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ABSTRACT 15 

Curation of antibiotic resistance gene (ARG) databases is a labor-intensive process that 16 

requires expert knowledge to manually collect, correct, and/or annotate individual 17 

genes. Correspondingly, updates to existing databases tend to be infrequent, commonly 18 

requiring years for completion and often containing inconsistences. Further, because of 19 

limitations of manual curation, most existing ARG databases contain only a small 20 

proportion of known ARGs (~5k genes). A new approach is needed to achieve a truly 21 

comprehensive ARG database, while also maintaining a high level of accuracy. Here we 22 

propose a new web-based curation system, ARG-miner, which supports annotation of 23 

ARGs at multiple levels, including: gene name, antibiotic category, resistance 24 
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mechanism, and evidence for mobility and occurrence in clinically-important bacterial 25 

strains. To overcome limitations of manual curation, we employ crowdsourcing as a 26 

novel strategy for expanding curation capacity towards achieving a truly comprehensive, 27 

up-to-date database.  We develop and validate the approach by comparing 28 

performance of multiple cohorts of curators with varying levels of expertise, 29 

demonstrating that ARG-miner is more cost effective and less time-consuming relative 30 

to traditional expert curation. We further demonstrate the reliability of a trust validation 31 

filter for rejecting confounding input generated by spammers.  Crowdsourcing was found 32 

to be as accurate as expert annotation, with an accuracy >90% for the annotation of a 33 

diverse test set of ARGs. ARG-miner provides a public API and database available at 34 

http://bench.cs.vt.edu/argminer.  35 

INTRODUCTION 36 

Antimicrobial resistance (AMR) has been identified by the World Health Organization 37 

(WHO) as a major global health threat. It is projected that AMR will increase 38 

exponentially by 2050, leading to substantial human morbidity and mortality (1,2). 39 

Therefore, swift action is required to enable enhanced monitoring and help tackle the 40 

spread of AMR, including: understanding the mechanisms controlling dissemination of 41 

antibiotic resistance genes (ARGs) via environmental sources and pathways (3-5), 42 

discovering novel and newly evolved ARGs before they are found to be problematic in 43 

the clinic (6), developing new computational strategies for ARG annotation (7-11), and 44 

expansion of current ARG repositories (7,9).  45 

 46 
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Metagenomics-based approaches have proved to be a powerful means of accessing 47 

the diverse array of ARGs, or “resistomes,” (12) characteristic of various environments 48 

(13-16) and has supported the discovery of novel ARGs and their interactions (17,18). 49 

Metagenomic data can be expressed in terms of “total ARGs” or can be further mined 50 

for ARGs corresponding to specific antibiotics or mechanisms of interest. However, 51 

existing metagenomics approaches are largely dependent upon predicting the antibiotic 52 

resistance attributes through sequence similarity computation, which is subject to major 53 

limitations. First, such similarity computations require a high quality and up-to-date ARG 54 

reference/annotation database to enable consistent and accurate ARG identification. 55 

Second, the scope of these kinds of analyses is limited to previously characterized 56 

ARGs, either due to the parameter cutoff stringency employed in the sequence 57 

alignment or to lack of a comprehensive target gene for alignment (10).  58 

 59 

To improve the capacity of metagenomic-based approaches to broadly and accurately 60 

detect the full range of ARGs present in a given sample, it is necessary to continuously 61 

expand and improve curation of corresponding databases (7). However, risk of 62 

incorporation of false positives, i.e., “ARG-like” genes that do not necessarily induce an 63 

AMR phenotype, stands as a major impediment to expanded curation efforts. Therefore, 64 

inspection and validation of new ARG entries is a critical aspect of ensuring the validity 65 

of AMR databases and their application. Manual curation of ARGs is typically carried 66 

out by a few researchers associated with particular laboratories. This process can be 67 

complex, tedious, and time-consuming. For instance, the last update of the Antibiotic 68 

Resistance Database (ARDB) was in 2009 (19) and therefore it does not contain any 69 
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newly discovered ARGs, such as blaNDM-1 or mcr-1. The MEGARes database (9), which 70 

was designed to simplify the organization of ARG annotation, has not been updated 71 

since December, 2016. The SARGs database (10), which integrated genes available 72 

from the Comprehensive Antibiotic Resistance Database (CARD) and ARDB, has not 73 

had any update since its first release on August, 2016. In addition, the SARGs database 74 

is closed to the public, which limits its use and prevents integration with additional 75 

databases and other applications. Similarly, the resqu database, which contains genes 76 

for which there is evidence of having been transferred via Mobile Genetic elements 77 

