	 on	 gene	

expression	microarray,	we	matched	the	data	sets	by	gene	symbols	and	removed	genes	tagged	by	

multiple	gene	expression	probes	to	ensure	a	one-to-one	match	for	genes	between	data	sets.	The	

main	aim	of	our	study	is	to	quantify	the	extent	to	which	cis-eQTL	data	in	blood	can	be	used	for	

the	identification	of	genes	associated	with	brain-related	phenotypes	and	disorders.	However,	if	

we	had	selected	eQTLs	as	the	most	associated	SNPs	in	a	linkage	disequilibrium	(LD)	region	for	

one	tissue	(say	blood)	and	compared	their	effects	with	those	in	the	other	tissues	(say	brain),	we	

would	likely	suffer	a	form	of	winner’s	curse.	To	avoid	potential	ascertainment	bias,	we	selected	

the	top	cis-eQTLs	in	a	reference	tissue,	i.e.	GTEx-muscle	(n	=	361)	or	CMC	(n	=	467;	independent	

of	GTEx),	and	estimated	rb	between	brain	and	blood.	We	used	a	stringent	p-value	threshold	that	

is	 required	 for	 the	 SMR	 analysis23	 (see	 below)	 to	 select	 cis-eQTLs.	 Then,	we	 estimated	 the	 rb	

between	two	tissues	using	these	SNPs	(Supplementary	Fig.	3).	Although	this	strategy	uses	only	

a	quarter	of	all	genes,	the	estimates	of	rb	should	be	valid	(see	below).	

	

First,	we	selected	the	top	associated	cis-eQTLs	at	PeQTL	<	5´10-8	for	4,257	genes	in	GTEx-muscle	

and	matched	the	selected	genes	with	those	in	the	other	data	sets	(the	number	of	matched	genes	
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ranged	from	1,113	to	3,841)	(Supplementary	Table	2,	i.e.,	up	to	90%,	with	the	lower	numbers	

matched	 representing	data	 sets	with	 gene	 expression	data	 for	 fewer	 genes).	Note	 that	 all	 the	

matched	genes	were	expressed	in	both	tissues	(i.e.	genes	which	have	at	 least	10	samples	with	

reads	per	kilobase	per	million	mapped	reads	(RPKM)	>	0.1	and	raw	read	counts	greater	than	6)24	.	

Also	note	that	our	analysis	below	showed	that	there	was	no	correlation	between	the	test-statistics	

for	tissue-specific	gene	expression	and	the	test-statistics	for	tissue-specific	SNP	effects	on	gene	

expression,	therefore	selecting	genes	by	cis-eQTL	p-values	would	not	bias	mean	gene	expression	

in	specific	tissues.	We	used	the	Jackknife	approach	that	removes	one	gene	at	a	time	to	estimate	

the	sampling	variance	of	𝑟" 	(Methods)	assuming	the	estimated	top	cis-eQTL	effects	for	different	

genes	are	independent.	This	assumption	was	approximately	met	given	the	small	LD	correlations	

among	 the	 4,257	 cis-eQTLs	 and	 the	 subtle	 difference	 between	 the	 mean	 Jackknife	 sampling	

variance	and	the	observed	sampling	variance	in	simulation	(Supplementary	Fig.	4).	The	effect	

sizes	 of	 these	 cis-eQTLs	 were	 highly	 correlated	 between	 all	 the	 brain	 regions	 in	 GTEx	 after	

correcting	for	estimation	errors,	with	a	mean	𝑟" 	of	0.94	(SE	=	0.004;	Fig.	1).	These	estimates	are	

higher	 than	 the	 Spearman	 correlations	 reported	 in	 a	 previous	 study24	 because	 the	 Spearman	

correlation	does	not	account	for	errors	in	the	estimated	SNP	effects	and	therefore	underestimate	

the	 correlation	 of	 true	 effects	 especially	 when	 the	 sample	 size	 is	 small.	 The	 two	 cerebellum	

measures	(“brain	cerebellar	hemisphere”	and	“brain	cerebellum”)	appeared	to	be	outliers.	The	

correlation	between	“brain	cerebellar	hemisphere”	and	“brain	cerebellum”	was	almost	perfect	

(𝑟" 	=	0.99	and	SE	=	0.002),	but	the	correlations	between	these	two	regions	and	the	other	regions	

(mean	 𝑟" 	=	 0.89	 and	 SE	 =	 0.006)	 were	 significantly	 smaller	 than	 the	 pairwise	 correlations	

between	the	other	regions	(mean	𝑟" 	=	0.98	and	SE	=	0.003).	We	performed	the	same	analysis	in	

the	Braineac	data	and	observed	similar	results	as	above	(Supplementary	Fig.	5).	The	estimates	

of	rb			between	brain	and	blood	in	GTEx	varied	from	0.74	to	0.79	across	different	brain	regions	

with	a	mean	estimate	of	0.77	(SE	=	0.010).	The	estimates	from	ROSMAP	were	remarkably	similar	

with	those	from	CMC,	providing	an	important	replication	of	the	result.	The	estimate	of	rb	between	

CMC	(brain)	and	GTEx-blood	was	0.74	(SE	=	0.014),	suggesting	that	the	between-sample	genetic	

heterogeneity	is	small,	in	line	with	the	strong	correlations	between	CMC	and	the	brain	regions	of	

GTEx	(mean	𝑟" 	=	0.87	and	SE	=	0.010).	The	correlations	related	to	Braineac	were	notably	lower	

than	 those	 related	 to	 CMC	 (Fig.	 1),	 which	 is	 likely	 due	 to	 the	 difference	 in	 transcriptomics	

technology	between	the	two	studies	(microarray	vs.	RNA-Seq).	The	results	were	robust	to	scale	

transformation	of	the	eQTL	effects	(Supplementary	Fig.	6),	the	exclusion	of	cis-eQTLs	in	or	near	

the	promoter	regions	(Supplementary	Fig.	7),	the	inclusion	of	secondary	cis-eQTLs	identified	

from	a	conditional	analysis25	(Supplementary	Fig.	8),	or	the	adjustment	of	gene	expression	data	

for	confounding	(e.g.	batch	effects)	predicted	from	the	data	(Supplementary	Fig.	9).	Second,	we	

selected	 the	 top	associated	cis-eQTLs	at	PeQTL	<	5´10-8	 from	the	CMC	data,	and	 found	 that	 the	
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estimates	of	rb	among	the	brain	regions	and	between	brain	and	blood	in	GTEx	remained	largely	

unchanged	 (Supplementary	 Fig.	 10),	 suggesting	 that	 our	 results	 are	 also	 robust	 to	 the	

ascertainment	of	the	cis-eQTLs.		

