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ABSTRACT 

Pathology slide images capture tumor histomorphological details in high resolution. However, 

manual detection and characterization of tumor regions in pathology slides is labor intensive and 

subjective. Using a deep convolutional neural network (CNN), we developed an automated tumor 

region recognition system for lung cancer pathology slides. From the identified regions, we extracted 

22 well-defined tumor shape features and found that 15 of them were significantly associated with 

patient survival outcome in lung adenocarcinoma patients from the National Lung Screening Trial. A 

tumor shape-based prognostic model was developed and validated in an independent patient cohort 

(n=389). The predicted high-risk group had significantly worse survival than the low-risk group (p 

value = 0.0029). Predicted risk group serves as an independent prognostic factor (high-risk vs. low-

risk, hazard ratio = 2.25, 95% CI 1.34-3.77, p value = 0.0022) after adjusting for age, gender, 

smoking status, and stage. This study provides new insights into the relationship between tumor 

shape and patient prognosis.  

Abstract word count: 148  
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Lung cancer is the leading cause of death from cancer, with about half of all cases comprised of lung 

adenocarcinoma (ADC), which is remarkably heterogeneous in morphological features1, 2 and highly 

variable in prognosis. Through sophisticated visual inspection of tumor pathology slides, ADC can 

be further classified into different subtypes with drastically different prognoses. Some contributing 

morphological features have been recognized, such as tumor size or vascular invasion in lung ADC. 

However, there is a lack of systematic studies on the relationship between tumor shape in pathology 

slides and patient prognosis.  

Tumor tissue slide scanning is becoming part of routine clinical practice for the acquisition of high 

resolution tumor histological details. In recent years, several computer algorithms for hematoxylin 

and eosin (H&E) stained pathology image analysis have been developed to aid pathologists in 

objective clinical diagnosis and prognosis3-7. Examples include an algorithm to extract stromal 

features8 and an algorithm to assess cellular heterogeneity6 as a prognostic factor in breast cancer. 

More recently, studies have shown that morphological features are associated with patient prognosis 

in lung cancer as well4, 5, 7. Deep learning methods, such as convolution neural networks (CNNs), 

have been widely used in image segmentation, object classification and recognition9-11 and are now 

being adapted in biomedical image analysis to facilitate cancer diagnosis. To some extent, the 

performances of deep learning algorithms are similar to, or sometimes even better than, those of 

humans12, 13. For analysis of H&E-stained pathology images, deep learning methods have been 

developed to distinguish tumor regions14, detect metastasis15, predict mutation status16, and classify 

tumors17 in breast cancer as well as in other cancers. However, due to the complexity of lung cancer 

tissue structures (such as microscopic alveoli and micro-vessel), deep learning methods for automatic 

lung cancer region detection from H&E-stained pathology images are not currently available. 

Automatic tumor region detection allows for tumor size calculation and tumor shape estimation. 

Tumor size is a well-established lung cancer prognostic factor18; the effect of tumor shape has also 

been investigated in regard to its relationship with drug delivery19, 20 and prognosis prediction21-26. In 
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X-Ray and computer tomography (CT) image studies, the rough tumor boundary has been reported 

as a marker for malignant tumor in breast cancer27, and found to be associated with local tumor 

progression and worse prognosis in lung cancer patients22, 26. Compared with CT images, which are 

most commonly used to evaluate tumor shape, pathology images have much higher spatial 

resolution28. Thus, automatic tumor region detection in pathology images allows us to characterize 

tumor shape accurately and extract tumor shape-based features. 

In this study, we developed a deep CNN model to automatically recognize tumor regions for lung 

ADC from H&E pathology images. More importantly, based on a systematic study of the detected 

tumor regions of lung ADC patients from the National Lung Screening Trial (NLST) cohort (n=150), 

we found that many features that characterize the shape of the tumors are significantly associated 

with tumor prognosis. Finally, we developed a risk-prediction model for lung cancer prognosis using 

the tumor shape-related features from the NLST lung ADC patient cohort. The prognostic model was 

then validated in lung ADC patients from The Cancer Genome Atlas (TCGA) dataset. The design of 

this study is summarized in a flow chart (Figure 1). 

