
Ronan et al., 

 1

Title: Pleiotropic effects drive correlation between body mass index and 
cortical myelination  

Short title: Pleiotropic effects between BMI and cortical myelin  

 
Lisa Ronan, Nenad Medic, Paul C Fletcher 

 
Department of Psychiatry, University of Cambridge, Douglas House, 18D 
Trumpington Road, Cambridge CB2 8HA UK. 
 
Corresponding author: 
L Ronan 
Email: lr344@cam.ac.uk 
Address: Douglas House, 18D Trumpington Road, Cambridge 
 
Keywords: Obesity | myelin | heritability | cortex | pleiotropy | BMI 
 
 
  
 
  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2018. ; https://doi.org/10.1101/274134doi: bioRxiv preprint 

https://doi.org/10.1101/274134
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ronan et al., 

 2

Abstract 

Background Epidemiological studies have reported significant associations 

between obesity and neurocognitive decline. Understanding these 

associations will require deeper analyses of how body mass index (BMI) and 

brain structure are related. Here we explore the extent to which shared 

genetic factors (pleiotropy) govern the association between BMI and cortical 

myelination. 

Methods: Statistical models of bivariate heritability were applied to structural 

MR image data from a cohort of monozyogotic and dizygotic twins. Estimates 

of phenotypic and genetic correlation between BMI and cortical myelination 

were derived. A co-twin control design based on monozygotic twins was used 

to test the hypothesis of a causal relationship between BMI and myelination. 

The variation in the genetic correlation across the cortex was compared with 

the average statistical enrichment of genes associated with obesity derived 

from data from the Allen brain atlas.  

Results: Statistically significant phenotypic and genetic correlation between 

BMI and cortical myelination was observed across the cortex. Taking the 

heritability of each trait into account, approximately 80% of the phenotypic 

correlation between the traits was accounted for by shared genetic factors.  

Intra-pair differences between traits in monozygotic twins failed to support a 

causal relationship. Moreover, variation in genetic correlation across the 

cortex was significantly associated with the statistical enrichment of genes 

related to obesity.  
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Conclusions:  These results support the hypothesis that pleiotropic effects 

drive the association between BMI and cortical myelination. This observation 

may help to explain the co-occurrence of obesity in neurocognitive decline 

and mental health disorders characterized by changes in myelination and 

oligodendrocyte function.  
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1. Introduction 

Epidemiological studies have reported a significant link between obesity and 

neurocognitive decline and dementia risk (1-3). Relevant to this, increased 

body mass index (BMI) has been associated with a number of brain structure 

and functional changes (4). For example, from middle-age onwards, structural 

brain age is estimated to appear ten years older in overweight and obese 

individuals than their lean, age-matched counterparts (5). However the 

precise pathways linking BMI and brain are not well defined. Some studies 

suggest that changes in the brain may predate and possibly even lead to the 

onset of obesity. Indeed it has been observed that brain changes exist in 

subjects genetically predisposed to obesity before those subjects become 

obese (6). On the other hand, it is postulated that elevated BMI may 

precipitate a cascade of changes that influence the brain, either through 

endocrine dysfunction (3) or chronic inflammation (7,8). Although cytokines 

themselves are not typically neurotoxic (9), they may exacerbate neuronal 

damage in a number of ways (10). Conversely, severe caloric restriction or 

bariatric surgery have been demonstrated to provide some neuro-protective 

effects (11,12).  

 

Here we explore the possibility that brain changes associated with obesity 

may be the result of pleiotropic effects, that is, the action of shared genes, 

rather than a causal relationship that has been speculated elsewhere. In a 

recent landmark study, it was demonstrated that genes related to obesity risk 

are significantly enriched in the CNS and involved in basic processes such as 

synaptic function and glutamate signaling (13). This raises the possibility that 
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the association between BMI and brain structure may be due to shared 

genetic influences although this has not yet been established. 

 

Twin data are often used to address such questions of pleiotropy. 