	

cis-eQTLs	with	tissue-specific	effects	

The	strong	correlation	of	cis-eQTL	effects	between	brain	and	blood	(Fig.	1)	does	not	preclude	

eQTLs	with	detectable	difference	in	effect	size	between	tissues.	Of	the	1,388	cis-eQTLs	with	PeQTL	

<	5´10-8	in	GTEx-muscle	and	available	in	CMC	and	GTEx-blood	(Supplementary	Table	2),	308	

(22%)	showed	significant	difference	in	effect	size	between	CMC	and	GTEx-blood	after	Bonferroni	

correction	 for	multiple	 testing	 (Pdifference	<	0.05/1,388)	 (Methods).	 It	 should	be	noted	 that	 the	

substantial	 proportion	 of	 eQTLs	detected	with	 significant	 between-tissue	differences	 in	 effect	

sizes	does	not	contradict	the	 large	estimate	of	rb	above	(Fig.	1)	because	the	power	to	detect	a	

difference	 in	 effect	 size	depends	on	 sample	 size13	 (Supplementary	Fig.	11).	Previous	 studies	

have	indicated	that	functional	variants	(predicted	by	chromatin	activity	data)	in	enhancers	are	

less	likely	to	be	shared	across	many	tissues	compared	with	those	in	promoters26,27,	and	that	cell	

type–specific	 eQTLs	are	more	dispersedly	distributed	around	 the	 transcription	 start	 site	 than	

eQTLs	affected	expression	in	multiple	cell	types28,29.	These	results	seem	to	suggest	that	tissue-

specific	eQTLs	are	enriched	in	distal	regulatory	elements	(i.e.	enhancers)	but	the	evidence	are	not	

direct.	We	computed	the	statistics	to	test	for	the	between-tissue	difference	in	effect	size	(denoted	

by	TD)	and	tested	the	inflation	(or	deflation)	of	mean	TD	of	cis-eQTLs	in	the	functional	categories	

annotated	 by	 REMC	 (Methods).	 The	 result	 showed	 that	 although	 cis-eQTLs	 are	 enriched	 in	

genomic	regions	of	active	chromatin	state	(e.g.	promoters	and	enhancers)	and	deflated	in	inactive	

regions,	the	mean	TD	of	cis-eQTLs	between	CMC	and	GTEx-blood	was	almost	evenly	distributed	

across	all	the	functional	categories	with	no	evidence	of	inflation	in	the	enhancer	regions	(Fig.	2).	

The	 result	 remained	 largely	 unchanged	 if	 we	 repeated	 the	 enrichment	 analysis	 based	 on	 TD	

between	 GTEx-cerebellum	 and	 GTEx-blood	 (Supplementary	 Fig.	 12).	 There	 were	 some	

examples	where	 the	 cis-eQTLs	with	 tissue-specific	 effects	 in	 brain	 and	 blood	were	 located	 in	

enhancers	(Supplementary	Fig.	13).	These	examples,	however,	were	rare	because	only	14	of	the	

308	eQTLs	with	Pdifference	<	0.05/1,388	were	located	in	enhancers	and	only	4	of	the	14	enhancers	

appeared	to	be	tissue	specific.	These	results	do	not	support	the	hypothesis	that	eQTLs	with	tissue-

specific	effects	are	more	likely	to	be	located	in	enhancers.	

	

In	addition,	there	are	a	large	number	of	genes	showing	tissue-specific	expression11.	GWAS	signals	

for	a	trait	that	are	located	in	or	near	genes	with	tissue-specific	expression	are	often	seen	as	the	

evidence	 that	 the	 trait-associated	 genetic	 effects	 are	 enriched	 in	 particular	 tissues30.	 This	

implicitly	assumes	genetic	variants	with	tissue-specific	genetic	effects	on	gene	expression	are	co-
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located	with	genes	with	tissue-specific	expression.	We	tested	this	hypothesis	by	examining	the	

correlation	between	the	test-statistic	for	the	difference	in	cis-eQTL	effect	(in	SD	units)	and	the	

test-statistic	for	the	difference	in	mean	expression	level	of	the	corresponding	gene	(in	log(RPKM)	

units)	between	GTEx-cerebellum	and	GTEx-blood	 for	 the	3,569	genes	each	with	a	 cis-eQTL	at	

PeQTL	<	5´10-8	in	GTEx-muscle	(Supplementary	Table	2).	It	should	be	noted	that	the	cis-eQTL	

effects	 were	 in	 SD	 units	 so	 that	 the	 correlation	 was	 not	 confounded	 by	 the	 mean-variance	

relationship	in	gene	expression.	We	found	that	the	correlation	was	marginal	(r	=	0.003)	(Fig.	3),	

suggesting	 that	 genetic	 variants	 with	 tissue-specific	 genetic	 effects	 on	 gene	 expression	 (i.e.	

generating	 variation	 between	 people	 in	 a	 specific	 tissue)	 are	 not	 necessarily	 co-located	with	

genes	with	 tissue-specific	 gene	expression	 (i.e.	may	be	with	 genes	 that	 show	similar	 levels	 of	

relative	expression	 in	other	 tissues).	This	 is	analogous	 to	 the	observation	 that	 there	 is	a	 large	

difference	in	the	mean	of	height	between	men	and	women	but	the	effect	sizes	of	all	autosomal	

SNPs	 on	 height	 in	 men	 are	 almost	 identical	 to	 those	 in	 women31,32.	 Therefore,	 the	 lack	 of	

enrichment	 of	 GWAS	 signals	 in	 or	 near	 genes	 over-	 or	 under-expressed	 in	 a	 tissue	 is	 not	 the	

evidence	that	the	tissue	is	not	relevant	to	the	trait	or	disease.	The	lack	of	correlation	between	

tissue-specific	cis-QTL	effect	and	tissue-specific	expression	level	of	the	corresponding	gene	also	

means	that	the	genes	selected	at	Pcis-eQTL	<	5´10-8	 in	muscle	for	the	rb	analysis	above	were	not	

necessarily	enriched	or	depleted	 for	 tissue-specific	expression.	These	results	demonstrate	 the	

importance	of	generating	tissue-specific	eQTL	data	sets	for	integration	with	GWAS	results	and	

provide	best	bioinformatics	functional	annotation.	

	

Estimating	the	correlation	of	cis-mQTL	effects	between	brain	and	blood	

Having	 shown	 that	 cis-eQTL	 effects	 are	 highly	 correlated	 between	 brain	 and	 blood,	 we	 then	

turned	to	estimate	the	correlation	of	genetic	effects	on	DNAm	between	the	two	tissues.	To	address	

this,	we	applied	the	rb	method	developed	above	to	mQTL	data.	We	analyzed	summary-level	mQTL	

data	 from	 5	 studies	 based	 on	 the	 Illumina	 HumanMethylation450K	 array:	 fetal	 brain	 from	

Hannon	et	al.	(n	=	166)33,	brain	cortical	region	from	ROSMAP	(n	=	468)21,	frontal	cortex	region	

from	Jaffe	et	al.	(n	=	526)34,	and	peripheral	blood	from	McRae	et	al.	(LBC:	n	=	1,366	and	BSGS:	n	=	

614)35	(Supplementary	Table	3).	All	the	mQTL	effects	are	in	SD	units.	We	matched	the	SNPs	in	

common	 across	 data	 sets,	 selected	 the	 top	 associated	 cis-mQTL	 at	PmQTL	 <	 1´10-10	 for	 26,840	

DNAm	probes	in	the	data	from	Hannon	et	al.	(because	only	SNPs	with	PmQTL	<	1´10-10	are	available	

in	this	data	set)	and	matched	the	selected	probes	with	those	in	the	other	data	sets	(the	number	

of	matched	probes	ranged	from	4,892	to	6,561)	(Supplementary	Table	4).	The	correlation	of	

cis-mQTL	effects	between	two	brain	samples	(ROSMAP	and	Jaffe	et	al.)	was	very	strong	(𝑟" 	=	0.92	

and	SE	=	0.002),	similar	to	that	between	two	blood	samples	(𝑟" 	=	0.92	between	BSGS	and	LBC	

with	SE	=	0.003)	(Fig.	4A).	It	is	of	note	that	both	estimates	of	rb	were	smaller	than	unity,	reflecting	
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some	 degree	 of	 heterogeneity	 between	 studies.	 The	 mean	 brain-blood	 rb	 estimate	 from	 two	

samples	was	0.78	(SE	=	0.006)	(Fig.	4A),	higher	than	that	for	cis-eQTLs	(mean	𝑟" 	=	0.70	and	SE	=	

0.015)	 shown	 above	 (Fig.	 1).	 The	 result	 remained	 largely	 unchanged	 if	 the	 cis-mQTLs	 were	

selected	at	PmQTL	<	5´10-8	in	the	LBC	data	(Supplementary	Fig.	14),	again	showing	the	robustness	

of	our	results	to	the	choice	of	the	reference	tissue.	In	addition,	of	the	5,416	cis-mQTLs,	1,847	(34%)	

showed	significantly	different	effects	between	brain	(Jaffe	et	al.)	and	blood	(LBC)	after	correcting	

for	multiple	 testing	 (Pdifference	<	 0.05/5,416).	We	 then	 tested	whether	 cis-mQTLs	 in	 any	 of	 the	

REMC	functional	categories	tend	to	have	higher	TD	between	brain	and	blood	(see	above).	It	seems	

that	 there	were	 small	 but	 significant	 enrichments	 of	TD	 in	 enhancer	 regions	 (e.g.	 transcribed	

enhancer,	 active	 enhancer	 and	weak	enhancer)	 (Fig.	4C),	 and	one	of	 them	survived	multiple-

testing	correction	(Supplementary	Table	5).	

