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Abstract 1 

The search for general properties in network structure has been a central issue for food web studies in 2 

recent years. One such property is the small-world topology that combines a high clustering and a small 3 

distance between nodes of the network. This property may increase food web resilience but make them 4 

more sensitive to the extinction of connected species. Food web theory has been developed principally 5 

from freshwater and terrestrial ecosystems, largely omitting marine habitats. If theory needs to be 6 

modified to accommodate observations from marine ecosystems, based on major differences in several 7 

topological characteristics is still on debate. Here we investigated if the small-world topology is a 8 

common structural pattern in marine food webs. We developed a novel, simple and statistically rigorous 9 

method to examine the largest set of complex marine food webs to date. More than half of the analyzed 10 

marine networks exhibited a similar or lower characteristic path length than the random expectation, 11 

whereas 39% of the webs presented a significantly higher clustering than its random counterpart. Our 12 

method proved that 5 out of 28 networks fulfilled both features of the small-world topology: short path 13 

length and high clustering. This work represents the first rigorous analysis of the small-world topology 14 

and its associated features in high-quality marine networks. We conclude that such topology is a 15 

structural pattern that is not maximized in marine food webs; thus it is probably not an effective model 16 

to study robustness, stability and feasibility of marine ecosystems.  17 

Introduction 18 

Food webs are complex networks of feeding (trophic) interactions among diverse species in 19 

communities or ecosystems (Dunne 2009). Studies characterizing and modelling food web structure 20 

have suggested the existence of general properties (Link 2002, Williams et al. 2002, Montoya and Solé 21 

2003, Vermaat et al. 2009), as well as simple models that predict the complex structure of these 22 

networks (Cohen et al. 1985, Williams and Martinez 2000, Allesina et al. 2008, Digel et al. 2014, 23 

Johnson et al. 2014).    24 

Although some of the earliest food web studies were done considering marine examples 25 

(Petersen 1918, Hardy 1924), food web theory has been developed principally from freshwater and 26 

terrestrial habitats, largely omitting marine ecosystems (Link et al. 2005). Led by Link (2002) and 27 

Dunne et al. (2004), the number of marine food web studies has increased considerably in the last 28 

decade (Bodini et al. 2009, Rezende et al. 2009, Riede et al. 2010, de Santana et al. 2013, Kortsch et al. 29 

2015, Bortanowski et al. 2016, Navia et al. 2016, Marina et al. 2018, among others). Despite the amount 30 
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of new marine food web data, whether food web theory needs to be modified to accommodate 31 

observations from marine ecosystems, based on major differences in several topological characteristics 32 

(i.e. higher link density, connectance, mean chain length and omnivory), is still on debate (Link 2002). It 33 

has been suggested that more evenly and highly resolved networks are required in order to decide 34 

whether current patterns are artifacts or whether they reflect more significant similarities or differences 35 

between marine and non-marine food webs (Dunne et al. 2004, Vermaat et al. 2009).  36 

In this regard, the presence of the small-world (SW) topology (Watts and Strogatz 1998) in 37 

marine food webs is also an open question. This topology, inspired by the “six degrees of separation” 38 

sociology experiment by Milgram (1967), has emerged as a suitable framework to study the global 39 

structure of food webs (Amaral et al. 2000). Two network properties are typically analyzed in order to 40 

gain insight into this pattern: the characteristic path length, a global property of the network that refers to 41 

the average shortest distance between pairs of nodes; and the clustering coefficient, a local property of 42 

the network defined by the average fraction of pairs of nodes connected to the same node that are also 43 

connected to each other (Watts and Strogatz 1998). These features are usually compared to its random 44 

counterpart web (equal size and link density or connectance), with the aim of investigating how much 45 

does the empirical food web deviate from the random one (Watts 1999). A SW network needs to display 46 

a high clustering coefficient and a short characteristic path length, compared to a random graph. The 47 

latter property gives the name “small-world” to these networks, because it is possible to connect any two 48 

vertices in the network through just a few links (Amaral et al. 2000).  49 

Furthermore, SW networks may display three of the following scale patterns: scale-free, broad-50 

scale or single-scale (Amaral et al. 2000). The first one describes a network with very few nodes highly 51 

connected and most nodes poorly connected, following a power-law degree distribution (Barabási et al. 52 