RESULTS 

CNN model distinguishes tumor patches from non-malignant and white (empty region) patches 

5344 tumor, non-malignant, and white image patches were extracted from 27 lung ADC H&E 

pathology slide images (Supplemental Figure 1). The imaging patches were split into training, 

validation and testing datasets (see Methods Section). The CNN model was trained on the training 

set. The training process stopped at the 28th epoch after validation accuracy failed to improve after 10 

epochs. The learning curves for the CNN model in the training and validation sets are shown in 

Supplemental Figure 2. The overall prediction accuracy of the CNN model in the testing set was 

89.8%; the accuracy was 88.1% for tumor patches and 93.5% for non-malignant patches 

(Supplemental Table 1). 
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Tumor region recognition for pathology images 

In the NLST dataset, the pathology images have sizes ranging from 5280 × 4459 pixels to 36966 × 

22344 pixels (median 24244 × 19261 pixels). To identify tumor regions at slide level, each whole 

slide image was partitioned into 300×300 image patches. To speed up slide-level prediction, tissue 

regions were first identified (see Methods Section) and only the image patches within the tissue 

regions were predicted by the CNN model (Supplemental Figure 3). The predicted probabilities of 

the image patches were summarized into heatmaps of tumor probability (Figure 2). An example of a 

tumor probability heatmap is shown in Figure 2B. The tumor region heatmap, predicted as the 

category with highest probability, is shown in Figure 2C. Each pixel in the heatmaps corresponds to 

a 300 × 300 pixel image patch in the original 40X pathology image. 

Image features from predicted tumor regions correlate with survival outcome 

Based on the predicted tumor region heatmap, tissue samples were identified (Supplemental Figure 

4) and 22 image features were extracted for each tissue sample (see Methods Section). For each 

patient the image features from multiple tissue samples of the same patient were averaged. The 

associations between tumor region features and prognostic outcome are summarized in Table 2 in 

the NLST dataset. It shows that many features were associated with survival outcome. Most tumor 

area/size-related features, including area, perimeter, convex area, filled area, major axis length, and 

minor axis length, both for all tumor regions and for the main tumor region, were associated with 

poor survival outcome. Interestingly, the number of holes and the perimeter^2 to area ratio, an 

estimation of circularity, were also associated with poor survival outcome (for all tumor regions: per 

100 number of holes, hazard ratio [HR] = 1.087, p value = 0.033; per 1000 perimeter^2 to area ratio, 

HR = 1.15, p value = 0.016; similar results for main tumor region; Table 2). Examples comparing 

tumor shapes with high and low values of eccentricity and perimeter^2 to area ratio of main tumor 

region are illustrated in Figure 3. As expected, the angle between the X-axis and the major axis of 
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the main region was not correlated with survival, which serves as a negative control of the feature 

extraction process. 

Development and validation of prognostic model 

Utilizing the tumor shape features extracted from the pathology images in the NLST dataset, we 

developed a prognostic model to predict patient survival outcome. The model was then 

independently validated in the TCGA cohort. Each patient was assigned into a predicted high- or 

low-risk group based on the extracted tumor shape features of the patient (see Methods Section). The 

survival curves for the predicted high- and low-risk groups are shown in Figure 4. The patients in 

the predicted high-risk group had significantly worse survival outcome than those in the predicted 

low-risk group (log rank test, p value = 0.0029). The multivariate analysis shows that the predicted 

risk groups independently predicted survival outcome (high- vs. low-risk, HR = 2.25, 95% CI 1.34-

3.77, p value = 0.0022, Table 3) after adjusting for age, gender, smoking status and stage. This 

indicates the risk group defined by tumor shape features is an independent prognostic factor, in 

addition to other clinical variables. 

DISCUSSION 

In this study, we developed image processing, tumor region recognition, image feature extraction, 

and risk-score prediction algorithms for pathology images of lung ADC. The algorithms successfully 

visualized the slide-level tumor region, and serve as a prognostic method independent of other 

clinical variables. The patient prognostic model was trained in the NLST cohort and independently 

validated in the TCGA cohort, which indicates the generalizability of the models to other lung ADC 

patient cohorts.  

