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Abstract:  

Cortical tissue has a circuit motif termed the cortical column, which is thought to represent its basic 

computational unit but whose function remains unclear. Here we propose, and show quantitative evidence, that 

the cortical column performs computations necessary to decode incoming neural activity with minimal 

information loss. The cortical decoder achieves higher accuracy compared to simpler decoders found in 

invertebrate and subcortical circuits by incorporating specific recurrent network dynamics. This recurrent 

dynamics also makes it possible to choose between alternative stimulus categories. The structure of cortical 

decoder predicts quadratic dependence of cortex size relative to subcortical parts of the brain. We 

quantitatively verify this relationship using anatomical data across mammalian species. The results offer a new 

perspective on the evolution and computational function of cortical columns. 

Introduction 

The mammalian cerebral cortex of mammals is a thin-layered tissue that appears to be assembled from a 

circuit motif termed the minicolumn, or column for short (Buxhoeveden, 2012). Each column spans the cortical 

layers and has stereotypic connections between cell types within and across layers. Columns can form ‘macro-

columns’, which are groups of ~100 minicolumns that are bound together by short range connections between 

columns. Even within macrocolumns, however, one can still discern the vertical structure corresponding to 

individual columns (Buxhoeveden, 2012). Although there are quantitative variations in column parameters 

across species, across brain regions, and even within a given macro-column, the main features of this circuit 

motif are quite universal. Columns are found in both  sensory and motor areas of the brain (Harris and 

Shepherd, 2015), and analogous circuit motifs have also been found in non-mammals, such as birds (Wang et 

al., 2010). These facts strongly suggest that this circuit motif performs fundamental element(s) of a 

computation that is needed independent of the stimulus modality. However, the complexity of connections, and 

the large number of cell types within the column (many of which remain to be strictly defined (Harris and 
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Shepherd, 2015; Jiang et al., 2015; Luo et al., 2017)), have made it difficult to determine the algorithm 

implemented by cortical columns. 

 

To gain insights into the computations performed by cortical columns, one can begin by analyzing, from first-

principles, possible strategies for representing stimuli with neural responses in ways that allow for their 

accurate decoding, ideally with minimal loss of information. The colloquial term “information” used here can be 

quantitatively defined using tools from information theory (Cover and Thomas, 1991). In the context of this 

work, by information we mean the mutual Shannon information (Cover and Thomas, 1991) between stimuli and 

neural responses. When considered in small time intervals, neurons respond to stimuli by producing all-or-

nothing events in the voltage traces across their membranes termed “spikes”. Unfortunately, unlike the genetic 

code where it is known how to parse DNA sequence to determine amino acid sequence, it remains unclear 

how to parse sequences of spikes over time to determine which stimuli they represent (Srivastava et al., 2017; 

Theunissen and Miller, 1995). Similarly, it is a matter of debate for how to combine spikes from neurons tuned 

to different stimulus features. A simple weighted average of responses across neurons has been shown to 

discard substantial amounts of information (Osborne et al., 2008; Reich et al., 2001), indicating that more 

complex codes are used in the brain. We will discuss how insights into these problems can be gained by 

searching for the code that allows for decoding with minimal loss of the information contained in neural 

responses. Further, we present evidence one version of this code is implemented by cortical columns.  

 

Results 

A code with information-preserving statistic 

We begin by describing how a stimulus can be represented by neural responses in a way that these neural 

responses can be decoded without loss of information. For ease of exposition, we will first consider the case 

where, once the stimulus is specified, noise in neural responses is independent across neurons and across 

different time bins (we will show that the main result holds even when these constraints are removed). Further, 

we will initially analyze stimulus representations where the responses of any single neuron depend only on one 

stimulus dimension (this dimension corresponds to neuron’s receptive field (RF), as we mathematically 
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describe below). Later we will see that expanding representations to allow dependence of neural responses on 

multiple stimulus dimensions is one of the key distinguishing features of the cortical column decoder, 

compared to a simpler decoder. 

With these assumptions, the neural responses can be described using the so-called linear-nonlinear 

(LN) model (Schwartz et al., 2006). In this model, the probability of observing a spike depends on the strength 

of the relevant stimulus component (Figure 1). The nonlinear dependence of the neuronal spike rate on the 

primary stimulus component can often be well approximated by a saturating (logistic) function that has two 

parameters: a threshold 𝛼𝛼 and a steepness 𝛽𝛽. We note that neural responses can often be also equivalently 

described using tuning curves (Abbott and Dayan, 1999; Georgopoulos et al., 1986; Hohl et al., 2013; Osborne 

et al., 2008; Shamir, 2014). Tuning curves specify how neural response rates change when stimuli deviate 

from their optimal settings. There is a one-to-one relationship between the parameters of the tuning curves and 

those of the saturating nonlinearity in the LN model (Supplementary Text 1). However, the LN formulation 

makes it possible to mathematically derive the vector quantity 𝑀𝑀��⃗  that is guaranteed to capture all the 

information provided by the responses of the neural population (cf. Supplementary Text 2). This quantity is 

constructed as: 