2000, Montoya and Solé 2002). On the other hand, a broad-scale pattern is characterized by a degree 53 

distribution that has a truncated power-law regime or a power-law regime followed by a sharp cutoff 54 

(Montoya et al. 2006). Finally, single-scale networks present a degree distribution with a fast decaying 55 

tail, such as exponential or Gaussian (Amaral et al. 2000). Most studies of empirical food webs show 56 

that degree distributions rarely differ from any of these scale patterns (Camacho et al. 2002, Dunne et al. 57 

2002a, 2002c, Montoya and Solé 2003, Stouffer et al. 2005), meaning that this structural feature (i.e. 58 

degree distribution) would not be essential to determine whether food webs display a SW topology or 59 

not. 60 
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Disregarding its habitat (e.g. marine, freshwater or terrestrial), several studies have considered 61 

whether empirical food webs display the SW topology similar to many other real-world networks 62 

(Camacho et al. 2002, Dunne et al. 2002c, Montoya and Solé 2002, Bornatowski et al. 2016, Navia et al. 63 

2016). Most of these explored individual marine food webs or considered few networks belonging to 64 

this habitat; while some suggested the presence of the SW topology (Montoya and Solé 2002, Gaichas 65 

and Francis 2008, Navia et al. 2016, Bornatowski et al. 2016), others stated that food webs do not 66 

display such topology (Camacho et al. 2002, Dunne et al. 2002c). 67 

Why is it important to explore the SW topology in marine food webs? There is no doubt that 68 

network topology can have important implications for network function (Strogatz 2001). More detailed 69 

knowledge on food web topology in marine ecosystems will help to understand the dynamics of 70 

complex systems, historically subject to intense fisheries pressure and subsequent regime shifts and 71 

collapse (Pauly et al. 1998, Jackson et al. 2001, Rocha et al. 2015, Gårdmark et al. 2015, Gilarranz et al. 72 

2016). In general, consequences of SW topological pattern in food webs are of great importance in 73 

recognizing evolutionary paths and the vulnerability to perturbations (Montoya and Solé 2002). A short 74 

characteristic path length showed by SW food webs imply a rapid spread of an impact (e.g. invasion, 75 

population fluctuation, local extinction) throughout the network (Williams et al. 2002). However, based 76 

on its high clustering coefficient SW networks are associated with rapid responses to disturbances 77 

resulting in a high resilience (Solé and Montoya 2001, Montoya and Solé 2002). Recently, extinction 78 

simulations in three marine food webs displaying this topology presented opposite results regarding 79 

susceptibility to the loss of highly connected species (Gaichas and Francis 2008, Bornatowski et al. 80 

2016, Navia et al. 2016). In this sense, the analysis of large mobile predators might shed light on this 81 

issue, as they are highly connected species, energy-channel couplers and ubiquitously affected by 82 

antropogenic disturbances (Rooney et al. 2008). Therefore, it is not certainly known neither if the SW 83 

topology is a common pattern in marine food webs, nor if the most connected species in such networks 84 

(e.g. species of commercial interest, top predators) should be protected to avoid structural and functional 85 

impacts in ecosystems that cover more than 70% of the planet´s surface. 86 

As stated above, research on marine food web properties on individual networks is abundant, yet 87 

topological studies analyzing the global structure in large sets of well-resolved marine food webs are 88 

scarce (e.g. Dunne et al. 2004, Riede et al. 2010). The SW topology, a pattern that gives a clear 89 

overview of organization and resistance in trophic networks (Bornatowski et al. 2016), has been difficult 90 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 2, 2018. ; https://doi.org/10.1101/274415doi: bioRxiv preprint 

https://doi.org/10.1101/274415
http://creativecommons.org/licenses/by/4.0/


 5 

to detect in empirical food webs because of incompatibility in used approaches and insufficient 91 

methodological rigour (e.g. Montoya and Solé 2002, Gaichas and Francis 2008, Navia et al. 2016).  92 

In this work, our aim was to analyze the SW structural pattern in empirical marine food webs. 93 