For tumor region detection, the whole slide image was divided into 300 × 300 pixel image patches, 

which were then classified into tumor, non-malignant, or white categories using a CNN model. The 
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CNN model was trained on 3,848 images patches and tested on 1,068 patches, with 89.8% accuracy 

in the testing sets. Within the 109 incorrectly predicted patches, 27 contained an insufficient number 

of cells, which caused confusion between the tissue and background. For the other 82 cases where 

non-malignant patches were misclassified as tumor or vice versa, the cause seems to be interference 

from red blood cells, stroma, macrophages, and necrosis (Supplemental Table 1). The prediction 

errors related to out-of-focus tissues (such as macrophages and stroma cells) could be reduced by 

improved image scanning quality and training set labelling. A similar problem has also been reported 

in breast cancer recognition14. 

The patch-level tumor prediction results were then arranged to generate tumor region heatmaps 

(Figure 2). In total, 22 well-defined image features were extracted for each tissue region, and 

averaged to generate patient-level features (Supplemental Figure 3). 15 of the 22 features were 

significantly correlated with survival outcome in NLST dataset (Table 2). The features related to 

tumor area and perimeter were associated with worse prognosis, as tumor size is a well-established 

prognostic factor, and size-based features were also reported as prognostic from lung cancer CT 

images29, 30. Interestingly, both for all tumor regions and for the main tumor region, the perimeter^2 

to area ratio was negatively correlated with survival outcome. The perimeter^2 to tumor area ratio is 

a quantification of the smoothness of the tumor surface; a large perimeter^2 to tumor area ratio 

indicates a large tumor surface and thus a rough tumor boundary. The negative correlation between 

perimeter^2 to area ratio and survival outcome is consistent with studies conducted on lung cancer 

CT images, which reported that a more irregular shape predicted worse survival22, 26. To date, several 

genes have been reported to be associated with tumor shape31, 32; understanding the relationship 

among gene expression, tumor shape, and survival outcome can provide insight into tumor 

development and guide therapeutic decision. 

This is the first study to quantify tumor shape-related features using a CNN-based model in lung 

cancer. In addition, both the main tumor body and the tumor spread through air spaces (STAS, 
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sometimes referred as aerogenous spread with floating cancer cell clusters [ASFC]), which can be 

easily detected in the heatmaps33, 34. Since the median size of 40X pathology images is 24244 × 

19261 pixels and the STASs usually only occupy 1 image patch (300 × 300 pixels) in the NLST 

dataset, it is labor intensive for human pathologists to circle accurate tumor boundaries and indicate 

all the tumor STASs. Thus, automatically generating the tumor region heatmap will facilitate 

pathologists in finding tumor regions and quantifying STASs. More importantly, our study has 

developed a computation-based method to quantify tumor shape, circularity, irregularity and surface 

smoothness, which can be an essential tool to study the underlying biological mechanisms. Although 

tumor size is a well-known prognostic factor, quantifications of the tumor area and perimeter-related 

features from pathology images are challenging and time-consuming for human pathologists. Thus, it 

is a natural step to extract image features directly from the predicted tumor heatmaps, thereby 

avoiding a subjective assessment by a human pathologist. 

There are several limitations to our slide-level tumor region detection and image feature extraction 

pipeline. First, as mentioned before, our CNN model is sensitive to out-of-focus tissue such as red 

blood cells, macrophages, and stroma cells. Better pathology image scanning quality and more 

comprehensive labeling of the training set will help solve the problem. Second, the image features 

can be affected by slide preparation artifacts, such as artificially damaged tumor tissues and failure to 

select the slides that faithfully represent the tumor. Thus, to ensure the representability of the 

predicted risk score, a representative tumor slide is required. Third, the image slides are 2-

dimensional, which loses the 3-dimensional spatial information. Combining the tumor prediction and 

feature extraction algorithms with other imaging techniques, such as CT or X-Ray, may produce 

more comprehensive descriptions of the tumor region and improve the performance of the current 

risk prediction model. 

CONCLUSION 
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Our pipeline for tumor region recognition and risk-score prediction based on tumor shape features 

serves as an objective prognostic method independent of other clinical variables, including age, 

gender, smoking status and stage. The tumor region heatmaps generated by our model can help 

pathologists locate tumor regions in gigapixel pathology slides swiftly and accurately. The model 

development pipeline can also be used in other cancer types, such as breast and kidney cancer. 