𝑀𝑀��⃗ {𝑟𝑟1, … 𝑟𝑟𝑁𝑁} = ∑ 𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑤𝑤��⃗ (𝑖𝑖)
𝑖𝑖  .     (1) 

In this expression,𝑟𝑟𝑖𝑖 denotes the number of spikes produced by the ith neuron during the time interval of 

interest, 𝛽𝛽𝑖𝑖 is the steepness value of the ith neuron nonlinearity, and 𝑤𝑤��⃗ (𝑖𝑖) is the preferred stimulus for this 

neuron, also known as neuron’s RF, normalized to have unit contrast (mathematically, �𝑤𝑤��⃗ (𝑖𝑖)� = 1). We will refer 

to 𝑀𝑀��⃗  as the information-preserving population vector. This vector generalizes the standard population vector 

(Georgopoulos et al., 1986; Hohl et al., 2013; Salinas and Abbott, 1994; Shamir, 2014) by taking into account 

steepness parameters 𝛽𝛽𝑖𝑖. In the context of the LN model, steeper nonlinearities indicate more reliable neural 

responses. Therefore, it is perhaps intuitive that the responses of more reliable neurons should be weighted 

more strongly within the population average.  

Taking into account steepness parameters fully addresses previous concerns regarding the standard 

population vector, namely that averaging responses of similarly tuned neurons can lead to substantial 
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information loss (Osborne et al., 2008; Reich et al., 2001). In Figure 2, we show that our information-preserving 

version of the population vector captures all the information available in neural responses, regardless of 

whether the neurons in the population are tuned to the same (Fig. 2A) or different (Fig. 2B) features of the 

stimulus. In contrast, the standard population vector does not capture all of the information when the 

population contains neurons tuned to the same features of the stimulus (or features with opposite polarity) 

using nonlinearities with different steepness values.  

It is worth noting that some differences in neural tuning curves are irrelevant for capturing all the 

information contained in neural responses. For example, although differences in thresholds lead to differences 

in tuning curves, according to the information-preserving expression (1), responses of neurons with different 

thresholds can still be averaged without losing information. Figure 2C shows that both the standard and 

information-preserving population vectors capture all the information in model neural population without taking 

threshold differences into account. These analyses demonstrate that analyses in terms of saturating 

nonlinearities are more revealing than those based on the tuning curves.  

The information-preserving population vector also works in the presence of correlated variability across 

neurons (the so-called noise correlation reviewed in (Averbeck et al., 2006; Shamir, 2014)). Although noise 

correlations may affect the overall information provided by the neural responses (Abbott and Dayan, 1999; 

Ecker et al., 2011; Moreno-Bote et al., 2014; Shamir, 2014; Shamir and Sompolinsky, 2004, 2006; Zohary et 

al., 1994), the information-preserving population vector continues to capture all of the information that is 

available in the neural responses (Fig. 2D). This result holds true for noise correlations that differ across pairs 

of neurons (e.g. according to differences in RFs) as long as noise correlations do not change with the stimulus, 

as is often observed experimentally(Huang and Lisberger, 2009). In Figure 2 we show the results of model 

simulations with noise correlations and provide a detailed derivation in the Supplementary Text S3. We also 

note that in the presence of noise correlations, the nonlinearities of individual neurons may deviate from the 

logistic function but the information-preserving property still holds as long as the population response can be 

written in the exponential form (see Eq. S24 in the supplement). 

Capturing information in cortical responses 
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Analyses of the model neural populations show that the information contained in the responses of model 

neurons conforming to the LN model can be fully captured by a version of the population vector that is modified 

in a specific way. Although the LN model has been successfully used to describe neural responses in a 

number of brain circuits (Schwartz et al., 2006), to the extent to which real neural responses deviate from the 

model assumptions, some information loss will occur. To determine the magnitude of these effects, we tested 

how the information-preserving population vector performs on the responses of neurons in the primary visual 

cortex (V1) that were elicited by natural stimuli (Sharpee et al., 2006).  For each neuron, we estimated its 

preferred orientation and nonlinearity. Nonlinearities were fit to the neural responses using logistic regression 

to find the steepness parameters 𝛽𝛽. Based on the estimates of 𝛽𝛽 values, we compared the full amount of 

information provided by the responses of these neurons with the information provided by the standard and 

information-preserving population vectors. To account for experimental uncertainties in the orientation value, 

we used a coarse-grained set of orientations that took into account error-bars (see Materials and Methods). 

We find that just like in the model neural populations, the information-preserving population vector (but not the 

standard population vector) captured all the information (Figure 3) provided by the responses of simultaneously 

recorded neurons.  