For this, we gathered a broad range of high-quality marine food webs, some of which have never been 94 

examined using a topological network approach. We developed and implemented a simple and rigorous 95 

method to determine whether food webs presented the SW topology. This method is rigorous because it 96 

considers the structural properties of interest (i.e. characteristic path length, clustering coefficient and 97 

degree distribution) and statistically tests the probability of presenting such topology, taking into 98 

account the position of the empirical values for the structural properties in the confidence interval (99%) 99 

of the equivalent random networks. Our results were compared with that of Humphries and Gurney 100 

(2008), who proposed a quantitative and continuous small-world-ness metric for complex networks. 101 

Finally, we hypothesized about possible implications of the SW topology for ecosystem functioning in 102 

marine habitats.  103 

Methodology 104 

We compiled and selected a large set of well-resolved marine food webs, many of which are 105 

included for the first time in network topology analyses. We limited our inclusion to food webs with a 106 

minimum size (= number of trophic species), following Link et al. (2005) recommendation of 107 

considering only networks with 20-25 nodes at least. The studied food webs represent a wide range of 108 

number of trophic species (27 – 513) and connectance (0.01 – 0.27). The assembled marine food webs 109 

cover from pelagic to coastal habitats, and tropical to polar regions (Table 1). The list is by no means 110 

exhaustive, but the high taxonomic resolution of the webs and the variety of regions that comprises 111 

likely make this list the most representative and comprehensive picture of the topology in real-world 112 

marine food webs.     113 

We studied the cumulative degree distribution, or the fraction of trophic species P(k) that have k 114 

or more trophic links, for each network (Albert and Barabási 2002). The use of cumulative distributions 115 

gives a more accurate picture of the shape of the distribution in small, noisy data sets (Dunne et al. 116 

2002c). Model fit was done using maximum likelihood (McCallum 2008), and model selection was 117 

performed by computing the Akaike Information Criterion corrected for small sample size (AICc) 118 

(Burnham and Anderson 2002). 119 

In order to explore the SW phenomenon among these empirical marine food webs, we analyzed 120 
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the properties of interest: characteristic path length (CPL) and clustering coefficient (CC). The CPL is 121 

defined as the average shortest path length between all pairs of nodes and represents a global property of 122 

the network (Watts and Strogatz 1998). Here, CPL was calculated as the average number of nodes in the 123 

shortest path CPLMin(i,j) between all pairs of nodes V(i,j) in a network averaged over n(n-1)/2 nodes 124 

(Montoya and Solé 2002): 125 

 126 

CPL =
2

n n −1( ) CPL
Min

i=1

n

∑ i, j( )
i=1

n

∑  127 

 128 

On the other hand, CC quantifies the local interconnectedness of the network and it is defined as 129 

the fraction of the number of existing links between neighbours of node i among all possible links 130 

between these neighbours. In this study, the CC of each food web was determined as the average of the 131 

individual clustering coefficients CCi of all the nodes in the network. Individual CCi were determined as 132 

follows: 133 

 134 

CCi= 2Ei
Ki(Ki− 1)  135 

 136 

where Ei is the effective number of interactions between ki nearest-neighbor nodes of node i and the 137 

maximal possible number of such interactions (Albert and Barabási 2002, Newman 2003).  138 

With the aim of testing whether marine food webs presented the SW topology, we compared the 139 

empirical values of CPL and CC with those resulted from 1000 randomly generated networks with the 140 

same size (S) and number of links (L). Random webs were created using the Erdös-Rényi model, where 141 

links are added to the complete set of nodes (S) and chosen uniformly randomly from the set of all 142 

possible links (Erdös and Rényi 1959). Small-world networks are considered to present similar or lower 143 

CPL values between empirical and random webs (CPL empirical ≤ CPL random), and a much higher CC 144 

in empirical than in random webs (CC empirical >> CC random) (Watts and Strogatz 1998, Bollobás 145 

2001).  146 

The rigurosity of our method lies in the use of confidence intervals (CI 99%) for the empirical-147 

random comparison of the CPL and CC properties. If the empirical value for a particular food web was 148 

positioned within or to the left (=lower than) the CI 99% of the random CPL, and to the right (=higher 149 
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than) the CI 99% of the CC, then the food web was considered to present the SW topology. We also 150 

calculated the ´small-world-ness´ Sws metric proposed by Humphries and Gurney (2008) for each studied 151 

food web, and compared these results with our method. If Sws > 1 and Sws > Sws CI 99% (confidence 152 

interval), then the food web was said to be a SW network.   153 

The complete source code for generating the random networks and statistical analyses was done in R (R 154 