METHODS 

Datasets 

The pathology images together with the corresponding clinical data were obtained from two 

independent datasets: 267 40X images for 150 lung ADC patients were acquired from the NLST 

dataset; 457 40X images for 389 lung ADC patients were acquired from the TCGA dataset. Clinical 

characteristics of patients in this study are presented in Table 1. The prognostic model was trained 

on the NLST dataset and independently validated on the TCGA dataset.  

Image patch generation 

A CNN model was trained to classify non-malignant tissues, tumor tissues, and white regions based 

on image patches of H&E stained pathology images. The patch size was determined as 300 × 300 

pixels under 40X magnification, to ensure at least 20 cells within one patch (Supplemental Figure 

1). Tumor and non-malignant patches were randomly extracted from tumor regions and non-

malignant regions labeled by a pathologist, respectively. The patches were classified as white if the 

mean intensity of all pixel values was larger than a threshold determined from sample images. 

Examples of each patch class are shown in Supplemental Figure 1. 2139 non-malignant, 2475 

tumor and 730 white patches were generated in total. 

CNN training process 
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The Inception (V3) architecture35 with input size 300 × 300 and weights pre-trained on ImageNet 

was used to train our CNN model. The network was trained with stochastic gradient descent 

algorithms in Keras with TensorFlow backend36. The batch size was set to 32, the learning rate was 

set to 0.0001 without decay, and the momentum was set to 0.9. From the extracted 5,344 image 

patches, 3,848 patches (72%) were allocated to the training set, 428 patches (8%) to the validation 

set, and the remaining 1,068 patches (20%) to the testing set, with equal proportions among the three 

classes. Keras Image Generators were used to non-malignantize and flip the images, both 

horizontally and vertically, to augment the training and validation datasets. The maximum number of 

epochs to train was set to 50. To avoid overfitting, the training process automatically stopped after 

the validation accuracy failed to improve for 10 epochs.  

Prediction heatmap generation 

To avoid prediction on a large empty image area and speed up the slide-level prediction process, the 

Otsu thresholding method followed by morphological operations such as dilation and erosion was 

first applied to whole pathology slides to generate the tissue region mask (Supplemental Figure 2)37, 

38. A 300 × 300 pixel window was then slid over the entire mask without overlapping between any 

two windows. The image patches were predicted with batch size 32, and one image patch was 

predicted only once without rotation or flipping. For each image patch, probabilities of being in each 

of the three classes were predicted, and a heatmap of the predicted probability was generated for each 

pathology slide (Figure 2). For each image patch, the class with the highest probability was 

determined as the predicted class. 

Image feature extraction 

In a pathology slide, sometimes there are multiple tissue samples. To distinguish different tissue 

samples in the same slide, disconnected tissue regions were first identified by morphological 

operations on heatmaps of predicted classes (Supplemental Figure 3A-C)38. To remove the effects 
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of some very small tissue samples, the tissue regions with area smaller than half of the largest tissue 

region in the same slide were removed from analysis. Within each tissue region, the tumor region 

with the largest area was regarded as the “main tumor region” (Supplemental Figure 3D). The 

following features of tumor regions were estimated for each tissue sample: number of regions, area, 

convex area, filled area, perimeter, major axis length, minor axis length, number of holes, and 

perimeter^2 to area ratio for all tumor regions and the main tumor region separately; eccentricity, 

extent, solidity, and angle between the X-axis and the major axis for the main tumor region (22 

features in total)39. Here, 8-connectivity was used to determine disconnected tumor regions and 

disconnected holes39. When multiple tissue regions were available for one patient, either due to 

multiple tissues within one slide or multiple slides for one patient, the 22 image features were 

averaged to generate patient-level image features. 

Prognostic model development 

A univariate Cox proportional hazard model was used to study the association between the 22 tumor 

shape features and patient survival outcome in the NLST dataset. The image features that were 

significantly associated with survival outcome were selected to build the prediction model for patient 

prognosis. To avoid overfitting, a Cox proportional hazard model with an elastic-net penalty40 was 

used; the penalty coefficient λ was determined through 10-fold cross-validation in the NLST cohort.  