	

Meta-analysis	of	brain	eQTL	summary	data	from	correlated	samples		

We	know	from	the	rb	analysis	above	that	cis-eQTLs	are	almost	perfectly	correlated	in	different	

brain	regions.	We	then	sought	to	combine	data	from	the	brain	regions	to	increase	the	power	of	

detecting	eQTLs	for	follow-up	analysis	(e.g.	identification	of	putative	functional	genes	for	brain-

related	 traits	 and	diseases).	However,	 if	 there	 is	 sample	overlap	between	 two	 tissues	and	 the	

phenotypic	correlation	is	nonzero,	the	estimation	errors	of	the	SNP	effects	from	the	two	tissues	

will	be	 correlated.	We	 implemented	 in	 the	SMR	software	 tool	a	 summary-data-based	method,	

which	only	 requires	 summary-level	 data	 in	 the	 cis-regions	 to	 account	 for	 sample	 overlaps,	 to	

meta-analyze	cis-eQTL	data	in	correlated	samples	(MeCS)	(Methods).	We	showed	by	simulations	

that	sample	overlap	could	be	estimated	with	high	accuracy	from	the	summary	data	of	the	null	

SNPs	(e.g.	PeQTL	>	0.01)	in	the	cis-region	using	a	simple	correlation	approach	(Supplementary	

Note,	Supplementary	 Fig.	 15B,	 and	Supplementary	 Fig.	 16A),	 that	 the	MeCS	 test-statistics	

were	well	 calibrated	 under	 the	 null	 hypothesis	 (Supplementary	 Fig.	 15),	 and	 that	 the	MeCS	

estimates	 of	 meta-analysis	 effect	 sizes	 were	 well	 estimated	 under	 the	 alternative	 hypothesis	

(Supplementary	Fig.	16).	We	compared	MeCS	to	a	univariate	analysis	of	the	mean	expression	

phenotype	 across	 tissues,	 and	 found	 that	 the	 estimates	 of	 effect	 size	 and	 SE	 from	 the	 two	

approaches	were	highly	consistent	(Supplementary	Fig.	17).	It	is	of	note	that	in	comparison	with	

the	separate	analysis	in	individual	tissues,	the	gain	of	power	for	MeCS	increased	with	the	decrease	

of	 correlation	 in	 expression	 phenotype	 between	 tissues,	 more	 so	 for	 meta-analysis	 using	

individual-level	data	(Supplementary	Fig.	18).	The	MeCS	method	has	been	implemented	in	the	

SMR	software	package	(URLs).	The	method	is	general	and	can	be	applied	to	mQTL	or	even	GWAS	

data.	
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We	applied	MeCS	to	data	from	10	brain	regions	in	GTEx	(we	referred	to	the	meta-analyzed	data	

as	GTEx-brain	hereafter).	There	were	strong	sample	overlaps	among	the	ten	brain	regions	(mean	

overlap	=	70.4%)	and	the	mean	correlation	in	expression	level	between	pairwise	brain	regions	

across	all	the	expressed	genes	was	moderate	(mean	𝑟#	=	0.33).	The	gain	of	power	by	the	MeCS	

analysis	was	demonstrated	by	the	observation	that	the	mean	χ2	statistic	for	cis-eQTLs	(selected	

from	GTEx-blood	at	PeQTL	<	5´10-8)	 in	GTEx-brain	was	 larger	 than	that	 in	any	 individual	brain	

region	(Supplementary	Fig.	19C).	The	association	test-statistic	for	a	SNP		written	as	𝜒% = 1 +

𝑛*++
,-

./,-
	,	where	𝑛*++	is	the	effective	sample	size	and	𝑞%	is	the	variance	explained	by	a	SNP36.	We	

therefore	 can	 approximately	 estimate	𝑛*++ 	of	 GTEx-brain	 assuming	 constant	 mean	𝑞% 	across	

brain	 regions	 (note	 that	 this	 assumption	 is	 justified	 by	 a	 mean	 rb	 estimate	 of	 0.94	 between	

pairwise	brain	regions	for	cis-eQTL	effects	in	SD	units)	(Supplementary	Note).	The	estimate	of	

𝑛*++	of	GTEx-brain	was	233,	approximately	2.6	times	larger	than	the	actual	sample	size	of	brain	

tissue	in	GTEx	(mean	n	=	~89	across	10	brain	regions)	(Supplementary	Fig.	19D).	To	further	

increase	the	power	of	detecting	brain	eQTLs,	we	meta-analyzed	GTEx-brain,	CMC,	and	ROSMAP	

(referred	 to	 as	 Brain-eMeta	 hereafter).	 The	 gain	 of	 power	 is	 demonstrated	 by	 the	 increased	

number	of	genes	with	at	least	one	cis-eQTL	with	PeQTL	<	5´10-8	in	Brain-eMeta	as	compared	with	

that	in	GTEx-brain,	CMC,	or	ROSMAP	(Fig.		5A).	

	

Identifying	DNAm	sites	and	genes	associated	with	brain-related	traits	and	diseases	

With	 the	 Brain-eMeta	 eQTL	 data	 (𝑛*++ 	=	 ~1,194)	 obtained	 from	 the	meta-analysis	 above,	 we	

applied	the	SMR	approach23,37	to	test	for	associations	between	gene	expression	levels	with	4	brain	

related	phenotypes,	i.e.	ever-smoked	(smoking),	fluid	intelligence	score	(IQ),	years	of	education	

(EduYears),	 and	 schizophrenia	 (SCZ).	 GWAS	 data	 were	 from	 published	 meta-analyses	 for	

EduYears	and	SCZ38,39,	and	from	analyses	of	the	full	release	of	the	UK	Biobank	data	for	smoking		

and	 IQ	 (Methods	 and	 Supplementary	Table	 6).	 LD	 data	 required	 for	 the	HEIDI	 test23	were	

estimated	from	genotyped/imputed	data	of	the	Health	and	Retirement	Study	(HRS)40.	LD	r2	from	

HRS	were	strongly	correlated	with	those	from	CMC	(Supplementary	Fig.	20),	consistent	with	

the	observation	from	previous	studies25.	For	power	comparison,	we	included	in	the	SMR	analysis	

an	 additional	 set	 of	 blood	 eQTL	 data	 from	 a	 sample	 of	 14,115	 individuals	 from	 the	 eQTLGen	