 

Decoding algorithm 

We now show how signals can be decoded from the information-preserving population vector. The value of this 

vector varies continuously with the stimulus, because different stimuli evoke different responses 𝑟𝑟𝑖𝑖. The 

expected value of the information-preserving vector depends on the stimulus 𝑆𝑆 as:  

 𝑀𝑀��⃗ �𝑆𝑆� = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 𝑟𝑟𝑖𝑖𝑤𝑤��⃗ (𝑖𝑖) = ∑ 𝛽𝛽𝑖𝑖𝑤𝑤��⃗ (𝑖𝑖)𝑟𝑟�𝛽𝛽𝑖𝑖𝑤𝑤��⃗ (𝑖𝑖) ∙ 𝑆𝑆�𝑖𝑖 ,     (2) 

where 𝑟𝑟(𝑥𝑥) is nonlinear response function and parameters 𝑤𝑤��⃗ (𝑖𝑖) and 𝛽𝛽𝑖𝑖 are same as before in Eq. (1) (see Text 

S3 for derivation). To understand the properties of this mapping, we can build on research in the area of RF 

estimation (Schwartz et al., 2006), where this mapping uses responses of a single neuron to many different 

stimuli to estimate that neuron’s RF. Here we use RFs of many neurons and their responses to a single 

stimulus to estimate that stimulus. Based on studies of RF estimation, we can state that the information-
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preserving population vector will be aligned with the stimulus multiplied by the covariance matrix C of RF 

components across the neural population under certain statistical conditions (Supplementary Text S4 for a 

derivation and discussion of deviations when these conditions are not met).  

Crucially, using a standard population vector expression ∑ 𝑤𝑤��⃗ (𝑖𝑖)𝑟𝑟�𝛽𝛽𝑖𝑖𝑤𝑤��⃗ (𝑖𝑖) ∙ 𝑆𝑆�𝑖𝑖  (or any expression where RFs are 

not scaled by the same factor 𝛽𝛽𝑖𝑖 from the spike rate nonlinearity) introduces estimation biases. This is shown in 

simulations of Figure 4A and mathematically in Text S4. These biases arise as soon as RF components have 

non-equal variance in different stimulus directions. Such is the case, for example, in V1 where more RFs align 

with horizontal and vertical orientation than with oblique angles (Dragoi et al., 2001). We have also verified 

these results using neural data by reconstructing segments of natural movies using either the information-

preserving or standard population vector, as well as a population vector with random 𝛽𝛽𝑖𝑖 factors. The 

information-preserving vector produced significantly more accurate reconstructions than either of the two 

alternatives (p< 10-39 t-test, Fig. 4B). Further, the decoder maintains much of its accuracy even if the estimates 

of 𝛽𝛽 factors are imprecise. For example, we used a decoder where the 𝛽𝛽 factors were multiplied by a random 

value between 0 and 1; such a decoder yielded correlation coefficients that, on average, were more than half 

of the correlation values provided by the true information-preserving population vector.  Thus, even partial 

knowledge of 𝛽𝛽 factors can result in substantial improvements in decoding accuracy.  

 

Feedforward neural network decoder 

In terms of biological implementation, stimulus decoding based on the information-preserving vector can be 

implemented using a three-layer feedforward neural network, as illustrated in Figure 5A.  Units within the first 

layer encode stimulus components; the second layer provides a representation according to Eq. (1); units 

within the third layer units represent reconstructed stimulus values according to Eq. (2). The key aspect of this 

decoding scheme is the incoming connections to each second layer unit should be proportional to outgoing 

connections. A version of this decoder was shown to accurately reflect the synaptic and network mechanisms 

of the leech nervous system (Lewis and Kristan, 1998). Similar networks operate in subcortical areas in 

mammals (Joshua and Lisberger, 2015), and can account for initial stages of olfactory processing (Zhang and 
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Sharpee, 2016) for odor mixtures. We note that this decoder has compressive nonlinearities (illustrated in 

Figure S1), making it different from the optimal linear decoder proposed previously (Salinas and Abbott, 1994).  

 

Decoding of ambiguous stimuli 

We now show how the decoding scheme can be generalized to increase its accuracy and to allow neural 

circuits to deliberate between alternative, mutually exclusive interpretations of ambiguous stimuli. This is an 

important problem because sensory perception is in general ill-defined, meaning that different stimuli can give 

rise to similar patterns of neural responses. The decoder discussed so far (e.g., Figure 4 and 5A) does not 

solve this problem because for each stimulus it produces a single interpretation. To allow for multiple 

interpretations, one can expand the stimulus representations quadratically by including all pairwise products 

𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗 between original 𝑠𝑠𝑖𝑖 components. That is, if the original stimulus has D components, after expansion, the 

stimulus will be represented by the original D components plus an additional (D2+D)/2 pairwise components. 