Model validation in an independent cohort 

The model developed from the NLST cohort was then independently validated in the TCGA cohort 

(n=389) for prognostic performance. First, the tumor region(s) in each pathology image slide from 

the TCGA dataset were detected using the CNN model, and the tumor shape features were extracted 

based on the detected tumor region(s) in each image slide and summarized to patient level. Finally a 

risk score was calculated based on the extracted tumor features. The patients were dichotomized into 

high- and low-risk groups based on their predicted risk score, using the median as the cutoff. A log-
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rank test was used to compare survival difference between predicted high- and low-risk groups. The 

survival curves were estimated using the Kaplan-Meier method. A multivariate Cox proportional 

hazard model was used to test the prognostic value of the predicted risk score after adjusting for 

other clinical factors, including age, gender, tobacco history and stage. Overall survival, defined as 

the period from diagnosis until death or last contact, was used as response. Survival analysis was 

performed with R software, version 3.3.241. R packages “survival” (version 2.40-1) and “glmnet” 

(version 2.0-5) are used40, 42. The results were considered significant if the two-tailed p value ≤ 0.05. 

Data availability 

Pathology images that support the findings of this study are available online in NLST 

(https://biometry.nci.nih.gov/cdas/nlst/) and The Cancer Genome Atlas Lung Adenocarcinoma 

(TCGA-LUAD, https://wiki.cancerimagingarchive.net/display/Public/TCGA-LUAD).   

Code availability 

The codes are available upon request. We will share the codes through Github following manuscript 

acceptance.   
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Table 1. Patient characteristics of training and validation datasets. 
 NLST (training)* TCGA (validation) p-value 
No. of patients 150 389  
Age 64.03 ± 5.12 64.98 ± 10.33 0.16 
Gender   0.055 
    Male 82 (54.7) 175 (45.0)  
    Female 68 (45.3) 214 (55.0)  
Smoking status   0.0020 
    Yes 81 (54.0) 267 (68.6)  
    No 69 (46.0) 122 (31.4)  
Stage   0.0048 
    I 101 (67.3) 222 (57.1)  
    II 16 (10.7) 96 (24.7)  
    III 23 (15.3) 49 (12.6)  
    IV 10 (6.7) 22 (5.7)  
NLST, the National Lung Screening Trial; TCGA, the Cancer Genome Atlas. 

* Values are either mean ± standard deviation, or number (percentage) 
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Table 2. Univariate analysis of tumor region features in NLST training dataset. 
 HR (95% CI) p-value 
Number of regions (per 1000) 1.29 (0.64-2.58) 0.48 
Area sum of all  regions (per 1000 pixels*) 1.030 (1.010-1.050) 0.0033 
Perimeter sum of all regions (per 1000 pixels) 1.088 (1.028-1.151) 0.0034 
Sum of convex area for all regions (per 1000 pixels) 1.020 (1.006-1.033) 0.0047 
Sum of filled area for all regions (per 1000 pixels) 1.027 (1.009-1.045) 0.0029 
Sum of hole numbers of all regions (per 100) 1.087 (1.031-1.16) 0.0033 
Sum of major axis length of all regions (per 1000 pixels) 1.40 (1.00-1.96) 0.051 
Sum of minor axis length of all regions (per 1000 pixels) 2.65 (1.10-6.40) 0.030 
Perimeter^2/area of all regions (per 1000) 1.18 (1.03-1.35) 0.019 
Area of main region (per 1000 pixels) 1.027 (1.007-1.048) 0.0093 
Convex area of main region (per 1000 pixels) 1.018 (1.004-1.032) 0.010 
Eccentricity of main region 6.37 (0.57-71.56) 0.13 
Hole number of main region (per 100) 1.087 (1.020-1.15) 0.0060 
Extent of main region 4.90 (0.19-126.30) 0.34 
Filled area for main region (per 1000 pixels) 1.025 (1.007-1.043) 0.0072 
Major axis length for main region (per 100 pixels) 1.57 (1.11-2.21) 0.0099 
Minor axis length for main region (per 100 pixels) 1.73 (1.05-2.83) 0.031 
Angle between the X-axis and the major axis of main region 0.98 (0.64-1.50) 0.92 
Perimeter of main region (per 1000 pixels) 1.087 (1.023-1.15) 0.0068 
Solidity of main region 7.24 (0.45-117.40) 0.16 
Average tumor probability of the main region (per 0.10) 1.11 (0.53-2.24) 0.78 
Perimeter^2/area for main region (per 1000) 1.21 (1.03-1.42) 0.021 
NLST, the National Lung Screening Trial. 
* 1 pixel in heatmap = 1 patch in 40X pathological slide. Patch size: 300 pixels * 300 pixels.  
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Table 3. Multivariate analysis of predicted risk and clinical variables in TCGA.  
Variable HR (95% CI) p-value 
High risk vs. low risk 2.25 (1.34-3.77) 0.0022 
Age 1.02 (1.00-1.04) 0.12 
Male vs. female 0.71 (0.43-1.16) 0.17 
Smoker vs. non-smoker 0.95 (0.59-1.54) 0.85 
Stage II vs. stage I 2.58 (1.47-4.51) <0.001 
Stage III vs. stage I 5.23 (2.85-9.59) <0.001 
Stage IV vs. stage I 2.69 (1.19-6.09) 0.017 
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Figure 1. Flow chart of analysis process. CNN, convolutional neural network; NLST, the National 
Lung Screening Trial; TCGA, The Cancer Genome Atlas. 
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Figure 2. Example results of slide-level tumor region detection. (A) Original slide. (B) Predicted 
tumor probability. Each point in the heatmap corresponds to a 300 × 300 pixel image patch in 
original 40x slide. (C) Predicted region labels. Yellow: white (empty) region; green: tumor region; 
blue: non-malignant region. 
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Figure 3. Comparison of tumor shapes with high or low values of eccentricity and PA ratio of main 
tumor region. Original heatmaps are cropped to the same size with the same image scale. Yellow, 
main tumor region; green, non-main tumor region; dark blue, non-malignant tissue; blue, blank part 
of pathology slide. P-A ratio, perimeter^2 to area ratio. 
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Figure 4. Prognostic performance in TCGA validation dataset illustrated by Kaplan-Meier plot. 
Patients are dichotomized according to median predicted risk score. Difference between the two risk 
groups: log-rank test, p value = 0.0029.  
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Supplementary material 
 