Monozygotic twins share 100% of their genome while dizygotic twins share 

just 50%. Structural equation models (SEM) make use of this fact (14), and 

can be constructed to assess heritability, which is a measure of how much of 

trait variance is attributable to genetic variance. In the bivariate case it is 

possible to assess the genetic correlation between traits, that is, the degree to 

which traits share genetic factors. In general a high genetic correlation may 

imply a significant phenotypic correlation although this is not necessarily the 

case given that the influence of genes one or both traits may be minimal. 

Thus, in order to assess the contribution of shared genetic influences to a 

phenotypic correlation, the square root of the heritability of each trait is 

multiplied by the genetic correlation between traits. Obesity itself is highly 

heritable (between 70 - 80% (15)) as are various brain parameters (16), 

suggesting that if a genetic correlation exists, it may explain the observed 

phenotypic correlation between traits. In turn this may have implications for 

our understanding of the biology relating BMI to structural and cognitive 

changes. 

 

However the presence of a genetic correlation does not necessarily imply that 

two traits share the same genes. For example, if there is a causal relationship 

between the traits, the genetic factors that govern the first trait may in turn 
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also influence the second (17,18). To distinguish between the action of shared 

genes and a causal association between traits, it is possible to use a co-twin 

control design to calculate the correlation between intra-pair differences of the 

traits in monozygotic twins (19). By controlling for the influence of the 

genotype in this way, a correlation between trait differences suggests a causal 

association between them. 

 

Here, we capitalized on the rich data from the Human Connectome Project 

(20) to investigate the extent of pleiotropic effects between BMI, cortical 

myelination and cortical thickness. We used SEM models to estimate the 

heritability of traits, as well as their genetic correlation. We further estimated 

the percentage of phenotypic correlation observed between traits attributable 

to shared genetic influences. We used a co-twin control design to test the 

hypothesis of a causal relationship between BMI and cortical myelination 

given the latter’s significant role in learning, memory and cognitive health, and 

its association with a host of neurodegenerative diseases such as dementia 

and Alzheimer’s disease, as well as age-related cognitive decline (21).  Finally 

we postulated that, if pleiotropic effects drive the phenotypic correlation 

between BMI and cortical structure, then the pattern of the association should 

correlate with the cortical expression pattern of genes associated with obesity. 

We used gene expression data from the Allen Brain Atlas (22) to test this 

hypothesis.  
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2. Methods and Materials 

2.1 Subjects 

Data from the Human Connectome Project (HCP) was used in this study (20). 

In total, imaging and demographic data from 145 twin pairs for whom 

genotyping was available were included. Genotyping was used to confirm 

zygosity of twins. The full dataset included 94 monozygotic and 51 dizygotic 

twin pairs. The mean age was 29 years (range 22 - 35 years). The mean BMI 

(defined as weight in Kg divided by height in meters squared) was 25����� 

(range 19.7����� - 44.7�����). There was no difference in the proportion of 

sexes across the twin groups (female to male: MZ 58:36, DZ 31:21), �� = 

0.03, p = 0.87. 

2.2 MR Image Data 

Structural imaging of this dataset has been reported elsewhere (23). 

Structural images were acquired on a 3T Siemens TIM Trio system employing 

a 32 channel head coil. A high resolution 3D T1-weighted structural image 

were acquired using a Magnetization Prepared Rapid Gradient Echo 

(MPRAGE) sequence with the following parameters: Repetition Time (TR) 

=2250 milleseconds; Echo Time (TE) =2.99 milliseconds; Inversion Time 

(TI)=900 milliseconds; flip angle =9� degrees; field of view (FOV) = 256mm � 

240mm � 192mm; voxel size =1mm isotropic; GRAPPA acceleration factor 

=2; acquisition time of 4 minutes and 32 seconds. 

In order to verify image reconstruction quality and for purposes of calculating 

specific imaging parameters, we applied the FreeSurfer software (version 5.3) 
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(24-26) to the HCP structurally preprocessed image files for each subject 

where available to generate surface reconstructions for each subject. Surface 

reconstruction processes were conducted in native space. 