Consortium.	 Only	 the	 genes	 with	 at	 least	 one	 cis-eQTL	 at	 PeQTL	 <	 5´10-8	 (one	 of	 the	 basic	

assumptions	 of	 SMR)	 in	 both	 Brain-eMeta	 and	 eQTLGen	were	 included.	We	 further	 excluded	

genes	 in	the	major	histocompatibility	complex	(MHC)	region	because	of	the	complexity	of	this	

region,	leaving	3,943	genes	for	analysis.	We	identified	61	genes	associated	with	the	traits	using	

the	 brain	 eQTL	 data,	 41	 of	 which	 (67.2%)	 were	 in	 common	 with	 a	 larger	 set	 of	 genes	 (97)	

identified	using	the	eQTLGen	blood	eQTL	data	(Fig.	5B).	Despite	the	heterogeneity	between	the	
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two	eQTL	data	sets	(Brain-eMeta	was	based	on	RNA-Seq	and	eQTLGen	was	based	on	microarray),	

the	strong	overlap	between	the	two	sets	of	results	 is	consistent	with	the	strong	correlation	of	

eQTL	effects	between	brain	and	blood	estimated	above.	For	SCZ,	19	out	of	the	24	genes	identified	

using	 brain	 eQTL	 data	 were	 replicated	 using	 blood	 eQTL	 data	 with	 an	 additional	 27	 genes	

identified	only	in	the	blood	data	because	of	its	large	sample	size	(Supplementary	Fig.	21).	We	

repeated	the	SMR	analysis	using	blood	eQTL	data	from	the	Consortium	for	the	Architecture	of	

Gene	Expression	(CAGE;	n	=	2,765)9	and	observed	similar	result	(Fig.	5B)	although	the	power	of	

CAGE	was	lower	than	that	of	eQTLGen	(63	genes	identified	using	CAGE	versus	97	genes	identified	

using	eQTLGen).	

	

We	also	performed	the	SMR	analysis	to	detect	associations	between	DNAm	sites	and	the	brain	

related	phenotypes17	using	brain	mQTL	data	from	Jaffe	et	al.	(n	=	526)	and	blood	cis-mQTL	data	

from	a	meta-analysis	of	LBC	and	BSGS	(n	=	1,980)	(Methods).	We	only	included	in	the	analysis	

DNAm	probes	with	at	least	one	cis-mQTL	with	PmQTL	<	5´10-8	in	both	the	brain	and	blood	data	

sets.	We	identified	167	DNAm	sites	associated	with	the	traits	(PSMR	<	1.8´10-6)	using	the	brain	

mQTL	data,	133	of	which	(79.6%)	were	 in	common	with	the	set	of	295	DNAm	sites	 identified	

using	the	blood	mQTL	data	(Fig.	5D	and	Supplementary	Fig.	22).	The	brain	to	blood	“replication”	

rate	slightly	decreased	when	we	rejected	the	associations	with	PHEIDI	<	0.05	(Supplementary	Fig.	

23),	likely	because	of	the	HEIDI	test	being	over-conservative	especially	as	sample	size	increases23.	

These	results	further	demonstrate	the	feasibility	and	gain	of	power	of	using	the	genetic	effects	on	

gene	expression	or	DNAm	estimated	 in	blood	 to	 identify	putative	 target	genes	and	regulatory	

DNA	elements	for	brain-related	phenotypes.	

	

DISCUSSION	

We	introduced	a	summary-data-based	method	to	estimate	the	correlation	(𝑟")	of	genetic	effects	

at	the	top	associated	cis-eQTLs/mQTLs	between	two	tissues.	Because	the	method	accounts	for	

estimation	errors,	𝑟" 	can	be	interpreted	as	an	estimate	of	the	correlation	of	true	cis-eQTL	effects	

between	 tissues,	 as	 demonstrated	 by	 simulations	 (Supplementary	 Fig.	 2).	 We	 applied	 the	

method	to	summary-level	eQTL	data	from	GTEx	and	found	that	genetic	effects	on	gene	expression	

in	the	cis-regions	were	almost	perfectly	correlated	between	different	brain	regions	(mean	𝑟" 	=	

0.94	 for	 cis-eQTLs),	 especially	 between	 the	 non-cerebellar	 regions	 (mean	𝑟" 	=	 0.98	 and	 SE	 =	

0.003),	 in	 contrast	 to	 the	modest	phenotypic	 correlation	 in	gene	expression	 levels	 (mean	𝑟# 	=	

0.33).	It	is	therefore	sensible	to	run	a	meta-analysis	of	the	cis-eQTL	effects	across	brain	regions	

to	gain	power	of	detecting	eQTLs	for	the	whole	brain	(Supplementary	Fig.	18).	This	can	be	done	

even	if	the	brain	regions	are	from	different	samples.	We	developed	the	MeCS	approach	to	meta-

analyze	cis-QTL	data	 from	 independent	or	overlapping	samples	 (only	 requires	 summary-level	
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data	of	 the	SNPs	 in	 cis-regions	 to	account	 for	 sample	overlaps)	and	calibrated	 the	method	by	

simulations	(Supplementary	Fig.	15	and	Supplementary	Fig.	16).	We	applied	MeCS	to	meta-

analyze	cis-eQTL	summary	data	from	the	ten	GTEx	brain	regions	and	demonstrated	a	~2.6	fold	

gain	of	power,	on	average,	in	comparison	with	any	individual	brain	region.	There	is	an	existing	

method	 to	 conduct	 a	 joint	 analysis	 of	 summary	 statistics	 for	 multiple	 traits	 in	 overlapping	

samples	(i.e.	MTAG41).	MTAG	is	a	generalization	of	the	inverse-variance-weighted	meta-analysis.	

It	relies	on	an	estimate	of	sample	overlap	from	bivariate	LD	score	regression	(LDSR)42	under	a	

polygenic	model.	It	is	not	applicable	to	our	analysis	which	focused	only	on	the	SNPs	in	cis-regions.		

	

We	also	found	that	the	cis-eQTLs	effects	were	highly	correlated	between	brain	and	blood	in	GTEx	

(mean	𝑟" 	=	0.77	for	cis-eQTLs),	and	the	estimate	only	slightly	decreased	using	data	from	different	

samples	(mean	𝑟" 	=	0.70).	These	estimates	were	significantly	different	from	1,	suggesting	there	

are	real	genetic	differences	between	tissues.	The	genetic	differences	are	partly	due	to	cell-type	

specific	genetic	effects	regardless	whether	cell	composition	have	been	included	as	covariates	in	

the	eQTL	analysis	or	not.	This	is	because	adjusting	for	cell	composition	only	removes	the	mean	

differences	in	gene	expression	level	among	cell	types	rather	than	cell-type	specific	genetic	effects.	

On	the	other	hand,	however,	the	strong	between-tissue	correlation	in	cis-eQTL	effects	does	not	

contradict	the	result	that	many	genes	showed	differential	expression	across	tissues	because	the	

difference	 in	 cis-eQTL	effect	 is	 almost	 independent	of	 the	mean	difference	 in	gene	expression	

level	(Fig.	3).	This	is	an	important	result	and	challenges	a	current	dogma	that	focus	interest	on	

GWAS	association	results	in	genes	that	are	differentially	expressed	in	the	tissue	of	most	relevance	

to	the	disease.	Our	results	reinforce	the	need	to	generate	tissue-specific	eQTL	data	sets	to	identify	

variants	 that	 generate	 variation	 between	people	 in	 a	 specific	 tissue	 regardless	 of	 the	 relative	

expression	level	of	the	tissue.	