(MGEs), has not been updated since 2013 (20) and it is also closed to the public, 78 

limiting its use. Further, the ARG-ANNOT resource (21), released in 2014, was updated 79 

most recently in March 2017. In summary, only a handful of ARG databases have been 80 

maintained and updated, albeit infrequently.  81 

 82 

We recently introduced the Deep learning Antibiotic Resistance Gene DataBase 83 

(DeepARG-DB) (7) (first released in July, 2017 and most recently updated August, 84 

2017), which employs manual curation, literature review, and computational-based 85 

annotation. The CARD database (11), perhaps the most up-to-date ARG resource, was 86 

most recently updated in October 2017 and, since its first major upgrade in 2016, it has 87 

been updated a total of 21 times with changes to the ARG sequences and metadata 88 

(e.g., antibiotic class, gene name, and mechanism). The multiple updates of CARD 89 

illustrate how complex and time-consuming this task can be, even for domain experts. 90 

Another problem that encompasses all ARG resources is the lack of a standardized 91 

nomenclature. For instance, the gene aadA1 is also named ANT(3’’)-I, the BacA gene is 92 
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also named UppP, and the tet(A) gene can be found as TetA and tetA, depending on 93 

the ARG resource. On the other hand, most ARG databases contain approximately 94 

4,000 genes, with the exception of DeepARG, which contains approximately 15,000 95 

genes. For DeepARG-DB database, even a simple manual curation is essentially an 96 

impossible task.  97 

 98 

Another major concern in AMR research is the identification of mechanisms for the 99 

ARGs mobility within and among bacterial species (22). In this aspect, Mobile Genetic 100 

Elements (MGEs) have been recognized as a major player that facilitates the 101 

transmission of ARGs via horizontal gene transfer. For instance, it has been found that 102 

plasmids are responsible for the transmission of particular beta-lactamase resistance 103 

genes (blaTEM-52B, blaTEM-52C, blaKPC) among different bacterial strains (23) (24). Thus, it 104 

is important to detect ARGs that have the potential of being transferred by MGEs.  105 

 106 

To overcome the difficulties in curation and manual validation of an extensive number of 107 

ARGs, a novel approach that breaks down this complex task into simpler and smaller 108 

microtasks is proposed. The core of this methodology consists of a compendium of 109 

AMR resources and a crowdsourcing strategy, which simplifies the ARG information to 110 

allow nonexperts, the general public, and domain experts collectively to execute 111 

curation of the ARG database.  112 

 113 

Application of crowdsourcing in biology, particularly for data curation, is not new and 114 

comprises a variety of areas including: name entity recognition (NER) for drug and 115 
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diseases (25-27), identification of medically-relevant terms from patient online posts 116 

(28), annotation of diseases described in PubMed (29), systematic examination of 117 

databases and other resources for drug indications, biomedical ontologies and gene-118 

disease interactions (26,30-33), identification of the relationship between genes and 119 

mutations (34), and annotation of medical data for electronic health records (35). 120 

Interestingly, in most of the studies, crowdsourcing has proven to be as effective as 121 

expert curation (26,36).  122 

Here we introduce an online platform for the manual curation of ARGs. The system, 123 

called ARG-miner, enables users to curate and retrieve all the information available 124 

from several ARG resources including the DeepARG-DB (7), CARD (11), ARDB (19), 125 

MEGARes (9), and UniProt (37) databases. Moreover, to provide information on 126 

whether an ARG might be present in a pathogen, the PATRIC (38) database is used. 127 

ARG-miner provides evidence of ARGs that are potentially carried by MGEs, particularly 128 

plasmids, viruses or prophages. This information is obtained by looking at the gene 129 

sequences and metadata from the Classification of Mobile Genetic Elements database 130 

(ACLAME) (37). The ARG-miner platform is designed, built, and implemented as an 131 

open-source project facilitating a collaborative and integrative approach for the 132 

standardization of ARG annotation by the broader community of scientists and citizens 133 

with a desire to contribute towards combatting the spread of AMR.  All data associated 134 

with ARG miner, as well as the source code, is available under a public repository 135 

accessed freely online at http://bench.cs.vt.edu/argminer. 136 
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MATERIALS AND METHODS  137 

ARG Database 138 

ARGs were downloaded from the following resources: CARD (11), which contains ARG 139 

information; the  ARDB (19) database; which comprises a vast number of homology-140 

predicted ARGs; DeepARG-DB (7), which integrates ARGs from UniProt (39), CARD, 141 

and ARDB; and the MEGARes (9) database, which incorporates genes from the ARG-142 

ANNOT (21), RESFINDER (40), and the Lahey Clinic beta-lactamase archive (41) 143 

available from the National Center for Biotechnology Information (NCBI).  144 

 145 

To obtain a clean collection of ARGs, the DeepARG-DB database was updated with the 146 

latest version of the CARD (v 1.1.8) and UniProt databases using their corresponding 147 

sequence identifiers. Discontinued UniProt sequences were removed from DeepARG-148 