Working in this expanded space, one can construct the information-preserving population vector according to 

Eq. (1) as before. The information-preserving vector now has a linear part 𝑀𝑀𝑖𝑖 and a quadratic part 𝑀𝑀𝑖𝑖𝑖𝑖 (see 

Supplemental Text S5 for details). To decode a single stimulus pattern from these two parts, we need to find a 

pattern 𝑠𝑠𝑖𝑖 that approximates the matrix 𝑀𝑀𝑖𝑖𝑖𝑖 as best as possible in the form of 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗. Mathematically, this 

operation corresponds to finding the leading mode of matrix 𝑀𝑀𝑖𝑖𝑖𝑖. A key property of this transformation is that 

multiple modes can potentially provide similar contributions to the matrix. This situation corresponds to 

ambiguous stimuli, with each mode describing alternative representations. The conflict between modes can be 

resolved by waiting for additional evidence to favor a specific representation and/or by incorporating evidence 

from larger scales. Thus, decoding with quadratic stimulus expansion represents a conceptual advance 

compared to the decoding in the original input space. Of course, to allow for the possibility of multiple modes, 

the original stimulus should be multidimensional with D>1. It also should be noted that the purely quadratic 

decoder based on 𝑀𝑀𝑖𝑖𝑖𝑖 does not determine stimulus polarity. The stimulus polarity is determined by comparing 

the sign of the estimated stimulus with the linear part 𝑀𝑀𝑖𝑖. Thus, both parts of the information-preserving 

population vector are needed to ensure complete stimulus reconstruction. 
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We tested the accuracy of this quadratic decoding algorithm on recoded V1 responses(Sharpee et al., 

2006). We found that it produces improved reconstructions compared to those made without quadratic stimulus 

expansion (p<10-28, Fig. 4D). Furthermore, just like in the original stimulus space, a reconstruction based on 

the information-preserving population vector is significantly better than those based on the standard population 

vector or population vector computed with randomly selected 𝛽𝛽𝑖𝑖 values (p<10-52). Finally, similar to decoding 

without quadratic stimulus expansion, the quadratic decoder is robust to noise in the estimation of 𝛽𝛽𝑖𝑖 factors. In 

Fig. 4b we show that decoding using 𝛽𝛽𝑖𝑖 factors that have been multiplied by a random number from 0 to 1 

produces accurate stimulus reconstructions. We observe that quadratic stimulus decoding is even more robust 

to this perturbation than decoding performed in the original stimulus space (Fig. 4B). 

 

Recurrent neural network decoder 

Given the computational benefits of decoding with quadratic stimulus expansion, how can it be implemented in 

neural circuits?  We now discuss how each of the steps of this algorithm maps onto computations performed 

by the cortical column. First, one needs neurons with RFs in the quadratically expanded input space 

(Fitzgerald et al., 2011). When analyzed in the original input space, these neurons would have quadratic 

nonlinearities (possibly also with a non-zero linear component). In V1, such neurons are known as complex 

cells (Movshon et al., 1978). However, they are also found in upper layers of the primary auditory cortex 

(Atencio et al., 2009). The responses of these neurons can be obtained by adding the responses of simple 

cells from layer 4 that are selective for stimuli of opposite polarity. This corresponds to the classic model of 

complex cells responses (Movshon et al., 1978), and which is also consistent with strong projections from layer 

4 simple cells to layer2 complex cells (Harris and Mrsic-Flogel, 2013; Harris and Shepherd, 2015).  

Next, the information-preserving population vector must be computed both in the original space and in 

the quadratically expanded space. In the original input space this computation can be done using the same 

feedforward procedure as before, in this case by pooling the responses of simple cells according to Eq. (2) 

𝑀𝑀𝑖𝑖 = ∑ 𝛽𝛽𝑖𝑖𝑟𝑟𝑖𝑖𝑤𝑤𝑘𝑘
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1 , where 𝑤𝑤𝑘𝑘
(𝑖𝑖)  stands for the kth component of ith neuron RF, and N is the number of simple 

cells. The quadratic part of the information-preserving population vector 𝑀𝑀𝑘𝑘𝑘𝑘 can be estimated by pooling the 
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responses of complex cells 𝑐𝑐𝑖𝑖 to form 𝑀𝑀𝑘𝑘𝑘𝑘 = ∑ 𝛽𝛽𝑖𝑖2𝑐𝑐𝑖𝑖𝑤𝑤𝑘𝑘
(𝑖𝑖)𝑤𝑤𝑛𝑛

(𝑖𝑖)𝑁𝑁
𝑖𝑖=1 . The weights 𝑤𝑤𝑛𝑛

(𝑖𝑖) can be provided by copies of 

connections from the corresponding simple cells. 

The final step is to find the dominant mode of the matrix represented by quantities 𝑀𝑀𝑘𝑘𝑘𝑘, choosing its 

polarity based on 𝑀𝑀𝑖𝑖 values. These two operations can be simultaneously computed by a recurrent network 

that receives quantities 𝑀𝑀𝑖𝑖 as inputs to its ith neuron and connections between neurons k and n in the network 

are set to 𝑀𝑀𝑘𝑘𝑘𝑘. In the presence of gain normalization (Carandini and Heeger, 2011), the activity of this network 

will converge to the dominant mode of matrix, implementing the so-called power method. 