	

	Our	 results	 also	 provide	 some	 guidelines	 about	 the	 use	 of	 discovery-replication	 paradigm	 to	

compare	eQTL	effects	between	tissues	(i.e.	detecting	eQTLs	in	one	tissue	at	a	stringent	p-value	

threshold	and	replicating	the	effects	in	another	tissue	after	correcting	for	multiple	tests)24,28.	Here,	

we	often	saw	a	low	to	moderate	replication	rate	even	if	there	is	no	genetic	difference	between	the	

tissues.	This	is	because	the	replication	rate	is	a	function	of	the	sample	size	of	the	validation	set	

(Supplementary	Fig.	11)	and	the	sample	sizes	of	eQTL	studies	 in	non-blood	tissues	are	often	

limited.	If	we	apply	the	discovery-replication	paradigm	to	the	GTEx	data,	only	~10.7%	of	eQTLs	

discovered	 in	GTEx-muscle	 could	be	 replicated	 in	GTEx-hippocampus	 (although	 the	estimates	

from	the	recent	methods43,44	based	on	the	discovery-replication	paradigm		were	much	higher)	

(Supplementary	 Table	 7),	 which	 could	 potentially	 lead	 to	 a	 wrong	 conclusion	 that	 a	 large	

proportion	of	cis-eQTLs	are	tissue	specific	(note	that	the	rb	estimate	between	the	two	tissues	was	
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0.81).	We	therefore	do	not	recommend	the	use	of	the	discovery-replication	paradigm	to	quantify	

the	tissue-specific	effects	especially	in	small	samples.	

	

Data	from	genome	annotation	studies	show	that	most	enhancers	are	tissue	specific45.	In	our	study,	

we	 tested	 the	 difference	 in	 cis-eQTL	 effect	 between	 brain	 and	 blood,	 and	 did	 not	 observe	 an	

enrichment	 of	 the	 test-statistics	 (for	 tissue-specific	 cis-eQTL	 effects)	 in	 any	 of	 the	 functional	

annotation	categories	(Fig.	2).	We	performed	a	similar	analysis	for	cis-mQTLs,	and	found	a	weak	

enrichment	of	the	test-statistics	(for	tissue-specific	cis-mQTL	effects)	in	enhancer	regions	(Fig.	

4).	 Because	 DNAm	 is	 an	 important	 epigenetic	 mechanism	 of	 regulating	 gene	 expression,	 we	

hypothesized	 that	 some	 of	 the	 tissue-specific	 cis-eQTL	 effects	 might	 be	 mediated	 through	

differentially	methylated	CpG	sites.		

	

We	applied	the	SMR	&	HEIDI	method	to	identify	genes	and	DNAm	sites	that	were	associated	with	

brain-related	 phenotypes	 through	 pleiotropy	 using	 summary	 data	 from	 GWAS	 and	 cis-

eQTL/mQTL	studies	with	large	sample	sizes	(nmax	=	453,693	for	GWAS,	nmax	=	14,115	for	eQTL	

and	 nmax	 =	 1,980	 for	 mQTL).	We	 identified	 a	 number	 of	 genes	 and	 DNAm	 sites	 that	 showed	

pleiotropic	 associations	with	 the	 phenotypes,	 consistent	with	 a	 plausible	model	 that	 the	 SNP	

effects	on	the	phenotypes	are	caused	by	genetic	regulation	of	the	expression	levels	of	the	target	

genes	and/or	the	methylation	levels	at	the	CpG	sites.	We	repeated	the	analyses	using	eQTL	and	

mQTL	data	from	brain	samples	with	much	smaller	sample	sizes	(nmax	=	1,194	for	eQTL	and	nmax	=	

526	 for	mQTL).	Due	 to	 the	 lower	power	of	 the	data	 sets,	 the	number	of	genes	or	DNAm	sites	

detected	 in	 the	 brain	 sample	 was	 much	 smaller	 than	 that	 using	 the	 blood	 sample	 (Fig.	 5,	

Supplementary	Fig.	21,	Supplementary	Fig.	22,	and	Supplementary	Fig.	23),	with	at	least	50%	

of	genes	(DNAm	sites)	in	common	between	the	two	sets.	These	results	provide	strong	justification	

of	using	blood	samples	to	discover	genes	related	to	brain	phenotypes	and	diseases.	In	practice,	

we	recommend	using	a	blood	data	set	with	large	sample	size	for	discovery,	and	an	additional	data	

set	from	brain	for	replication.	This	paradigm	is	certainly	applicable	to	other	tissues.	

	

There	are	a	few	limitations	in	our	study.	First,	our	estimation	of	rb	are	based	on	those	genes	which	

are	expressed	in	both	tissues.	Genes	that	are	only	expressed	in	one	tissue	were	not	included	in	

the	estimation	of	rb.	Therefore,	 the	estimate	of	rb	needs	to	be	 interpreted	with	a	restriction	to	

genes	expressed	in	both	tissues.	Although	a	quarter	(4,257)	of	all	genes	were	selected	from	GTEx-

muscle,	up	to	90%	of	those	selected	genes	were	included	in	the	rb	analysis.	Second,	we	focused	

our	analyses	only	on	cis-eQTLs	and	cis-mQTLs	because	trans-eQTLs	and	trans-mQTLs	data	were	

not	available	in	most	data	sets	used	in	our	study.	Although	most	SNP-based	heritability	for	gene	

expression	 levels	are	attributed	to	cis-eQTLs9,	 trans-eQTLs	may	also	play	an	important	role	 in	
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regulating	gene	expression	especially	for	tissue-specific	effects14.	The	methods	developed	in	this	

study	can	be	applied	to	trans-eQTL/mQTL	data	with	minimal	modification.	Because	the	variance	

explained	by	individual	trans-eQTL/mQTL	is	small	on	average9,35,	very	 large	sample	sizes	(e.g.	

10,000s)	 are	 required	 to	detect	 trans-eQTLs	 to	 be	useful	 for	 the	 SMR	analysis23.	 Third,	 the	 rb	

analysis	was	focused	on	the	correlation	at	the	top	associated	cis-eQTLs/mQTLs	with	relatively	

large	 effects	 (i.e.	 P	 <	 5´10-8	 in	 a	 reference	 tissue)	 because	 the	 SMR	 test	 only	 uses	 cis-

eQTLs/mQTLs	at	P	<	5´10-8.	The	estimate	of	rb	was	slightly	lower	for	cis-eQTLs/mQTLs	selected	

at	 a	 less	 stringent	 threshold	 (Supplementary	 Fig.	 24),	 consistent	 with	 the	 observation	 in	

simulation	(Supplementary	Fig.	25).	However,	this	does	not	change	our	conclusion	about	the	

use	of	the	top	associated	cis-eQTLs/mQTLs	identified	in	a	large	blood	sample	to	identify	putative	

target	genes	for	brain-related	traits.	Last	but	not	least,	the	MeCS	method	requires	the	correlation	

of	errors	in	the	estimated	SNP	effects	between	two	dependent	samples	(𝜃),	which	is	estimated	by	

a	simple	correlation	approach	at	the	null	SNPs	in	the	cis-region.	This	approach,	however,	is	not	

applicable	to	ascertained	eQTL	or	mQTL	summary	data	by	p-value.	It	will	also	be	challenging	to	

estimate	𝜃	if	only	a	small	number	of	cis-SNPs	are	available	in	the	summary	data.	We	therefore	

recommend	eQTL	and	mQTL	studies	to	make	more	cis-SNPs	available	without	ascertainment	(e.g.	

all	the	cis-SNPs	in	±2Mb	of	the	gene	or	DNAm).	Despite	these	limitations,	our	findings	shed	light	

on	 the	 genetic	 architecture	 underlying	 the	 regulation	 of	 gene	 expression	 across	 tissues,	 and	

provide	 important	 guidance	 for	 studies	 in	 the	 future	 to	 identify	 functional	 genes	 for	 human	

complex	traits.	