DB, whereas the newly-added ARGs from CARD were incorporated. Also, genes from 149 

CARD known to confer resistance due to single point mutations were removed. The 150 

resulting collection of ARGs was then aligned to the CARD, ARDB, and MEGARes 151 

databases using DIAMOND (42) and TBLASTN (43) to extract the best hit of each ARG 152 

along with its corresponding metadata. In this manner, each ARG is represented by its 153 

best hit to each database, upholding consistency in annotation among the ARG 154 

resources.  Because DeepARG-DB contains information about the origin of the ARGs, 155 

the metadata from the UniProt database is accessed via the UniProt API (Application 156 

Programming Interface), which allows retrieval of up-to-date information for each gene. 157 

Therefore, each ARG is displayed in the user interface as a set of sections containing 158 

an ARG’s best hits, its metadata, and the alignment quality. Scores are ranked 159 
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according to a color scale to enhance readability and human interpretation (see 160 

Supplementary Figure S3-A).   161 

 162 

Mobile Genetic Elements 163 

The ACLAME database (37) was used to identify ARGs that have potential of being 164 

mobilized by MGEs (plasmids, viruses, and phages). DIAMOND (42) was used to 165 

perform the comparison of ARGs to MGEs via sequence alignment (parameters e-value 166 

< 1e-10). Alignment information along with MGE metadata is presented in the interface 167 

for users to make a decision on whether an ARG has enough evidence of being carried 168 

by an MGE or not. This evidence is scored from 0 to 5. Color depicts the degree of 169 

confidence for the information presented in the MGE panel (see Supplementary Figure 170 

S3-B).  171 

 172 

Pathogens 173 

A total of 98,758 bacterial genomes were downloaded from the PATRIC (38) database. 174 

This database contains information about bacterial pathogenicity, antimicrobial 175 

resistance phenotype, corresponding diseases, and host organisms. The information is 176 

valuable for identifying ARGs that are present in pathogens. For instance, the gene 177 

entry BAE06009.1 was present in 2,037 bacterial genomes, of which, 1,004 belong to 178 

pathogenic bacteria, 40 are involved in cystic fibrosis disease in humans, and 706 179 

exhibit intermediate and resistant phenotypes (see Supplementary Figure S3-C). The 180 

collection of ARGs were then screened against the genome sequences from PATRIC 181 

using DIAMOND. To ensure the quality of the assignments, all genes with an identity 182 
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below 90% and an alignment coverage below 90% were discarded. Users are asked to 183 

rate the pathogenicity of known bacterial hosts of ARGs based on the evidence 184 

provided by PATRIC (frequency of pathogenic genomes, diseases, antimicrobial 185 

phenotype, and hosts).  186 

 187 

Annotation microtasks  188 

An annotation task consists of labeling ARGs based on the evidence provided on the 189 

web site. Users are requested to classify an ARG in terms of gene name, antibiotic 190 

class, and antibiotic mechanism. In addition, users are asked to rank the evidence of 191 

ARGs being carried by MGEs and pathogen genomes. A user-friendly web interface 192 

makes it easy to follow the annotation process. By employing simple tasks and a 193 

crowdsourcing strategy, ARG-miner advocates mass collaboration from an open 194 

community that includes experts and the general public.  195 

 196 

Expert gold standard data set 197 

To assess the accuracy and quality of classifications generated by crowd-sourcing, 198 

three domain experts who are actively engaged in shotgun metagenomic-based ARG 199 

research applied to various environments were asked to annotate a gold standard data 200 

set of 35 ARGs. Experts were required to annotate the ARGs by their name, antibiotic 201 

class, and mechanism. In total, 34 out of the 35 ARG annotations were in agreement 202 

among at least two of the three experts in terms of antibiotic class and gene name. 203 

These 34 ARGs were further considered in downstream analysis. 204 

 205 
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Crowdsourcing microtasks 206 

Annotations were obtained using Amazon Mechanical Turk (MTurk), an online platform 207 

that allows access to a broad crowdsourcing audience to perform Human Intelligent 208 

Tasks (HITs). ARG-miner requests were submitted to MTurk in batches; crowdsourcing 209 

workers were requested without prior knowledge of ARGs. Then, once a worker 210 

performed a microtask, the system prompted a token number that workers needed to 211 

submit to the MTurk web site to validate the annotation and to obtain a monetary 212 

reward. Because of the high diversity of MTurk workers, the ARG-miner HITs were 213 

opened to a broad audience including domain experts and nonexperts. In addition, 214 

users were allowed to perform multiple annotations (maximum 20). Finally, workers 215 

were asked to indicate their expertise and confidence for each annotation performed. 216 