Based on the circuitry of cortical columns (Harris and Mrsic-Flogel, 2013), one can identify the output 

recurrent network with that of layer 5 subcerebral projection neurons (SPN) as well as layer 6 cortical thalamic 

neurons. These neurons receive connections from layer 4 that necessary to compute input values 𝑀𝑀𝑖𝑖. A key 

aspect of this recurrent optimization is that connection strengths 𝑀𝑀𝑘𝑘𝑘𝑘 must vary with the stimulus. The layer 5 

contains a population of cells termed intratelecephalic neurons (ITNs) that project to layer 5 SPNs and can 

modulate connections between SPNs in a stimulus-dependent manner. The ITNs receive signals from layer 2 

necessary to compute 𝑀𝑀𝑘𝑘𝑘𝑘 values. Thus, the cortical column has all of the required components to implement 

quadratic decoding.  

 

Predicted scaling relationships 

If quadratic decoding is indeed the algorithm that is being implemented by cortical columns, then this yields a 

number of quantitative predictions concerning for the distribution of cell types across layers, and how the size 

of the cortex should scale with the number of subcortical inputs. Here we review these predictions in turn.  

The first prediction is that the number of ITNs in layer 5 should equal to the square of the number of 

output SPNs in layer 5. There is evidence in the mouse motor cortex that this is the case. Anatomical images 

from indicate that there are 8-9 corticospinal neurons and 60-80 ITNs in each minicolumn (Oswald et al., 2013) 

The second prediction describes how the total number of neurons in a column should scale with the 

dimensionality of the signal. Specifically, a minicolumn that processes D-dimensional signals should have 

~𝐷𝐷2 + 𝜒𝜒𝜒𝜒 neurons. The quadratic term arises from the need to implement stimulus-dependent recurrent 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2018. ; https://doi.org/10.1101/273854doi: bioRxiv preprint 

https://doi.org/10.1101/273854


10 
 

weights between the output neurons. The linear term includes the output neurons as well as neurons from the 

intermediate representations, such as simple and complex cells, whose number should be proportional to D. 

For a piece of cortical tissue with columnsN  , the number of neurons will be ( )2
cortex columnsN N D Dχ= +  . The 

corresponding number of subcortical input neurons t columnsN N D= . Combining these two relations yields the 

following prediction 

2
cortex

columns

1
t tN N N

N
χ= +     (3) 

In Figure 6, we show that the predicted quadratic function accounts well for the differences in the number of 

cortical and subcortical neurons (from the diencephalon, brainstem, and basal ganglia) across 18 mammalian 

species (Herculano-Houzel, 2009). We fit data across primate species separately because they are known to 

have scaling exponents that are different from other mammals in a number of ways (Herculano-Houzel, 2009). 

For rodents/insectivores, the fit yields: ( ) 8
columns 2.7 0.9 10N = ± , 1.75 0.16χ = ± ; for primates the fit yields: 

( ) 8
columns 1.6 0.4 10N = ± , 11.7 1.5χ = ± . Although the parameter values columnsN  are obtained merely by fitting 

the data, without any constraints, they quantitatively match the current estimate of 82 10×  for the number of 

minicolumns in the brain (Sporns et al.). The same estimate can also be obtained by dividing the total number 

of cortical neurons (Herculano-Houzel, 2009) by the estimated number of neurons per minicolumn 

(Buxhoeveden, 2012). Further, one can the use these parameters to derive estimates for the microscopic 

parameters of individual columns. Combining the values for the parameter χ with the estimated number of 

~100 neurons per minicolumn (Buxhoeveden, 2012) yields estimates for the number of output neurons D of ~9 

for rodents and ~6 for primates, both of which agree with experimental values for these species (Oswald et al., 

2013; Peters and Sethares, 1996). Thus, the scaling rules that follow from the structure of the quadratic 

decoder are supported by a diverse sets of quantitative predictions across nine orders of magnitude in neuron 

numbers (from 10 to 1010).  
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Discussion 

In this work we started from first principles of information theory to find a set-up where stimuli can be encoded 

into neural responses in such a way as to enable the decoding of these responses with minimal loss of 

information. For this set-up, there a simple vector quantity that captures all of the information contained in 

neural responses. Based on this quantity, one can build two kinds of decoding algorithms. The first algorithm 

uses primarily feedforward operations of the kind found in invertebrate (Lewis and Kristan, 1998) and 

mammalian subcortical circuits (Joshua and Lisberger, 2015). Of course, subcortical circuits compute more 

sophisticated computations than just stimulus reconstruction. We analyzed stimulus reconstruction just as an 

example of a computation that neural circuits may perform.  