 

2.3 Cortical myelination and thickness 

We chose to examine the pleiotropic effects between cortical myelination and 

cortical thickness based on previous studies which suggested linked between 

these traits and BMI (4,5). As previously reported (27), the myelin content of 

cortical areas co-varies with the intensities from T1w and T2w images. A 

surrogate of cortical myelin was generated by taking the ratio of the T1w to 

T2w signal intensity across the cortex. Cortical maps of this ratio were 

available for each subject in the HCP dataset. These maps were registered to 

the individual FreeSurfer cortical reconstructions for further analysis. 

Measures of cortical thickness for each subject were derived in a standard 

way from the FreeSurfer surface reconstructions (28). Results from cortical 

thickness analysis were used to assess the degree of specificity of cortical 

myelination-based results.  

2.4 Statistical Analysis 

Structural equation modeling (SEM) was used to calculate the univariate 

heritability of BMI, cortical myelination. The heritability of a trait is defined as 

the proportion of phenotypic variance attributable to genetic variance (29). In 

the basic univariate genetic model, the ACE model, assumes that the 

variability in the observed variable can be explained by genetic and 

environmental factors, in which A represents the additive genetic factors, C 
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the shared/common environmental factors and E unique/specific 

environmental factors. If statistically validated (i.e. no significant change in 

model fit as assessed by minus twice the log-likelihood value (-2LL) for the 

corresponding change in degrees of freedom (df), and lower values for the 

Akaike’s Information Criterion (AIC)), the ACE model may be simplified to an 

AE model in which trait-variance is a function of genetic and unique 

environmental factors only. 

SEM methods were also used to calculated bivariate statistics such as the 

genetic correlation and the bivariate (shared) heritability between traits. 

Genetic correlation is a measure of the genetic overlap between traits. For 

example, a genetic correlation of 1 indicates that the genes of each trait 

overlap exactly. The phenotypic correlation between traits is a function of both 

genetic and environmental factors. Bivariate genetic models allow us to 

decompose phenoytpic correlation in to each of these factors to determine the 

extent to which phenotypic correlation is driven by genetic factors. The 

genetic contribution to phenotypic correlation is called the bivariate heritability 

which is a measure of the shared variance between traits, and is calculated as 

a product of the genetic correlation between traits and the square root of the 

heritability of each trait. 

Bivariate genetic statistics were based on the Cholesky decomposition model. 

Data from this model was transformed in to the correlated factors model to 

generate estimates of genetic correlation (��), and correlation due to shared 

and unique environmental factors (��) (30) (see Figure S1). More detailed path 

calculations and are given in the supplementary material.  
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The statistical significance of the phenotypic, genetic and environmental 

correlations were estimated by dropping the relevant paths in the bivariate 

genetic models and testing model fit as assessed by the change in -2LL for 

the corresponding change in degrees of freedom. The correlation was 

deemed to be significant at alpha = 0.05 level. Further details are provided in 

the supplementary material.  

We additionally sought to test whether there is a causal relationship between 

BMI and cortical myelination but calculating the correlation between the intra-

pair differences in BMI and myelination (19). If there is a causal relationship, 

we expect that in a monozygotic twin pair, differences in BMI should equate to 

differences in myelin. This co-twin control design controls for the influences of 

the genotype on the relationship between BMI and myelin, thus if a 

relationship between the different in traits is observed in MZ twins it suggests 

a causal relationship between the traits.  

  

Statistical analysis was carried out in R (version“Pumpkin Helmet”’) using the 

package “UMX”’ (http://github.com/tbates/umx, accessed August 2016) (31). 