This information was used to score the individual ARG classifications (explained under 217 

Section Annotation Score).  On the other hand, a diverse domain-knowledge group of 218 

workers were also evaluated; this group was consisted of students enrolled in a 219 

graduate-level microbiology class. Not all of them had antimicrobial resistance 220 

knowledge, but they were at least familiar with microbiology in general. While they did 221 

not receive a monetary reward, they were directed to follow the same instructions as the 222 

MTurk workers. 223 

 224 

User interface  225 

The ARG-miner interface has three main components or sections: 226 

1. Current Annotation: comprises the known information available for an ARG. It 227 

consists of the gene name, antibiotic class, the database from which the 228 
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sequence was extracted, and number of times the gene has been inspected by 229 

workers/users (see Figure 1A).  230 

2. Evidence: corresponds to the metadata available for the ARG as well as the best 231 

hit from the CARD, ARDB, and MEGARes databases. It also provides 232 

evidence/information on whether the gene is likely carried by an MGE (the 233 

ACLAME database) and whether the gene can be found in a pathogen genome 234 

(the PATRIC database, see Figure 1B). 235 

3. Microtask: refers to the section where a worker/user enters his/her annotation. 236 

The information in this panel has to be consistent with the observations from the 237 

evidence. It comprises three simple steps. First, workers must validate the gene 238 

name, antibiotic class, and mechanism by looking at the Evidence section. 239 

Second, workers must rank the MGE and pathogen evidence. Third, workers 240 

must rank their annotation overall by scoring their expertise (how familiar are 241 

they with ARGs) and confidence (how strong is the evidence, see Figure 1C). 242 

 243 

The web interface provides a training step for new users that is mandatory for AMT 244 

workers (required for getting a monetary reward). The goal of this step is to familiarize 245 

the workers with the platform environment by performing two microtasks. ARG-miner 246 

also provides a list of problematic ARGs that have inconsistent annotation. These 247 

problematic ARGs are identified by comparing the annotation of the genes with their 248 

best hits from ARDB, CARD, and MEGARes. All tests performed during validation were 249 

completed using these problematic ARGs.  250 

 251 
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ARG-miner also provides an administrative interface to update the ARG database. This 252 

interface comprises a set of figures that show the distribution of different labels as well 253 

as the MGE and pathogenic evidence scores. In this interface, ARG-miner 254 

administrators are able to accept/reject the annotations made by the crowd and update 255 

the ARG database (see Supplementary Figure S1). 256 

 257 

Annotation score 258 

Each gene g� is classified into three annotation fields (F���������, F��	�
��	�� ��	�
��� and 259 

F
��� ����), were each field is composed by a list of labels L � 260 

����	
��
�, 
��������� �
������, ���� �
���. For example, the F��	�
��	�� ��	�
��� field 261 

contains the set of labels L��	�
��	�� ��	�
��� that corresponds to the name of the antibiotic 262 

categories (e.g., multidrug, beta-lactam, peptide, aminoglycoside). Thus, each gene g� 263 

contains a set of annotations A��

���g�� � �a
��

�� , … , a
��

���, where p is the total number of 264 

labels, with each element a
��

�� corresponding to the number of workers that assigned the 265 

label l� to the gene g�.  266 

 267 

The ARG-miner score uses the majority voting strategy described in (44), but it is 268 

weighted by the evidence, expertise, and the validation scores. Therefore, the 269 

annotation score of the gene g� for the label L� of the field F� (Eq 2) is calculated as 270 

follows: 271 

 272 

��� ,��

�� �  � ! H� !
���

	�  

∑ �
��

	�
�

 , (1) 273 
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Η� �
∑ ������

 !��
��

	�
 , (2) 274 

 275 

 � �
��"#

��
 , (3) 276 

where 277 

Η� (Eq 2) describes the expertise �$�� and confidence �%�� scores normalized to the 278 

&0,1) interval.  � (Eq 3) computes the similarity between the label *� and the gene 279 

evidence Λ. 280 

 281 

Trust validation filter 282 

Because of the unsupervised nature of crowdsourcing, users can provide erroneous 283 

feedback or just ignore the evidence and enter random inputs. Under an uncontrolled 284 

scenario, spammers can even get a monetary reward. More critically, too much random 285 

and/or erroneous feedback can increase the variance in ARG annotations and 286 

propagate annotation error. To circumvent the problem, ARG-miner implements a trust-287 

validation filter and use the metric ,$ (computed by Equation 3) to evaluate whether the 288 

input corresponds to real evidence or not.  ,$ is computed in real time, and, unless the 289 

user provides valid information, the system will not proceed to the next stage. Figure 2 290 

shows an example of a user providing erroneous input. The user entered polyamine as 291 

the antibiotic class, whereas the evidence shows that this gene belongs to the 292 

polymyxin antibiotic class.  Despite the similarity between the two words, the system will 293 

not allow the submission until the answer has a minimum ,$ score of 50 (50% of 294 

similarity) in the evidence section. 295 
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 296 