A second more sophisticated way to perform decoding is to quadratically expand the stimulus space 

and then to use recurrent optimization to invert the transformation. We argue that the second decoding 

algorithm, which we tern quadratic decoding, is what cortical columns compute to deliver increased accuracy, 

as well as the ability to disambiguate between alternative stimulus interpretations. Quadratic decoding brings 

together many disparate properties of cortical processing as parts of a single computation. For example, the 

decoder requires synaptic weights to be zero on average for some neural populations (see Supplementary 

Text S4). This corresponds to the so-called balanced regime where inhibition and excitation on average cancel 

each other (van Vreeswijk and Sompolinsky, 1996). Furthermore, because recurrent networks can become 

unstable (Sompolinsky et al., 1988), a specific gain control is needed to reduce effective recurrent connections 

within layer 5 when necessary. The observed inhibitory gain control (Sompolinsky et al., 1988) that layer 5 

exerts through layer 6 back to layers 4 and 2 can fulfill this role (Olsen et al., 2012). Some cortical areas, such 

as the olfactory system as well as the hippocampus are missing layers 2 and 4. These areas, therefore, likely 

lack this form of gain control, which would explain why they often serve as seizure origination points. 

The structure of the quadratic decoder reveals new constraints on mammalian brain evolution. Two 

separate factors drive brain size expansion within and across mammalian species orders. The first factor 

controls brain expansion within orders, e.g. within primates. This factor represents the average dimensionality 

of inputs processed by each column. Among primates, humans have the largest value. The second factor 𝜒𝜒 
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controls brain expansion across orders, such as between rodents and primates. It represents the weighted 

number of neuronal types per input dimension, weighted by the number of neurons in each type. Because of 

this weighting and because excitatory neurons comprise a majority of neurons (Jiang et al., 2015), the factor 𝜒𝜒 

mainly reflects diversity of excitatory neuronal types. Taking this into account, the derived value for rodents is 

consistent with current estimates for the number of cortical excitatory cell types (Jiang et al., 2015; Markram et 

al., 2015). Further, a large increase in this factor from rodents to primates is consistent with observations that 

excitatory neuronal types are less conserved between rodents and primates than inhibitory types. A larger 

number of cell types encoding signals along each dimension increases the accuracy with which each signal 

can be encoded, as has been demonstrated in the retina (Kastner et al., 2015). At the same time, primate 

minicolumns process signals of smaller dimensionality than rodent minicolumns. This allows for finer sampling 

and reduces the number of competing modes for each quadratic decoder. These analyses highlight different 

axes that evolution can manipulate to acha accurate decoding of complex stimuli.  
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Figures and Figures Legends 

 

Fig. 1. The relationship between receptive field (RF) and tuning curve descriptions of the neural 

response.   (A) Three representative model nonlinearities that describe neural response as a saturating 

function of stimulus component along RF.  Black and dashed lines have the same midpoints 𝛼𝛼  but different 

steepness values 𝛽𝛽.  Black and gray lines have same 𝛽𝛽 values but different 𝛼𝛼 values.  Inset shows an example 

orientation selective RF.  (B) Corresponding tuning curves from (A) but as a stimulus function of angle.  
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Fig 2. The information-preserving vector captures all information from diverse neural populations and 

with correlated variability across neurons. Neural populations tuned to the same (A, B) or different (C, D) 

preferred stimuli. In (A) differences in neural tuning curves are due to differences in steepness values, whereas 

in (B) they are due to differences in thresholds. Lines formed by dots show the information values obtained by 

binning response variables. Dotted lines overlap with solid curves. (D) same as (C) but with noise correlations. 

Insets show example population tuning curves for n = 6. In all panels, we compare information transmitted by a 

population response (black line) with information transmitted by the information-preserving population vector 

(red) and the standard population vector (dashed gray).  
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Fig. 3 The information-preserving population vector captures all the information provided by 

responses of simultaneously recorded V1 neurons. Curves for the information provided by neural 

responses (black line) and that captured by the information-preserving population vector (red circles) overlap. 

The standard population vector (blue) and population count (grey) provide smaller amounts of information. 

Error bars are standard deviations. 
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Fig. 4 (A) Average correlation between stimuli and their reconstructions based on either the information-

preserving (red) or standard population vectors (grey). The information-preserving decoder converges to an 

unbiased estimate of stimulus (red line), but not the standard population vector (dashed grey). Error bars are 

standard error of the mean across realizations of population RFs. (B) Test of decoders based on V1 data (86 

neurons) from (Sharpee et al., 2006). The reconstructions do not require that all of the neurons are recorded 

simultaneously. Therefore, we could use an expanded set of 86 V1 neurons for which the responses to the 

same set of natural stimuli were available. The box and whisker plots show median and interquartile range 

(IQR); whiskers are 1.5 of IQR. Correlation values here reflect measurements for individual stimuli, not 

averaged across the set of stimuli.  
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Fig. 5. Schematic of a feedforward (A) and quadratic (B) decoder. (A) A feedforward network can 

implement the decoder in the original input space. Color marks connections of the same strength. (B) 

Quadratic decoding adds recurrent computation in layer 5. Input from layer 2 complex cells to layer 5 

intratelecephalic neurons (ITNs) sets the recurrent weights between the output layer 5 subcerebral projection 

neurons (SPNs). For clarity, only a subset of connections is shown. 