 

2.5 Cortical Maps 

Applying complex models at a per vertex level across the cortex is 

problematic from the point of view of signal to noise, given the inherent 

variability of the cortex at an individual level, as well as the possibility that the 

signal of interest may manifest at a scale larger than a vertex. Applying 

models at larger levels also suffers from the problem of scale, as well as 
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possible segmentation-bias, where results may differ depending on how a 

particular segmentation falls across the cortex. For this reason we applied we 

employed a random sampling technique to generate cortical parcellations with 

regions of different sizes in order to generate estimates of univariate and 

bivariate heritability unbiased by scale. Three distinct parcellation schemes 

were used to generate approximately 30, 60 and 100 regions in each scheme, 

with approximately the same surface area generated for each region per 

parcellation. Although randomly positioned, we further controlled for labeling 

bias by repeating our analysis ten times for each parcellation scheme. This 

resulted in 10�30, 10�60 and 10�100 different segmentation files for each 

hemisphere per individual (i.e. 30 random parcellation schemes per 

hemisphere per individual). Subsequent estimates of heritability and 

phenotypic and genetic correlation were based on these parcellations. 

Each model (namely univariate and bivariate heritability) was calculated for 

each segment (i = 1:10) in each parcellation scheme (j = 30, 60, 100), 

generating associated path statistics for that model in that segment in that 

parcellation. From these we generated estimates of univariate heritability, 

phenotypic, genetic and unique environmental correlation for each segment in 

each parcellation. The final cortical map was generated by averaging the per 

vertex values of each statistic across the parcellation schemes; 

	� 
 ����	������ 

where  is the vertex index, � is the segment and � is the parcellation number 

(1:10). In doing this we produced a per vertex estimate of each statistic.  
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Multiple comparisons were controlled for using false discovery rate methods 

(32) using the p.adjust function in the statistics package of R.  

Finally, in order to test if the relationship between BMI and cortical myelination 

was causal in nature, we calculated the correlation of intra-pair differences in 

BMI and cortical myelination in monozygotic twins for each parcellation.  

 

2.6 Comparison with human cortical transcriptome 

As a second stage to our analysis we sought to relate our identified pattern of 

genetic correlation across the cortex with gene expression data provided by 

the Allen Institute for Brain Science (22) using previously described 

techniques (33,34). 

In brief, the Allen Human Brain Atlas (http://human.brain-map.org) is a publicly 

available online resource of microarray-based gene expression profiles for an 

anatomically comprehensive set of brain regions (22). The atlas is based on 

post-mortem tissue from 6 donors with no known history of neuropathological 

or neuropsychiatric disease, who also passed a set of serology, toxicology 

and RNA quality screens. The donors were a 24-year-old African American 

male, a 39-year-old African American male, a 57-year old Caucasian male, a 

31-year old Caucasian male, a 49-year old Hispanic female, and a 55-year old 

Caucasian male. 

The process of matching the microarray data from the AIBS to our MR image 

data has been described elsewhere (33,34). Briefly, the procedure involved 

segmenting our cortical data in to a series of 308 regions across both 

hemispheres. These regions correspond to regional gene expression profile. 
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Microarray data were averaged across all samples from all donors in the 

matching anatomical region across both hemispheres. The data were also 

averaged across probes corresponding to the same gene, excluding probes 

that were not matched to gene symbols in the AIBS data. Two MRI regions 

were excluded, because both the mean and the range of gene expression 

values in these regions were outliers compared with the other cortical regions 

of interest. The final output was a matrix of Z-scored expression values for 

each of 20,737 genes estimated in 306 MRI regions. In other words, for each 

cortical region, we generated a z-score value of the average gene expression 

for each of the 20,373 genes. 

Using this data, we were able to calculate the average expression level of 248 

genes previously linked to obesity risk (13) per region across the cortex and 

compared this map to the pattern of genetic correlation between traits. 

Analysis was restricted to the left hemisphere only as these genetic data were 

the most robust (22). A list of genes is provided in the supplementary material.   
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3 Results 

3.1 Average values and univariate heritability 

The mean BMI was 26�����. The average cortical myelination varied across 

the cortex (left hemisphere 1.6, sd 0.12; right hemisphere 1.65, sd 0.15) (see 

Figure 1a). The heritability of BMI was 72% (p = 0). For statistically significant 

estimates of heritability of myelin the mean value in each hemisphere was 

0.35 with range [0.2, 0.47] in the left hemisphere, and [0.22, 0.51] in the right 

hemisphere (see Figure 1b).  