RESULTS AND DISCUSSION 297 

To assess the effectiveness of the crowdsourcing approach for ARG annotation, three 298 

experiments were performed with the following contributes:  299 

1. A set of crowdsourcing workers from MTurk, referred to as AMT-Free. In this 300 

scenario workers were paid $0.10 for each annotation, with the trust validation 301 

filter disabled to examine the reliability of the crowd. Therefore, workers could 302 

input anything as feedback without restriction. A total of 100 annotations were 303 

requested on MTurk for this test.  304 

2. A second batch of crowd workers from MTurk, referred to as AMT-Val. In this 305 

case the trust validation filter was enabled. The main purpose of this 306 

experimental group was to measure the effectiveness of the trust validation filter. 307 

In this scenario, workers were paid $0.05 per annotation, with a total of 200 308 

requested annotations.  309 

3. A group of users with general microbiological knowledge, with varying levels of 310 

experience in ARG research, referred to as LAB. This group comprises Masters 311 

and Ph.D. students from a microbiology class at Virginia Tech. They completed 312 

this work as an assignment and did not receive any monetary reward. Here the 313 

annotations were performed with the validation filter on and each worker was 314 

requested to perform 15 annotations (540 microtasks in total). The goal of the 315 

LAB scenario was to compare its performance against the nonexpert community 316 

of MTurk (AMT-Val, AMT-Free). 317 

 318 
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Effectiveness of the trust validation filter  319 

“Spammers” are workers that intend to obtain monetary reward by submitting invalid 320 

information, which is a major confound of crowdsourcing. In the present study, although 321 

the ARG-miner website provides workers with detailed instructions on how to handle the 322 

annotation process, many of the AMT-Free workers submitted misleading and/or 323 

unrelated feedback. Particularly, for the antibiotic category annotation task, workers 324 

must choose the antibiotic class that they believe the gene belongs to from a dropdown 325 

menu that contains a list of antibiotic classes. Results indicated that many AMT-Free 326 

workers simply picked up the first option on the dropdown menu, most likely without 327 

reading the evidence section of the web page. Therefore, most of the antibiotic class 328 

annotations under the AMT-Free group were labeled as aminoglycosides. This is a 329 

serious hurdle to accurate database curation and indicates the need for a real time 330 

control that guarantees correctness of the annotation (see Section Trust validation 331 

filter). In terms of performance, as expected, the AMT-Free group achieved very low 332 

scores for all annotations (Figure 3). However, not all workers were spammers. 333 

Interestingly it was observed that workers who performed more than ten microtasks 334 

responded correctly and consistently to their observations and evidence. In addition, 335 

this test was designed with the aim to evaluate the impact of controlling the validity of 336 

the worker’s feedback and to check the performance of the proposed real time 337 

validation. Thus, after  integration of the trust validation filter, MTurk workers were not 338 

allowed to input false annotations (see Figure 3). As a result, the performance of the 339 

AMT-Val workers improved significantly (p-value<1e-10) for all the fields (antibiotic 340 

class, ARG name, and ARG mechanism) over the AMT-Free group. Under the new 341 
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policy, MTurk workers were not allowed to continue with the microtask until their 342 

annotation was valid (the input was related to the evidence), as Figure 2 shows. In this 343 

test, all nonsense input was completely removed, and all annotations from the AMT-Val 344 

group corresponded to actual ARG evidence. These results demonstrate the 345 

effectiveness of the trust validation filter for the control of spam annotations. In addition, 346 

it was imperative to test the performance of the MTurk workers against domain 347 

knowledge users. The main goal of this test case was to investigate whether a 348 

nonexpert crowd community (AMT-Val) can perform a complex task in a similar fashion 349 

to a group of workers with domain-knowledge (LAB). As expected, the LAB workers 350 

achieved a much higher average score (0.146) than the AMT-Free workers (0.06), but, 351 

surprisingly, a rather similar score to the AMT-Val workers (0.114). This shows that 352 

crowdsourcing is indeed a powerful alternative to manual inspection and annotation of 353 

ARGs. As expected, MTurk annotations (AMT-Val) had a higher variance compared to 354 

the LAB group in all annotation fields, but the two distributions are not significantly 355 

different (Kolmogrov-Smirnov test: p-value > 0.05). 356 

 357 

Effectiveness of the scoring strategy 358 

To evaluate the quality of the scoring strategy, four genes were selected among the 359 

total set of curated genes and examined in greater detail, as illustrated in Figure 4. For 360 

instance, the UniProt entry A0A0D0NPG2 is a bifunctional polymyxin resistance protein, 361 