Core Team 2017), and is available at GitHub 155 

(https://github.com/lsaravia/MarineFoodWebsSmallWorld). 156 

Results  157 

The analysis of the topological properties associated with the SW pattern showed that the 158 

characteristic path length (CPL) and the clustering coefficient (CC) among the studied marine food webs 159 

varied from 1.20 to 3.41 and from 0.0026 to 0.66, respectively. Connectance range for these food webs 160 

was 0.01 – 0.27, considering networks comprising from 27 to 513 trophic species (Table 1).  161 

The cumulative degree distributions of the marine food webs fitted to a broad variety of models: 162 

exponential, power-law, truncated power-law (power-law regime with a sharp cutoff), lognormal, 163 

uniform. To our surprise some networks displayed a poisson distribution. The majority of the networks 164 

exhibited ‘power-law-like’ (i.e. power-law and truncated power-law = 40%) or uniform (25%) 165 

cumulative degree distributions (Table 1). 166 

More than half of the analyzed food webs (19/28) exhibited similar or lower CPL than expected 167 

for random networks. Following the CPL empiric results, minimum and maximum 168 

CPLEmpirical/CPLRandom ratios were exhibited by those food webs with the lowest and highest empiric 169 

values (i.e. SW Pacific Ocean and Sanak nearshore, respectively). Only 39% of the webs presented 170 

higher CC than its random counterpart. A small number of food webs showed both features: low CPL 171 

and high CC, compared to random networks (Figure 1). 172 

The comparison between the small-world-ness metric (Sws) defined by Humphries and Gurney 173 

(2008), and our method to determine SW topology in complex networks reflected differences. While the 174 

first one registered that 11 out of 28 webs presented the SW topology, our method proved that only five 175 

food webs exhibited such pattern. These five empiric networks displayed a similar or lower CPL and a 176 

higher CC, compared to the confidence interval 99% of the random networks for each of the topological 177 

properties (Figure 1). Supplementary information S1 presents detailed results on the comparison 178 

between these methods.  179 
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Following Watts (1999), we positioned each food web in the coordinate system x = CPL 180 

empirical/random ratio, and y = CC empirical/random ratio (Figure 2). Our method demonstrated that 181 

the only well-resolved marine food webs that clearly present the SW topology are: Gulf of Lions, 182 

Florida, Caribbean reef (l), Barents Sea Arctic and Weddell Sea (Figure 2b). Values of CPL and CC 183 

ratios for the SW marine food webs are: 0.98 and 1.35 (Gulf of Lions), 0.91 and 1.60 (Florida), 0.98 and 184 

1.49 (Caribbean reef (l)), 0.86 and 2.37 (Barents Sea Arctic), 0.67 and 2.04 (Weddell Sea). It is worth 185 

noting that network size in these food webs varies from 39 to 442 trophic species; connectance ranges 186 

from 0.01 to 0.12 (an order of magnitude of difference); and that the degree distribution was: truncated 187 

power-law, uniform, uniform, exponential and lognormal, respectively (Table 1).   188 

 189 

Table 1. Network properties of high quality marine food webs, ordered by decreasing connectance. S = Size, L = Links, C = 190 

Connectance (L/S2), CPL = Characteristic Path Length, CC = Clustering Coefficient. DD = fit for cumulative degree 191 

distribution. * model fit using maximum likelihood and AICc. References are given for the source of the original network 192 

data.  193 

Network Region Size Links C CPL CC DD Reference 

La Guajira Tropical 27 198 0.27 1.53 0.66 Uniform* Criales-Hernández et al. 
(2006) 

Benguela Temperate 29 203 0.24 1.6 0.3 Uniform Yodzis (1998) 

NE US Shelf Temperate 81 1482 0.23 1.6 0.31 Uniform Link (2002) 

Gulf of Cadiz Temperate 42 410 0.23 1.99 0.56 LogNormal* Torres et al. (2013) 

Baltic Sea Temperate 33 191 0.18 1.41 0.31 Poisson* Yletyinen et al. (2016) 

Beagle Channel Temperate 33 183 0.17 1.46 0.32 Uniform* Riccialdelli et al. (2017) 