3.2 Correlations between BMI and cortical myelination 

Compared to the ACE model, there was a non-significant decline in fit for the 

AE model with the following average values across the cortex (-2LL = 1378; 

�� = 8; AIC=235; �� = 0.04, ∆�� 
 3; � = 0.99; ∆AIC = 5.9), indicating a non-

significant effect of shared environment. Thus the AE model was chosen as 

the best-fit, most parsimonious model.  

Across the cortex, almost all regions had statistically significant positive 

phenotypic correlations between BMI and myelination values (Figure 2a). The 

average value of the correlation coefficient was 0.24 (sd 0.04, average p-

value 0.02) in the left hemisphere and 0.3 (sd 0.06, average p-value 0.02) 

although there was a considerable variation across the cortex and in particular 

a notable hemispheric asymmetry.  

Of note, this pattern of phenotypic correlation across the cortex was replicated 

for 358 unrelated individuals from the HCP dataset (with a similar age and sex 

distribution). See supplementary material for further details (Figure S2). 
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Genetic correlations were generally much higher across the cortex than the 

environmental correlations, suggesting that genetic factors were more 

significant in determining trait correlation. For regions of statistically significant 

genetic correlations (��), estimates in the left hemisphere varied from 

�0.35, 0.64!, with a mean of 0.47 (p = 0.03), while the right hemisphere varied 

from �0.36, 0.89! with a mean of 0.59 (p = 0.01)(Figure 2b). Squaring the 

genetic correlation gave the percentage of genetic influence shared between 

traits. In the left hemisphere this ranged from 12% - 40%, while in the right 

hemisphere it ranged from 13% - 79%. 

The mean estimate of un-thresholded correlation due to unique environment 

(��) was 0.04 (sd. 0.03, range [-0.08, 0.13]) in the left hemisphere, and 0.05 

(sd. 0.05, range [-0.12, 0.15] in the right hemisphere (Figure 2c). After 

thresholding, there were no significant areas of correlation due to unique 

environmental factors. 

When limited to regions of statistically significant genetic correlation only, the 

average proportion of phenotypic correlation attributable to genetic factors 

was 83% (sd 16%) in the left hemisphere and 76% (sd 23%) in the right 

hemisphere indicating that the phenotypic correlation was almost entirely 

influenced by pleiotropic factors (see Figure 3). 

 

3.3 Intra-pair differences in monozygotic twins 

In a co-twin control design to test causality, the correlation between intra-pair 

differences in BMI and cortical myelination in monozygotic twins (n = 94) was 

calculated. There were no regions of the cortex where the correlation was 
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statistically significant (see supplementary material Figure S3). These results 

fail to support the hypothesis that the association between BMI and cortical 

myelination is causal in nature.  

 

3.4 Comparison with cortical transcriptome 

There was a statistically significant correlation between the average statistical 

enrichment of obesity genes across the cortex and the pattern of genetic 

correlation between BMI and cortical myelination (R = -0.55 p < 0.0001) 

(Figure 4). 

These results suggest that the pattern of genetic correlation between BMI and 

cortical myelination significantly co-varies with the expression patterns of 

genes related to obesity-risk.  

 

3.5 Correlations between BMI and cortical thickness 

There were no regions of statistically significant phenotypic or genetic 

correlation between BMI and cortical thickness. 
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4. Discussion 

Our results demonstrate a significant genetic overlap between BMI and 

cortical myelination for large potions of the cortex. Taking the heritability of 

each trait in to account, we report that approximately 80% of the phenotypic 

correlation between BMI and cortical myelin was accounted for by shared 

genetic factors. The strength of phenotypic and genetic correlation between 

BMI and cortical myelination varied across the cortex, and it was, to a 

statistically significant degree, similar to the pattern of expression of genes 

related to obesity (13). Moreover, the relationship between intra-pair 

difference in BMI and cortical myelination in monozygotic twins failed to 

support a model of causal association between the traits. These results 

support the hypothesis that pleiotropic effects rather than a causal relationship 

govern the genetic association between BMI and cortical myelination. 