ArnA, that is involved in several biological processes including coenzyme binding, UDP-362 

glucuronic acid dehydrogenase activity, lipid A biosynthetic process, and response to 363 

antibiotic. This protein builds the UDP-L-4-formamido-arabinose attached to lipid A, 364 
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which is required for conferring resistance to polymyxin and cationic antimicrobial 365 

peptides (45). From the crowdsourcing classification, both peptide and polymyxin 366 

antibiotic classes were identified, where polymyxin was characterized by a slightly 367 

higher score (Figure 4A). A closer look at the evidence from the antibiotic resistance 368 

databases (CARD, ARDB, and MEGARes) reveals a consensus of the gene towards 369 

the polymyxin antibiotic class. As another example, the gene entry A0A127SI91 was 370 

inspected 62 times and found to belong to the beta-lactamase antibiotic class.  This 371 

ARG was tagged as a novel, identified by Pehrsson et al. (17) in a study that analyzes 372 

linkages in antibiotic resistance exchange among different human environments. The 373 

evidence from the antibiotic resistance databases strongly suggests this gene as a bl1-374 

EC beta lactamase gene. Figure 4C shows different crowd classifications (including all 375 

evaluation scenarios). Note that beta-lactam is the class with the highest score. 376 

However, as a consequence of disabling the trust validation filter, several unrelated 377 

categories were accepted, such as aminoglycoside, MLS, multidrug, nitrofurantoin, 378 

polyamine, polymyxin, and even the word “yes”. Fortunately, the scoring strategy was 379 

able to positively weight and assign the correct classification. One particularly 380 

interesting observation is the close proximity between valid annotations. For instance, in 381 

Figure 4D, the gene AAC76733.1 was correctly assigned to multidrug as its best 382 

classification and to the “multi-drug resistance” category as its second best 383 

classification. These small semantic differences are not detected by the trust validation 384 

filter. Therefore, under the validation interface, the administrators of ARG-miner have 385 

the ability to validate or reject the annotations if needed. Figure 4B shows that most 386 
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workers assigned the gene A0A0Q9QYU5 to the beta lactamase category. Note that the 387 

suggested name “beta_lactam” is the highest scored among all choices.  388 

 389 

Figure 5 shows the crowdsourced score for the ARG name classification. As seen for 390 

the antibiotic category annotation, there are cases where the annotations are 391 

semantically close. For instance, the gene A0A127SI91 was tagged as bl1_ec, bl1-ec, 392 

or blaec, all corresponding to the bla1-EC gene name (Figure 5C). Note that all these 393 

labels were ranked higher than the other gene names (macb, baca, ba1) and all the 394 

unrelated tags such as “mm-58”, “15”, “yes”, and “middle”. Also, all unrelated 395 

annotations were ranked low by the scoring strategy.   396 

 397 

Although identification of the antibiotic category for the gene A0A0Q9QYU5 was 398 

straightforward, the detection of its gene name is challenging. Primarily, because the 399 

metadata of this entry does not include the gene name and because the identity of its 400 

best hit alignments is below 30%. This indicates that the gene has a potential homology 401 

to known ARGs. Two ARG databases (CARD and MEGARes) show a significant best 402 

hit e-value (<1e-22) over the mecB gene. For this example, 50% of the workers 403 

annotated the gene as mecB whereas the other 50% annotated it as ash00_000180. 404 

Also, workers yielded a higher confidence for the mecB gene (2.6 average confidence 405 

score) compared to the ash00_000180 (2.3 average confidence score). As a result, 406 

mecB had a slightly higher scoring. To avoid uncertainty, ARG-miner recommends that 407 

users retain the original label if the evidence is not convincing. For the other examples 408 
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(Figure 5A and 5D), the crowd classified the gene names according to the observed 409 

evidence.  410 

 411 

 412 

Annotation analysis  413 

To assess the accuracy of the crowdsourcing annotation, genes that were inspected by 414 

at least 10 workers were removed from the total pool of classified genes. A total of 35 415 

genes were identified and manually curated by three domain experts according to the 416 

antibiotic class and gene name annotation. It was found that experts achieved an 417 

annotation pairwise correlation of 0.96-0.02, indicative of an almost perfect 418 

classification agreement. Thus, genes that were classified to the same label by at least 419 

two experts were used as the gold standard data set (see Supplementary Table ST1). 420 

This benchmark was then used to measure the performance of the crowdsourcing 421 

workers where labels were selected based on the greatest annotation score. 422 

 423 

The crowdsourcing classification of the antibiotic classes was essentially just as 424 

accurate as the expert annotation (94% Positive Predicted Value - PPV). In other words, 425 