 
 
Supplemental Figure 1. Example of image patches from “white” (empty regions, upper panel), 
“non-malignant” (middle panel) and “tumor” (bottom panel) categories. Patch size: 300 × 300 pixels.  

23 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/274332doi: bioRxiv preprint 

https://doi.org/10.1101/274332


 
Supplemental Figure 2. Convolutional Neural Network learning curves in both training and 
validation datasets. Left, accuracy versus epochs; right, loss versus epochs. 
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Supplemental Figure 3. Otsu thresholding and image morphological operations to speed up slide 
level prediction process. (A) The original slide. (B) The image mask after Otsu thresholding. (C) The 
image mask after dilation and removing small objects of the mask in (B). (D) The final mask after 
dilation, erosion, and filling up holes of mask in (C). (E) Overlap final image mask and original 
pathology slide.  
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Supplemental Figure 4. Tissue region identification in case of multiple tissue samples within one 
slide. (A) Original slide. (B) Predicted patch-level tumor, non-malignant and white heatmap. (C) 
Disconnected tissue samples identified by image processing. Yellow, background; blue, first tissue 
patch; gray, second tissue patch.   
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Supplemental Table 1. Confusion matrix for image patch classification. 
Ground Truth\Predicted Value Non-malignant Tumor White 

Non-malignant 400 (93.5%) 24 (5.6%) 4 (0.9%) 

Tumor 58 (11.7%) 436 (88.1%) 1 (0.2%) 

White 21 (14.4%) 1 (0.7%) 124 (84.9%) 
  

27 
 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 2, 2018. ; https://doi.org/10.1101/274332doi: bioRxiv preprint 

https://doi.org/10.1101/274332


Supplemental Table 2. Comparison of patient characteristics between high-risk and low-risk groups 
in TCGA validation dataset. 
 Low-risk High-risk p-value 
No. of patients 195 194  
Age 65.50 ± 10.11 64.45 ± 10.54 0.31 
Gender   0.20 
    Male 81 (41.5) 94 (48.5)  
    Female 114 (58.5) 100 (51.5)  
Smoking status   0.89 
    Yes 135 (69.2) 132 (68.0)  
    No 60 (30.8) 62 (32.0)  
Stage   0.005 
    I 127 (65.1) 95 (49.0)  
    II 44 (22.6) 52 (26.8)  
    III 17 (8.7) 32 (16.5)  
    IV 7 (3.6) 15 (7.7)  
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