Angola Subtropical 28 127 0.16 1.61 0.36 Uniform* Angelini & Vaz-Velho 
(2011) 

Chilean rocky Temperate 106 1362 0.12 1.34 0.11 Truncated 
power-law* 

Kéfi et al. (2015) 

Gulf of Lions Temperate 39 189 0.12 1.77 0.34 Truncated 
power-law* 

Banaru et al. (2013) 

Florida Tropical 48 221 0.1 1.76 0.31 Uniform* Christian & Luczcovich 
(1999) 

Simon Bay Temperate 30 70 0.08 1.7 0.12 Poisson* Filgueira & Castro (2011) 

Celtic Sea Temperate 48 169 0.07 2.3 0.3 Exponential* Woodward et al. (2010) 

Cuba Tropical 240 3874 0.07 1.86 0.11 Truncated 
power-law* 

Roopnarine & Hertog 
(2012) 

Jamaica Tropical 249 4105 0.07 1.84 0.12 Truncated 
power-law* 

Roopnarine & Hertog 
(2012) 

Cayman Is. Tropical 242 3766 0.06 1.85 0.11 Truncated 
power-law* 

Roopnarine & Hertog 
(2012) 

Monterey Bay Temperate 37 79 0.06 1.4 0.09 Truncated 
power-law* 

Glynn (1965) 

Barents Sea Boreal Tropical 180 1546 0.05 2.28 0.25 Exponential Kortsch et al. (2015) 

Caribbean reef (l) Temperate 249 3312 0.05 1.9 0.16 Uniform Opitz (1996) 
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Potter Cove Subtropical 91 307 0.04 1.82 0.09 Exponential* Marina et al. (2018) 

Southern Brazil Polar 139 837 0.04 3.25 0.07 Truncated 
power-law 

Bornatowski et al. (2016) 

Barents Sea Arctic Subtropical 159 848 0.03 2.06 0.16 Exponential Kortsch et al. (2015) 

Beach Peru Polar 46 74 0.03 1.71 0.09 Exponential* Koepcke & Koepcke (1952) 

Sanak intertidal Polar 235 1804 0.03 3.06 0.15 Truncated 
power-law* 

Dunne et al. (2016) 

Sanak nearshore Polar 513 6774 0.03 3.41 0.18 LogNormal* Dunne et al. (2016) 

SW Pacific Ocean Temperate 109 202 0.02 1.2 0.02 Truncated 
power-law* 

Dambacher et al. (2010) 

Gulf of Alaska Tropical 406 1057 0.01 2.59 0.001 Power-law Gaichas & Francis (2008) 

Gulf of Tortugas Polar 256 647 0.01 1.65 0.02 LogNormal Navia et al. (2016) 

Weddell Sea Polar 442 1915 0.01 2.05 0.04 LogNormal* Jacob (2005) 

 Note: 1 clustering coefficient for Gulf of Alaska food web is 0.0026. 194 

 

 195 
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Figure 1. A) Clustering Coefficient (CC) and B) Characteristic Path Length (CPL) for empirical and random networks 196 

(ordered by decreasing connectance), generated with the same size (S) and number of links (L). Horizontal line for each food 197 

web corresponds to the confidence interval (99%) of the 1000 random networks. The inverted triangule symbol indicates food 198 

webs that follow the SW topology according to our method.   199 

   200 

Figure 2. Characteristic Path Length (CPL) and Clustering Coefficient (CC) empirical/random ratios. Marine food webs that 201 

follow a SW topology according to A) small-world-ness metric (SWness), and B) our method (SWconf). SW networks are 202 

indicated with an inverted yellow triangle.  203 

Discussion  204 

The method developed and applied in this study to determine whether high quality food webs 205 

present the SW topology showed that most of the marine networks analyzed do not display such 206 

topology. Likewise, Dunne et al. (2002c) argued that food webs are not SW networks, though other 207 

studies identify several individual or small sets of food webs as having the SW topology (Solé and 208 

Montoya 2001, Camacho et al. 2002, Montoya and Solé 2002, Gaichas and Francis 2008, Navia et al. 209 