	

METHODS	

Summary	data	of	cis-eQTL,	cis-mQTL,	and	GWAS	

All	 the	 analyses	 of	 eQTL/mQTL	 data	 were	 performed	 based	 on	 summary-level	 data	 from	

published	studies.	A	summary	description	of	all	the	data	sets	can	be	found	in	Supplementary	

Table	 1,	 Supplementary	 Table	 3,	 and	 Supplementary	 Table	 6.	 All	 the	 samples	 were	 of	

European	descent	and	the	summary	data	available	to	us	were	derived	from	individual-level	data	

that	passed	stringent	quantify	control	(QC)9,11,20,22,33-35,46.	The	SNPs	in	all	eQTL/mQTL	data	sets	

were	 from	 imputation	 of	 the	 genotyped	 data	 to	 the	 1000	 Genomes	 Project	 (1KGP)	 reference	

panels47,	and	only	the	common	SNPs	(MAF	>	0.01)	were	included	in	analyses.		

	

The	 eQTL	 summary-level	 data	 were	 from	 six	 published	 studies,	 i.e.	 the	 Genotype-Tissue	

Expression	 (GTEx)11	 v6,	 the	 CommonMind	 Consortium	 (CMC)20,	 Religious	 Orders	 Study	 and	

Memory	 and	 Aging	 Project		 (ROSMAP)21,	 the	 Brain	 eQTL	 Almanac	 project	 (Braineac)22,	 the	

Architecture	 of	 Gene	 Expression	 (CAGE)9	 and	 eQTLGen.	 In	 GTEx,	 ROSMAP,	 and	 CMC,	 gene	

expression	levels	were	measured	by	RNA-Seq.	Genes	in	GTEx	and	ROSMAP	were	annotated	by	
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GENCODE48	 v19	 and	 v14	 respectively,	 and	 genes	 in	 CMC	 were	 annotated	 by	 Ensembl.	 We	

accessed	the	GTEx	eQTL	summary	statistics	of	~9.3	million	SNPs	for	~32,000	genes	in	44	tissues	

(including	10	brain	regions)	through	GTEx	portal	(URLs).	The	sample	sizes	of	different	tissues	in	

GTEx	ranged	from	70	to	361	with	an	average	of	160.	We	accessed	the	CMC	summary	data	from	

Synapse	(accession:	syn2759792).	The	CMC	eQTL	summary	statistics	(ascertained	at	FDR<0.2	in	

the	public	domain)	of	~1.1	million	SNPs	for	14,366	genes	were	derived	from	individual-level	data	

in	dorsolateral	prefrontal	cortex	of	467	subjects,	209	of	which	were	schizophrenia	patients.	We	

accessed	 the	ROSMAP	eQTL	 summary	 statistics	 of	~6.4	million	 SNPs	 for	12,979	genes,	which	

were	 derived	 from	 individual-level	 data	 in	 dorsolateral	 prefrontal	 cortex	 of	 494	 subjects.	We	

accessed	 the	Braineac	 eQTL	 summary	 statistics	 of	~6.2	million	 SNPs	 for	25,490	genes,	which	

were	derived	from	data	in	10	brain	regions	of	134	subjects	free	of	neurodegenerative	disorders22.	

The	gene	expression	levels	in	Braineac	were	measured	by	Affymetrix	Human	Exon	1.0	ST	Arrays.	

For	blood	eQTL	data,	we	used	eQTL	summary	data	from	CAGE9	(38,624	gene	expression	probes	

and	~8	million	SNPs	on	2,765	subjects)	and	eQTLGen	(44,556	gene	expression	probes	and	~10	

million	SNPs	on	14,115	subjects).	Gene	expression	levels	in	CAGE	and	eQTLGen	were	measured	

by	Illumina	gene	expression	arrays.	We	mapped	the	probes	to	genes	based	on	the	annotations	

provided	by	Illumina.	The	eQTL	summary	data	available	in	GTEx,	CAGE,	and	eQTLGen	were	from	

previous	analyses	of	standardized	gene	expression	levels	with	mean	0	and	variance	1	whereas	

expression	levels	in	the	other	data	sets	(i.e.	CMC,	ROSMAP,	and	Braineac)	were	not	standardized,	

resulting	in	differences	in	the	units	of	eQTL	effects	among	data	sets.	To	harmonize	the	units	across	

data	sets,	we	re-scaled	the	effect	size	and	standard	error	(SE)	of	each	eQTL	in	the	CMC,	ROSMAP,	

and	 Braineac	 based	 on	 the	 z-statistic,	 allele	 frequency	 and	 sample	 size	 using	 the	 method	

described	in	Zhu	et	al.23	so	that	the	eQTL	effects	in	all	data	sets	can	be	interpreted	in	standard	

deviation	(SD)	units.	

	

mQTL	summary	statistics	were	from	5	data	sets:	brain	cortical	region	from	ROSMAP	study	(nind	=	

468,	nprobe	=	420,103,	nsnp	=	5	million)21;	fetal	brain	from	Hannon	et	al.	(nind	=	166,	nprobe	=	26,840,	

nsnp	=	0.3	million)33;	frontal	cortex	region	from	Jaffe	et	al.	(nind	=	526,	nprobe	=	138,917,	nsnp	=	1.5	

million)34;	and	peripheral	blood	from	McRae	et	al.35	(Lothian	Birth	Cohorts49	(LBC):	nind	=	1,366	

and	Brisbane	Systems	Genetics	Study50	(BSGS):	nind	=	614).	DNAm	levels	in	all	these	five	studies	

were	based	on	the	Illumina	HumanMethylation450K	array.	We	performed	a	meta-analysis	of	LBC	

and	BSGS,	resulting	in	397,621	DNAm	probes	and	~7.7	million	SNPs.	The	DNAm	levels	of	all	the	

five	studies	were	not	standardized.	We	computed	the	effect	size	and	SE	of	each	mQTL	from	their	

z-statistics	using	the	method	described	in	Zhu	et	al.23.	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2018. ; https://doi.org/10.1101/274472doi: bioRxiv preprint 

https://doi.org/10.1101/274472
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 15	

We	 included	 in	 the	 analysis	 4	 brain-related	 complex	 traits,	 i.e.	 ever-smoked	 (smoking),	 fluid	

intelligence	score	(IQ),	years	of	education	(EduYears),	and	schizophrenia	(SCZ).	GWAS	summary	

statistics	for	EduYears	(n	=	293,723)	and	SCZ	(36,989	cases	and	113,075	controls)	were	from	the	

latest	meta-analyses38,39,	and	summary	data	for	smoking	(n	=	453,693)	and	IQ	(n	=	146,819)	were	

from	GWAS	analyses	of	 the	 latest	release	of	 the	UK	Biobank	(UKB)	data51.	Quality	control	and	

imputation	 of	 the	 UKB	 data	 have	 been	 detailed	 elsewhere51.	We	 used	 456,426	 individuals	 of	

European	 descent	 and	 7,288,503	 common	 SNPs	 (MAF	 >	 0.01)	 imputed	 from	 the	 Haplotype	

Reference	 Consortium	 (HRC)52	 reference	 panel	 in	 the	 analysis.	 IQ	 was	measured	 by	 13	 fluid	

intelligence	 questions	 and	 detailed	 description	 of	 the	 measurement	 can	 be	 found	 in	

http://biobank.ctsu.ox.ac.uk/.	We	adjusted	IQ	(n	=	146,819)	by	age	and	sex,	and	standardized	the	

adjusted	 phenotype	 by	 rank-based	 inverse-normal	 transformation.	 The	 GWAS	 analyses	 were	

performed	in	BOLT-LMM53	using	all	7.3	million	SNPs	with	a	subset	of	0.7	million	SNPs	in	common	

with	HapMap354	used	 to	 control	 for	population	 structure	and	polygenic	 effects.	We	used	 self-

reported	“ever	smoked”	as	a	dichotomous	phenotype	for	smoking	(208,988	cases	and	244,705	

controls).	We	analyzed	the	data	 in	BOLT-LMM	based	a	 linear	model	with	age	and	sex	fitted	as	

covariates,	and	transformed	the	effect	size	of	each	SNP	on	the	observed	0-1	scale	to	odds	ratio	

(OR)	using	LMOR	(http://cnsgenomics.com/shiny/LMOR/).		