33 out of 35 genes labeled via crowdsourcing matched the expert classification (see 426 

Supplementary Material 1). The genes for which the workers failed to identify the 427 

correct antibiotic class were a quinolone ARG annotated as multidrug (YP_001693238) 428 

and a multidrug gene annotated as quinolone (NP_358469.1). On the other hand, the 429 

classification of the ARG names proved to be a challenging task. Indeed, experts did 430 

not fully agree about the correct name for five ARGs (see Supplementary Table ST1). 431 
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However, only one of those conflicting genes had a different classification from all three 432 

experts. This gene corresponded to a macrolide gene (AFU35065.1), which was tagged 433 

as: Isa, Isa-A, and Isa-E by the three experts. Thus, this gene entry was removed for 434 

the gene name analysis comparison and the final control data set contained 34 genes. 435 

When comparing the gene name annotation from the crowdsourcing workers, their 436 

prediction had a 97% PPV (see Supplementary Material 2). This indicates that only 437 

one gene was not correctly classified by the crowd (J2LT98). By examining the details 438 

of this gene in ARG-miner, all three ARG databases agreed that the gene belongs to 439 

the SHV group, with markedly high scores. However, CARD labeled it as the SHV 440 

variant 1 (SHV-1), ARDB labeled it as variant 2 (SHV-2), and MEGARes labeled it as 441 

the group SHV, without specification of a variant. An interesting aspect with respect to 442 

this particular ARG is that variants are defined by specific amino acid modifications (46), 443 

so these genes have a high identity and identifying the correct variant by using 444 

sequence alignment is a particularly difficult task, as shown in Supplementary Figure 445 

S2. This aspect has the potential to confuse workers when classifying genes that are 446 

very similar. Interestingly, by looking at the crowd results, workers were able to discard 447 

the SHV variant 2 (99.3% identity), but they were not able to differentiate between the 448 

SHV variant 1 and the SHV group (both have the same score). These results suggest 449 

that crowdsourcing workers are able to follow the correct track, even in the face of 450 

particularly complex tasks. Because of the risk of propagation errors, the updating 451 

process is not fully automated and administrator approval is required to approve/reject 452 

new classifications that will be updated in new database releases generated by ARG-453 

miner. Overall the crowd exhibited performance comparable to that of the expert panel, 454 
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but in much less time. These results suggest that crowdsourcing annotation is a strong 455 

alternative to the classification and validation of ARGs. 456 

 457 

Expertise and confidence  458 

ARG-miner asks users to rate their own expertise in the analysis of ARGs on a scale of 459 

0 to 5. Figure 6A shows the distribution of the expertise score against the right or wrong 460 

annotations for the antibiotic category classification (including all scenarios: AMT-Free, 461 

AMT-VAL and LAB). Surprisingly, it is clear that having expert knowledge does not 462 

really make a difference in the quality of the classification. Indeed, because of the open 463 

nature of AMT, most of the workers are not experts and have little knowledge about 464 

ARGs. From Figure 6A, it is also evident that the proportion of correct annotations was 465 

higher compared to the incorrect classifications (the size of the dot indicates the number 466 

of annotations). This result suggests that accurate detection of the correct antibiotic 467 

resistance category does not necessarily require domain experts. On the other hand, 468 

workers were also required to rate their confidence in the annotation. Results show that 469 

self-rated confidence is a strong predictor for the quality of the annotation (Figure 6B). 470 

The distribution of the confidence score shows that higher confidence correlates with 471 

more accurate results. For instance, from the workers that rated their confidence with 5 472 

stars, 95% obtained a successful annotation and only 5% missed the correct 473 

classification. This strongly suggests the confidence score is a superior indicator of 474 

correct annotation than the expertise score.  475 

 476 
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CONCLUSIONS 477 

Here we develop, launch, and validate a new web platform, ARG-miner, as a powerful 478 

system for advancing robust and comprehensive curation of publicly-available ARG 479 

database drawing from the power of crowdsourcing. ARG-miner enables access to key 480 

relevant information pertaining to ARGs, including up-to-date ARG metadata, evidence 481 

of ARGs being carried by pathogens, and the possibility of ARGs being mobilized by 482 

MGEs. Further, it enables a simple, but powerful, tool for the curation of ARGs designed 483 

to provide accurate information represented in a noncomplex way that can be validated 484 

by users without the requirement of domain knowledge. Results demonstrated that 485 

crowdsourcing workers are as accurate as experts in curating ARGs. However, it was 486 

found that implementation of a trust-validation filter was essential to overcome the 487 

potential for confounds introduced by “spammers” and other untrustworthy crowd 488 

workers. Incorporation of the trust-validation filter, which forces users to input data that 489 

is related to the evidence provided in the platform, was found to markedly improve 490 

accuracies of the annotations. Various scenarios, including comparison to individuals 491 

with specific ARG-expert domain and general microbiology-knowledge domain, along 492 

with a novel scoring strategy, were implemented to measure the efficiency of the crowd. 493 