2016, Bornatowski et al. 2016).  210 

The first condition for a network to exhibit a SW topology is a short distance between all nodes 211 

of the web. All studies looking at this topology in food webs have reported short path lengths similar to 212 

random expectations, coincident with one aspect of such structural pattern (Dunne 2006). Consistently, 213 

A B 
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the majority of the CPL empiric values for the analyzed marine food webs in the present study were 214 

similar or lower than the random webs. 215 

Previously suggested dependence of CPL on connectance (i.e. path length decreases with increasing 216 

connectance) (Williams et al. 2002, Vermaat et al. 2009, Riede et al. 2010) was not found among the 217 

largest and most complex marine food webs available to date. In this regard, the lowest and highest 218 

values for CPL in the analyzed networks were displayed by marine food webs with relatively very low 219 

connectance (C = 0.02 and 0.03, respectively). On the other hand, CPL might be sensitive to network 220 

size in marine food webs, but with an opposite scaling relationship as described by Riede et al. (2010), 221 

since the shortest CPL occured in SW Pacific Ocean food web, S = 109, and the longest CPL was found 222 

in Sanak nearshore web (S = 513), a food web five times larger than the first one. There is no doubt that 223 

the mechanisms responsible for short path lengths and potentially scaling correlations with other 224 

structural properties in marine food webs deserve further investigation.   225 

In spite of short path lengths, similar to random expectations, currently available food web data 226 

clearly deviate from the SW topology due to a low clustering coefficient compared to random networks 227 

(Dunne et al. 2002c). Although analyses of compartmentalization in aquatic and terrestrial ecosystems 228 

and food web models are profused (May 1972, Krause et al. 2003, Allesina and Pascual 2009, Stouffer 229 

and Bascompte 2011), few studies have evaluated the presence of clusters (i.e. subsets of species that 230 

interact more frequently among themselves than with other species in the community, compared to 231 

random networks) in well-resolved marine food webs. In this sense, Pérez-Matus et al. (2017) reported 5 232 

compartments for the Chilean subtidal food web (not included here due to lack of information), and 233 

Rezende et al. (2009) found for the Caribbean reef food web (included here) a significant 234 

compartmentalized structure, higher than that expected for its random counterpart. However, the present 235 

study demonstrates that in general marine food webs tend to have low clustering coefficients (<< 1); less 236 

than half of the networks (11 out of 28) showed a significantly higher empiric clustering coefficient 237 

compared to the random expectation (i.e. CCEmpiric > CCRandom CI 99%). As a result, 238 

compartmentalization in marine ecosystems is very small, meaning that food webs are characterized by 239 

trophic species highly interconnected between each other. It has been suggested that being 240 

compartmentalized is advantageous to a community because compartments buffer the propagation of 241 

extinctions, and that the observed architecture of empirical food webs (e.g. SW topology) increases both 242 

the persistence and resilience against perturbation (Stouffer and Bascompte 2011, Gilarranz et al. 2017). 243 

Therefore, the fact that the analysis of the largest set of complex marine food webs statistically showed 244 
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that the minority of the networks displays high clustering coefficients brings to light that: 1) current 245 

marine food webs are predicted to be fragile and susceptible to structural changes with consequent 246 

alterations in the functioning of the ecosystem, or 2) the influence of the clustering coefficient in the 247 

stability and feasibility of large marine communities is not as significant as it is thought. 248 

The drivers of a lower empiric clustering coefficient than its random counterpart in food webs are 249 

suggested to be small network size (i.e. low diversity) and high connectance, features displayed in 250 

ecological networks compared to other network types (e.g. neuronal, social and technological) (Dunne 251 

2006). On the contrary, we have showed that large food webs (> 100 trophic species) can also present 252 

notably low clustering coefficient ratios (e.g. Chilean rocky, SW Pacific Ocean, Gulf of Alaska), similar 253 

to what Camacho et al. (2002) have suggested. Regarding connectance, SW marine networks exhibited 254 

one order of magnitude of difference (0.12 – 0.01). Neither network size nor complexity (= connectance) 255 

seem to be playing an important role in explaining the lack of compartmentalized structures in marine 256 

food webs; highly interconnected nodes might be the case for these networks. These findings imply that 257 

species-rich food webs (i.e. high diversity) in the marine ecosystem might not be organized by 258 

combining sub-web compartments, as previously suggested for food webs in general (Riede et al. 2010). 259 