 

 

Fig. 6. Quadratic decoding explains quadratic scaling of cortex size across species. The number of 

cortical neurons as a function of to the total number of neurons in brain stem, basal ganglia and the 

diencephalon, which includes the thalamus. Data from (Herculano-Houzel, 2009). Solid lines represent fits 

using Eq. (3). 
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Materials and Methods

Estimating Mutual Information from V1 Recordings

We represent the responses of a set of N simultaneously recorded V1 cells to a stimulus binned into T segments and repeated

K times as a tensor D of shape (T,K,N). T is typically 330, corresponding to time bins of 30 milliseconds. Dtij represents

the number of times neuron j fired in response to stimulus t on repeat i, and can be any nonnegative integer.

Converting Data to Binary Words

Let νmax be the largest value in D; the maximum number of spikes over all neurons, stimuli segments, and repeats. We

form a binary tensor D̃ of shape (νmax × T ,K,N) by resampling each slice Dt·· into a sub tensor D̃(t) of shape (νmax,K,N)

according to the following algorithm:

1. For a given value of i and j we let n = Dtij . We sample without replacement a set L = {τl}nl=1 of n indices from the

integers {1, ..., νmax}

2. We set D̃
(t)
τij to 1 if τ ∈ L, and to 0 if not.

3. Steps 1 and 2 are repeated for all i and j.

After all the time slices of D are resampled, the set {D̃(t)} of binary tensors are concatenated to form a binary data

tensor D̃ of shape (νmax · T ,K,N). Each row of D̃ti· corresponds to a sample of {rj}. We note that the samples described

by D̃ correspond to time bins of length 30/νmax milliseconds.

In Figure 3 we include only sets of neurons recorded simultaneously, and all subsets. Thus, a set of 4 simultaneously

recorded neurons yields one set of size 4, 4 sets of size 3, and 6 sets of size 2.

Estimating parameters of the linear-nonlinear models

To compute population vectors and the information captured by them we need estimates of the linear-nonlinear (LN) model

parameters ~wk and βk for every neuron. In order to estimate βk, we fit the response rate of the kth neuron evoked by stimulus

~s (averaged across the repeated presentation of this stimulus) using a logistic function:

rk(~s) =
Rmax

1 + e−2(βk(x−αk))
, x = ~vk · ~s. (1)

In this expression ~vk is estimated as the maximally informative dimension for the neuron [Sharpee et al., 2006]. The pa-

rameters Rmax, αk, and βk are fit by minimizing the mean square error between rk(~s) and experimentally measured firing

rates.

To account for non-monotonic response functions, we also fit neural response functions using logistic function applied to

a quadratic function of the stimulus. Specifically:

r(~s) =
Rmax

1 + e−2(β1x1+β2x2+β11x2
1+2β12x1x2+β22x2

2−α)
, x1 = ~s · ~v(1), x2 = ~s · ~v(2), (2)
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where ~v(1) and ~v(2) are two RF components estimated as the first and second maximally informative dimensions for the

neuron [Sharpee et al., 2006]. These fits were used with quadratic decoding described in Text S5.

Information captured by population vectors

For the analysis in Figure 3 we used ~wk = (cos(ϕk), sin(ϕk))T , where ϕk are preferred orientation values estimated from the

MID vector ~vk for each neuron computed in [Sharpee et al., 2006, Sharpee et al., 2008], along with their standard deviations

∆ϕk. Additionally, in this figure we plot the information computed under a coarse grained realization of orientation values

ϕk to take into account experimental errorbars ∆ϕk accociated with them. The coarse graining is based on the following

measure of distinguishability between orientation values for neurons i and j:

dij =
∠(ϕi, ϕj)

1
2 (∆ϕi + ∆ϕj)

(3)

using the following procedure:

1. Find the pair of neurons (or subpopulations if multiple neurons have the exact same ϕ) with the smallest value of dij .

2. Compute ϕ̄ as the weighted angular average of all ϕ for the set of neurons in step 1, with weights given by ∆ϕ−1
j .

Similary compute the average value of ∆ϕ.

3. For all neurons in the set found in step 1, replace ϕ with ϕ̄ and ∆ϕ with its average.

4. Repeat steps 1-3 until no pair of neurons with distinct ϕ have dij < 1.

Adjusting for finite sample effects

We now describe how we estimated the information transmitted by a set of neural responses {rk} about a set of stimulus

samples D̃. The process is the same for estimating the information transmitted by the standard and information-preserving

population vectors, as they are also discrete random variables of known cardinality. Our information estimate is the finite

sample approximation of Shannon’s Mutual Information

Î(D̃) = −
∑
{rk}

P̂ ({rk}) log2 P̂ ({rk})−
1

T

∑
t

−∑
{rk}

P̂t({rk}) log2 P̂t({rk})

 , (4)

where P̂t({rk}) is the empirical probability of the population response equalling {rk} at time bin t, computed across repeats.