The crowd workers were not only able to identify the correct ARG classifications and 494 

other relevant metadata, but were much more efficient than ARG-domain experts alone.  495 

Thus, ARG-miner opens the possibility of a truly comprehensive, accurate, and 496 

perpetually up-to-date publicly-available ARG database.  497 

 498 

 499 
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645 
Figure 1: General overview of the ARG-miner platform. A) Current annotation. This panel 646 
contains the current information available for the ARG entry that requires validation. B) 647 
Evidence. This is the main panel and provides all of the metadata and information extracted from 648 
the different databases and resources. Note that in this panel there are colors that describe the 649 
relevance of each scoring metric. This is useful for users that are not familiar with alignment 650 
scores. C) Microtasks. This section contains the three microtasks needed for the ARG curation. It 651 
also contains real-time validation, which prompts error messages if the user inputs errors.  652 
 653 

654 
Figure 2: Trust validation strategy. The system rejects all inputs that are not consistent with the 655 
evidence. For instance, the antibiotic class polyamine does not correspond to the actual antibiotic 656 
class.   657 
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 658 

659 
Figure 3: Annotation score of the three crowdsourced use cases (AMT-Free: Amazon MTurk660 
workers without the true validation filter, AMT-Val: Amazon MTurk workers with the validation661 
filter enabled and LAB: a group of workers with general microbiology domain knowledge and662 
some antibiotic resistance knowledge. AMT-Val displayed the highest variance. However, this663 
distribution was closer to that obtained by the workers with domain knowledge. Scores from the664 
AMT-Free workers were the lowest among the three scenarios, indicating the ineffectiveness of665 
the crowdsourcing annotation when the worker’s input was not validated. 666 
 667 

668 
Figure 4: Distribution of the antibiotic class annotation by the crowdsourcing workers using the 669 
annotation score. X axis corresponds to the antibiotic resistance categories, where black labels 670 
indicate the categories reported by the workers and the top of each box corresponds to the ARG 671 
identifier.  672 
 673 

8 

 
rk 
on 
nd 
his 
he 
 of 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 1, 2018. ; https://doi.org/10.1101/274282doi: bioRxiv preprint 

https://doi.org/10.1101/274282
http://creativecommons.org/licenses/by-nc/4.0/


29

 

674 
Figure 5: Distribution of the prediction of ARG names. ARG names are represented on the x 675 
axis and the y axis indicates the corresponding annotation score. The top of each box 676 
corresponds to the ARG identifier. 677 
 678 

 679 
Figure 6: Expertise and confidence levels of the workers. The size of the points indicates the680 
number of tasks; the x axis corresponds to the score level and the y label shows the expertise and681 
confidence parameters. Color depicts correct and incorrect classifications.  682 
 683 
Supplementary Figure S1: Administrator interface. This interface contains the elements to 684 
update a single ARG (accept/reject annotations from the crowd) as well as the main tools for 685 
releasing a new version of the database and to compute the ARGs that have conflicting 686 
annotations. This process is recommended to make ensure the annotations are valid. 687 
 688 
Supplementary Figure S2: Case study of data provided by ARG-miner for the gene J2LT98. 689 
This gene represents a difficult ARG naming and annotation case. First, it has been identified in 690 
three major databases with an alignment coverage below 90% indicating genomic variability. 691 
Second, all three databases indicate a high bitscore and percentage of identity that can potentially 692 
confuse the user.   693 
Supplementary Figure S3: ARG-miner evidence. A) Color scale describes the quality of the 694 
evidence from very weak (yellow) to very strong (black). B) Evidence of the ARG being carried 695 
by a MGE. This panel shows the alignment scores and the number of MGEs carrying the ARG. 696 
C) pathogen evidence, this panel illustrates the evidence of the ARG being carried by a 697 
pathogenic genome. More detailed information is also provided by ARG-miner, such as diseases 698 
and antimicrobial resistance phenotype. 699 
 700 
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Supplementary Material 1: Antibiotic classification of all gene entries from the expert 701 
validated dataset.  702 
 703 
Supplementary Material 2: Antibiotic resistance names annotation of all gene entries from the 704 
expert validated dataset.  705 
 706 
Supplementary Table ST1: Curated dataset from the three experts (A, B and C). This table 707 
shows the classification of the ARG name and Antibiotic category.  708 
 709 
 710 
 711 
 712 
 713 
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