 Small-world networks seem to exhibit a variety of degree distributions (Amaral et al. 2000). To 260 

date, it has been reported and identified in SW food webs the presence of scale-free or ‘power-law like’ 261 

structures (Montoya and Solé 2002, Gaichas and Francis 2008, Bornatowski et al. 2016, Navia et al. 262 

2016) and exponential distributions (Camacho et al. 2002). Here, the majority of the marine food webs 263 

identified as having the SW structural pattern showed neither ‘power-law like’ nor exponential degree 264 

distributions; instead they fit to uniform and lognormal models. This is the first study that, using a robust 265 

statistical methodology (i.e. maximum likelihood and Akaike Criterion), presents evidence for the 266 

occurrence of uniform degree distribution in SW food webs. Added to the three classes of small-world 267 

networks proposed by Amaral et al. (2000), we suggest a new class: uniform-scale networks, 268 

characterized by a connectivity distribution with an approximately constant node degree. It has been 269 

hypothesized that the presence of uniform degree distributions in food webs may occur in relatively 270 

small (= few nodes) and high-connected networks (Dunne et al. 2002b). Food webs with this type of 271 

distribution are expected to be more robust against intentional removal of the most connected nodes than 272 

networks with more skewed distributions (Albert et al. 2000, Estrada 2007). Nearly all of the marine 273 

food webs assessed in the current study follow the pattern suggested by Dunne et al. (2002b), with the 274 

exception of the Caribben reef food web that is comparatively large (S=249) and low connected 275 
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(C=0.05). As it seems to occur in general with food web degree distributions (Dunne et al. 2002b), SW 276 

networks in the marine ecosystem may display a broad variety of distribution models which proves the 277 

minor influence of such property in the structural pattern of marine food webs. Furthermore, in contrast 278 

with what is expected in real-world networks (Dunne et al. 2002b, Montoya and Solé 2002, Newman 279 

2003), we have demonstrated that empiric marine food webs display poisson degree distributions (e.g. 280 

Baltic Sea and Simon Bay).  281 

       It has been suggested that network size, connectance and the degree distribution pattern are 282 

drivers of the SW topology in complex networks in general (Humphries and Gurney 2008) and in food 283 

webs in particular (Thompson and Towsend 2000, Dunne et al. 2002c). After applying a novel small-284 

world-ness metric to examine several classes of real-world networks (e.g. social, information, 285 

technological and biological), Humphries and Gurney (2008) concluded that high connectance results in 286 

low SW-ness, confirming what was stated for food webs (Dunne 2006). Although we have not 287 

performed correlation analyses, neither of the suggested drivers seems to be playing an important role in 288 

the presence of the SW structural pattern in marine food webs: SW food web network size and 289 

connectance ranged from 39 to 442 and from 0.12 to 0.01 (one order of magnitude of difference), 290 

respectively. In addition, three different models fit their degree distributions: ‘power-law like’ (power-291 

law and truncated power-law), lognormal and uniform.     292 

After examining the features of the SW topology (i.e. path length, clustering coefficient and 293 

degree distribution) and exposing the discrepancies among studies, it seems more than appropriate the 294 

application of a rigorous method like the one proposed here if the aim is to search for a universal, 295 

generalized model explaining the structural pattern in food webs. Early suggested correlations between 296 

path length, clustering coefficient and degree distribution with network size and connectance in food 297 

webs (e.g. Dunne et al. 2002b, Williams et al. 2002, Vermaat et al. 2009, Riede et al. 2010) might not be 298 

followed in the structure of marine networks. It is crucial to better understand the topology and possible 299 

scaling relationships among food web properties in marine ecosystems, since network structure has deep 300 

consequences in the functioning of exploited systems (Gaichas and Francis 2008, Bornatowski et al. 301 

2014, Navia et al. 2016, Pérez-Matus et al. 2017). 302 

In conclusion, this study represents the first rigorous analysis of the SW topology and its 303 

associated features in the largest set of complex marine food webs examined to date. It attempts to 304 

resolve the ‘small-world controversy’ in food webs. The SW topology is a structural pattern that is not 305 
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maximized in marine food webs; thus it is probably not an effective model to study the robustness, 306 

stability and feasibility of marine ecosystems.      307 
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