	

Correlation	of	cis-eQTL	effects	between	tissues	

Let	𝑏	be	the	estimated	effect	size	of	the	top	associated	cis-eQTL	for	a	gene.	We	can	model	𝑏	as		

																																																																		𝑏 = 𝑏 + 𝑒																																																																			(1)	

where	𝑏 	is	 true	 effect	 size	 and	𝑒 	is	 the	 estimation	 error.	We	 assume	 that	b	 and	e	 are	 random	

variables	 when	 interrogated	 across	 genes,	 i.e.	 𝑏~𝑁 0, var 𝑏 	and	 𝑒~𝑁 0, var 𝑒 .	 The	

covariance	of	the	estimated	cis-eQTL	effects	between	tissues	i	and	j	across	a	number	of	genes	can	

be	partitioned	into	the	covariance	of	the	true	cis-eQTL	effects	and	the	covariance	of	estimation	

errors	due	to	sample	overlap,	i.e.	

cov 𝑏=, 𝑏> = cov 𝑏=, 𝑏> 	+ 𝑟@ var 𝑒= var(𝑒>)																											(2)	

where	var 𝑒= 	and	var 𝑒> 	are	the	variance	of	the	estimation	error	in	tissues	i	and	j	respectively,	

and	𝑟@ 	is	the	correlation	of	estimation	errors	across	genes	between	two	tissues,	i.e.	𝑟@ = cor(𝑒=, 𝑒>).	

We	know	from	Bulik-Sullivan	et	al.42	and	Zhu	et	al.55	that	𝑟@ ≈ 𝑟D𝜌,	where	𝜌 =
FG
FHFI

	measures	the	

sample	 overlap	 with	𝑁= 	and	𝑁> 	being	 the	 sample	 sizes	 in	 tissues	 i	 and	 j	 respectively,	𝑁J 	the	

number	of	overlapping	individuals,	and	𝑟D	is	the	correlation	of	gene	expression	levels	between	

two	 tissues	 in	 the	 overlapping	 sample.	 If	 𝑖 = 𝑗 ,	 then	 𝑟@ = 1 	and	var 𝑏= = var 𝑏= − var 𝑒= ,	

where	var 𝑏= 	is	the	variation	of	true	cis-eQTL	effects	across	genes.	We	therefore	can	estimate	

the	correlation	of	true	cis-eQTL	effect	sizes	across	genes	as		

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 7, 2018. ; https://doi.org/10.1101/274472doi: bioRxiv preprint 

https://doi.org/10.1101/274472
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 16	

𝑟" = 	
NOP "H,"I

PQR("H)PQR("I)
=

NOP "H,"I /ST PQR @H PQR(@I)

PQR "H /PQR @H [PQR "I /PQR @I ]
																														(3)	

where	var 𝑏= ,	var 𝑏> 	and	cov 𝑏=, 𝑏> 	can	be	observed	from	the	eQTL	summary	data,	and	var 𝑒 	

is	the	variation	of	the	estimation	errors	in	estimated	cis-eQTL	effects	across	genes.	The	reported	

SE	of	the	estimated	eQTL	effect	is	an	estimate	of	the	standard	deviation	of	the	estimation	error.	

We	therefore	can	estimate	var 𝑒 	by	the	mean	SE	squared	across	genes.	We	know	from	equation	

(2)	 that	 if	 𝑏= = 𝑏> = 0 ,	 cov 𝑏=, 𝑏> = 𝑟@ var 𝑒= var(𝑒>) .	 Hence,	 𝑟@ =
NOP "H,"I

PQR @H PQR(@I)
=

NOP "H,"I

PQR "H PQR("I)
= cor(𝑏=, 𝑏>)	for	null	SNPs.	In	practice,	we	estimated	𝑟@ 	for	each	“null”	SNP	(PeQTL	>	

0.01)	in	the	cis-region	by	a	simple	correlation	approach	and	took	the	average	across	SNPs.		

	

The	sampling	variance	of	𝑟" 	is	computed	via	Jackknife	approach	leaving	one	gene	out	at	a	time.	

																																			V 𝑟" XQNYYZ[+* =
\/.
\

[𝑟"(/])] − 𝑟"(.)]%																																													(4)	

where	𝑟"(/]) 	is	 the	 estimate	 with	 the	 t-th	 gene	 left	 out	 and	𝑟"(.) =
.
\

𝑟"(/])] .	 The	 method	 is	

derived	based	on	eQTL	data	but	can	be	applied	to	data	from	genetic	studies	of	different	types	of	

molecular	phenotypes	(e.g.	DNAm	and	histone	modification).	

	

Enrichment	of	cis-eQTLs	with	tissue-specific	effects	in	functional	annotations	

We	used	chromatin	state	data	from	23	blood	samples	(T-cell,	B-cell	and	Hematopoietic	stem	cells)	

and	 10	 brain	 samples	 generated	 by	 the	 NIH	 Roadmap	 Epigenomics	 Mapping	 Consortium	

(REMC)19.	There	were	25	chromatin	states	predicted	by	ChromHMM56	based	on	the	imputed	data	

of	12	histone-modification	marks19.	We	classified	the	25	chromatin	states	into	14	main	functional	

categories	 by	 combining	 functionally	 relevant	 annotations.	We	 tested	 the	 difference	 in	 eQTL	

effect	for	a	gene	between	two	tissues	(i	and	j)	using	the	method	below.		Let	

																																																																																	𝑑 = 𝑏= − 𝑏> 																																																																														(5)	

The	sampling	variance	of	𝑑	can	be	written	as	

V 𝑑 = V 𝑏= + V 𝑏> − 2𝜃 V 𝑏= V 𝑏> 																																	(6)	

where	𝑏= 	and	𝑏> 	are	 the	estimated	effect	 sizes	of	 the	 top	associated	cis-eQTL	 for	a	gene	 in	 two	

tissues,	V 𝑏= 	and	V 𝑏> 	are	 the	 sampling	variance	 for	𝑏= 	and	𝑏> ,	 respectively,	 and	𝜃	is	 sampling	

correlation	between	𝑏= 	and	𝑏> 	for	the	gene.	V 𝑏= 	and	V 𝑏> 	can	be	estimated	by	the	squared	SE	

for	𝑏= 	and		𝑏> ,	and	𝜃	can	be	estimated	from	all	the	“null”	SNPs	(e.g.	PeQTL	>	0.01)	in	the	cis-region	

for	each	gene	using	the	simple	correlation	approach	described	above.	The	significance	of	𝑑	can	
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therefore	be	assessed	by	a	Wald	test,	i.e.,	𝑇b =
c-

deS c
~𝜒.%.		

	

To	test	the	enrichment	of	TD	statistics	in	functional	annotations,	we	allocated	the	cis-eQTLs	to	the	

14	functional	categories	described	above	by	physical	position,	and	calculate	the	mean	TD	of	each	

category.	We	assessed	the	enrichment	using	the	inflation	factor	𝜆 =
gh(H)
gh

	,	where	𝑇b(=)	is	the	mean	

TD	of	the	cis-eQTLs	in	a	category	i,	and	𝑇b	is	the	mean	TD	of	all	the	cis-eQTLs.	We	then	used	the	

Jackknife	approach	(leaving	one	gene	out	at	one	time)	described	above	to	compute	the	variability	

of	𝜆.	Note	that	although	we	described	the	enrichment	test	method	above	based	on	cis-eQTLs,	the	

method	can	be	applied	to	data	from	genetic	studies	of	different	types	of	molecular	phenotypes	

(e.g.	DNAm	and	histone	modification).	