The identification of a significant pleiotropy between cortical myelination and 

BMI may have important implications for our understanding of the biology 

underpinning the as yet unexplained association between BMI and cognitive 

decline and dementia risk. To date a large number of studies have related 

increased body mass in mid-life with an increased risk of cognitive decline 

and dementia in later years (2,35).  Indeed it is suggested that an increased 

BMI in mid-life is associated with a two-fold higher risk of dementia on 

average (3,36). The results of the current study raise the possibility that genes 

associated with obesity have implications for cortical myelin which in turn may 

increase the rate of cognitive decline. Indeed, recent analysis has reported a 

significant genetic correlation between BMI and various aspects of cognition 
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(37). More explicit studies of these associations are required to explore this 

hypothesis further.  

 

In this analysis we failed to find any evidence of a significant genetic 

correlation between BMI and cortical thickness. These results suggest that 

our findings may be specific to cortical myelination as derived from the ratio or 

T1w to T2w image contrast (27). Other surrogates of cortical myelination such 

as magnetization transfer (38) may be used in future studies to confirm these 

results.  

The influence of genes on brain structure has been demonstrated to vary with 

age. This raises the important caveat that the results of the current study must 

be interpreted for the age-range of the dataset (22-35 years). As such, the 

finding here that pleiotropic effects drive the phenotypic correlation between 

BMI and cortical myelination does not outrule the additional possibility that 

BMI may instigate a cascade of changes resulting in brain differences. This 

may be particularly relevant in middle-aged and elderly populations where 

longitudinal studies have demonstrated an increased risk of 

neurodegenerative disorders with increasing BMI (2,35).  

 

Finally, as discussed elsewhere (17, 18), the presence of a genetic correlation 

fits not only with the possibility of the action of shared genes, but also with a 

causal model. However, the results of our monozygotic co-twin control 

experiment failed to support such a causal association.  In a further 

exploration of our findings, we hypothesized that if a significant pleiotropy 
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existed between BMI and cortical structure, then we would expect to see a 

correlation between the pattern of genetic correlation between traits and the 

pattern of expression of genes related to obesity risk. Our results confirmed 

this. However there are a number of important limitations to acknowledge in 

this approach to genetic enrichment analysis. In the first instance the results 

of the current study were drawn from a population of relatively young adults 

(mean 26 years). In contrast, gene express data from the Allen Institute was 

derived from older subjects (mean age 42.5 years). Given that recent work 

has demonstrated that age-related gene expression is genotype-dependent 

(39), it is therefore necessary to be cautious when interpreting the results of 

our gene enrichment analysis. 

Conclusion 

There is a pervasive idea in the literature that obesity “causes”’ brain changes 

(40), and indeed there is good evidence that this might be the case. However 

these results and the results of other studies (13, 41) strongly indicate that 

structural brain changes observed in association with obesity may be the 

result of pleiotropic effects also. These findings may help explain the co-

occurrence of obesity in cognitive decline and dementia-related illnesses 

characterized by changes in myelination and oligodendrocyte function. 
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Table and Figure Legends 
 
Figure 1 (A) Mean cortical myelination derived from the T1w-T2w ratio, and 
(B) heritability of cortical myelination thresholded for statistical significance. 

 
Figure 2 Cortical map of (a) phenotypic (b) genetic correlation and (c) unique 
environmental factors between BMI and myelination. Results for (a) and (b) 
are thresholded to illustrate only regions with statistically significant values. 
There were no statistically significant regions for unique environmental 
correlations.  

 
Figure 3 Map of the percentage of phenotypic correlation between BMI and 
cortical myelination attributable to genetic factors. This ratio is filtered for 
regions of statistically significant genetic correlation and is only calculable 
where all correlations are of the same sign. 

 
Figure 4. (a) Cortical map of average enrichment of genes related to obesity 
(Locke et al. 2015). (b) Correlation of average enrichment of genes related 
with obesity vs. genetic correlation between BMI and cortical myelination. 
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