	

Meta-analysis	of	cis-eQTL	data	from	correlated	samples	

We	know	from	equation	(1)	that	the	estimated	effect	of	a	cis-eQTL	for	a	gene	can	be	partitioned	

into	two	components,	i.e.	the	true	effect	size	(b)	and	the	estimation	error	(e).	For	multiple	tissues,	

the	joint	distribution	of	the	estimates	can	be	written	as		

																																																																								𝐛~𝑁(𝟏𝑏, 𝐒)																																																																												(7)	

where	𝐛 = [𝑏., 𝑏%, … , 𝑏]],	S	is	the	sampling	(co)variance	matrix	with	𝑆=> 	= 	C 	𝑏=, 	𝑏> ,	which	can	

be	estimated	by	𝜃𝑆=𝑆> 	when	i	≠	j,	where	𝜃	is	sampling	correlation	between	𝑏= 	and	𝑏> 	for	the	gene,	

and	𝑆= 	and	𝑆> 	are	 the	SEs	of		𝑏= 	and		𝑏> 	respectively.	 If	 i	=	 j,	 then	𝜃 = 1	and	𝑆=> 	= 𝑆=%.	 In	practice,	

we	can	use	the	simple	correlation	approach	described	above	to	estimate	𝜃	from	all	the	“null”	SNPs	

(e.g.	PeQTL	>	0.01)	in	the	cis-region	for	each	gene.	Similar	to	the	summary	data	based	meta-analysis	

methods	that	account	for	correlated	estimation	errors57,58,	we	can	estimate	combined	effect	as	

																																																						𝑏 = (𝟏g𝐒/.𝟏)/.𝟏g𝐒/.𝐛																																																															(8)	

																																																																																								𝑉(𝑏) = .
𝟏p𝐒qr𝟏

																																																																																																																(9)	

The	significance	of	𝑏	can	be	assessed	by	a	Wald	test,	i.e.	 "
-

s "
~𝜒.%.	

	

SUPPLEMENTAL	INFORMATION	

Supplemental	data	include	Supplementary	Note,	25	supplemental	figures	and	7	supplemental	

tables.	

	

WEB	RESOURCES	

MeCS,	http://cnsgenomics.com/software/smr/#MeCS	

SMR,	http://cnsgenomics.com/software/smr	

GTEx	Portal,	http://www.gtexportal.org/	
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CMC,	https://www.synapse.org/CMC	

Braineac,	http://www.braineac.org/	

Brain-eMeta	eQTL	summary	data	will	be	available	at	the	SMR	website	when	the	manuscript	is	

formally	accepted	(http://cnsgenomics.com/software/smr/#Download).	
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Figure	1	Estimated	correlation	of	genetic	effects	of	cis-eQTLs	between	brain	regions,	between	

brain	and	blood	tissues,	and	between	data	sets.	The	top	associated	cis-eQTLs	(one	for	each	gene)	

were	selected	from	GTEx-muscle	at	PeQTL	<	5´10-8.	Shown	in	each	cell	is	the	estimate	of	rb	with	its	

standard	error	given	in	the	parentheses	(Methods).	In	the	Braineac	data,	the	eQTLs	effect	sizes	

were	estimated	from	gene	expression	levels	averaged	across	10	brain	regions.		
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Figure	2	Enrichment	of	cis-eQTLs	with	tissue-specific	effects	in	functional	annotations.	A)	The	

distribution	 of	 cis-eQTLs	 across	 14	 functional	 categories	 derived	 from	 RMEC	 (Methods).	 B)	

Estimated	enrichment	of	TD	(testing	for	the	difference	in	cis-eQTL	effect	between	CMC-brain	and	

GTEx-blood)	 in	 each	 functional	 category	 (Methods).	 Error	 bars	 represent	 95%	 confidence	

intervals	around	 the	estimates.	The	black	dash	 line	 represents	 fold	enrichment	of	1.	Different	

colors	 in	panels	(A)	and	(B)	correspond	to	14	 functional	categories:	TssA,	active	transcription	

start	 site;	 Prom,	 upstream/downstream	 TSS	 promoter;	 Tx,	 actively	 transcribed	 state;	 TxWk,	

weak	transcription;	TxEn,	transcribed	and	regulatory	Prom/Enh;	EnhA,	active	enhancer;	EnhW,	

weak	enhancer;	DNase,	primary	DNase;	ZNF/Rpts,	state	associated	with	zinc	finger	protein	genes;	

Het,	constitutive	heterochromatin;	PromP,	Poised	promoter;	PromBiv,	bivalent	regulatory	states;	

ReprPC,	repressed	Polycomb	states;	and	Quies,	a	quiescent	state.
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Figure	3	Relationship	between	the	test-statistics	for	the	difference	(TD)	in	cis-eQTL	effects	and	

the	TD	in	mean	expression	level	of	the	corresponding	gene	between	GTEx-cerebellum	and	GTEx-

blood	for	3,569	genes.	The	3,569	genes	were	ascertained	with	at	least	one	cis-eQTL	with	PeQTL	<	

5´10-8	in	GTEx-muscle	and	expressed	in	GTEx-cerebellum	and	GTEx-blood	(i.e.	genes	which	have	

at	least	10	samples	with	RPKM	>	0.1	and	raw	read	counts	greater	than	6).	In	this	analysis,	we	used	

cis-eQTL	effects	in	SD	units	and	gene	expression	data	in	log(RPKM)	units	to	avoid	the	confounding	

of	the	correlation	by	the	mean-variance	relationship	in	gene	expression.	
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Figure	4	Similarity	and	difference	in	cis-mQTL	effects	between	brain	and	blood.	A)	Estimated	rb	

for	cis-mQTLs	between	brain	and	blood	from	4	independent	data	sets.	The	cis-mQTLs	(one	for	

each	DNAm	probe)	were	 selected	 at	PmQTL	 <	 1´10-10	 using	data	 from	 the	Hannon	 et	 al.	 study.	

Shown	in	each	cell	is	the	estimate	of	rb	with	its	standard	error	given	in	the	parentheses	(Methods).	

B)	The	distribution	of	cis-mQTLs	across	14	functional	categories	derived	from	RMEC	(Methods).	

C)	Estimated	enrichment	of	TD	(testing	for	the	difference	in	cis-mQTL	effect	between	Jaffe-brain	

and	 LBC-blood)	 in	 each	 functional	 category	 (Methods).	Error	 bars	 represent	 95%	 confidence	

intervals	around	the	estimates.	The	black	dash	line	represents	the	fold	enrichment	of	1.	
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Figure	 5	 Identification	 of	 genes	 (DNAm	 sites)	 associated	 with	 4	 brain-related	 traits	 by	 an	

integrative	analysis	of	GWAS	data	with	eQTL	(mQTL)	data	from	brain	and	blood	samples	using	

the	SMR	method.	The	four	brain-related	traits	are	smoking,	 IQ,	SCZ	and	EduYears.	Panel	A	(C)	

shows	 the	 numbers	 of	 genes	 (DNAm	 sites)	 with	 a	 least	 one	 significant	 SNP	 at	P	 <	 5´10-8	 in	

different	data	sets.	Panel	B	(D)	shows	the	numbers	of	genes	(DNAm	sites)	associated	with	traits	

identified	in	different	data	sets.	Sample	sizes	of	the	brain	studies:	GTEx-brain	(n	=	~233),	CMC	(n	

=	467),	ROSMAP	(n	=	494),	Brain-eMeta	(𝑛*++	=	~1,194)	and	Jaffe	et	al.	(n	=	526).	Sample	sizes	of	

the	blood	studies:	CAGE	(n	=	2,765),	eQTLGen	(n	=	14,115),	LBC+BSGS	(n	=	1,980).	
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