The marginal distribution P̂ ({rk}) is simply the average of P̂t({rk}) across time bins:

P̂ ({rk}) =
1

T

∑
t

P̂t({rk}). (5)

Because Î is a biased estimate of the true mutual information for finite samples [Treves and Panzeri, 1995, Strong et al., 1998],

we corrected for finite sample effects by subsampling D̃ using the approach [Treves and Panzeri, 1995]. Specifically, we

computed Î using a fraction f of the repeats, for f ∈ {1.0, 0.95, 0.90, 0.85}, sampling repeats without replacement. We
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performed this subsampling ten times for each value of f . We perform linear regression on the values of Î vs f−1 and

extrapolate to f−1 = 0, the limit of infinite sample size [Strong et al., 1998]. We report the extrapolated value as our final

estimate. The resulting information value Î has the units of bits. To convert Î to bits per second, we multiply by it by

νmax/0.03.

Computing Mutual Information from Simulations

For Figure 2 we plotted the Shannon Mutual Information (I) under various settings of the population parameters, for various

values of the population size N . To compute I(~r,~s) we use the following formulation of I:

I(~r,~s) = −
∑
{rk}

P ({rk}) logP ({rk})−
∫
d~sP (~s)

∑
{rk}

P ({rk}|~s) logP ({rk}|~s), (6)

where P ({rk}) =
∫
d~sP (~s)P ({rk}|~s). Expectation with respect to P (~s) was approximated by averaging over Ns = 5000 sam-

ples drawn from P (~s), which was the uniform distribution on the two dimensional unit circle. Because both the information-

preserving population vector ~M and the standard population vector ~U are discrete random variables like {rk}, P ( ~M |~s) and

P (~U |~s) are computed by pooling P ({rk}|~s) across all {rk} that map to the same value of ~M or ~u. These discrete mappings

are precomputed. Once we have computed P ( ~M |~s) and P (~U |~s), I( ~M,~s) and I(~U,~s) are computed in the same way as I(~r,~s).

The simulated neural populations had the following parameters in Figure 2. In panels A and B ϕi = 0 for all i. In panel

A the β values are uniformly distributed on a log10 scale between 0.1 and 10, and the α values are set so that the peak firing

rate equals 0.8 for all neurons (see Eq. (S5) below). In panel B all β are set equal to 1 and the α values are set so that the

peak firing rate varies uniformly between 0.4 and 0.8. In panels C and D the population is divided into subpopulations of

equal size with preferred orientations at ±45 degrees. In panel C, for both subpopulations, the β and α values are set as in

panel A. In panel D the same α and β values are used as in panel C though the peak firing rate may differ from 0.8 due to

the presence of interneuronal coupling induced by noise correlations. The noise correlations parameters were set according

to Eq. (S25) below.

In the case of neural populations tuned to the same stimulus feature, we also computed information while binning the

response statistics. The standard population vector reduces in this case to the population count variable Ucount. The

information-preserving population vector also becomes a scalar variable Mcount =
∑
riβi. To compute the binned versions

of these quantities Ubin and Mbin, we divided the support of either Mcount or Ucount variables into 15 equal sized bins. We

then computed the mappings assigning values of {rK} to values of Mbin and Ubin, using the mappings from {rK} to Mcount

and Ucount as an intermediate step. The results are included in Figure 2 as dotted lines. They indicate that even a small

number of bins is sufficient to capture essentially all the information provided by the responses of a neural population.
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Text S1 Linear-Nonlinear Model and Orientation Tuning

We begin by modeling neural responses from individual neurons as a binary variable r taking a value 1 when the neuron

produces a spike and 0 otherwise. To account for response saturation and rectification, we model the probability of a spike

(r = 1) as a saturating function of the stimulus projection onto the neuron’s receptive field ~wk. Specifically, we choose the

logistic function in order to take advantage of the properties of exponential families described below.

P (rk = 1|~s) =
1

1 + exp(−2βk(x− αk))
, x = ~wk · ~s (S1)

Here, vector ~s represents the current stimulus, ~wk represents the preferred stimulus or receptive field (RF) of the kth neuron,

and x is the component of the stimulus along the receptive field. The parameters αk and βk describe, respectively, the

midpoint and slope of the logistic function (Figure 1a). As a matter of notation neurons will be indexed by the letters i, j,

and k and dimensions of the stimulus or neural receptive fields will be indexed by a, b, c, and d. The RF can be thought

of as a pattern of unit contrast that, if presented, would elicit the strongest response from the neuron. Both ~s and ~wk are

D-dimensional vectors and ~wk is assumed to be normalized. We note that if a neuron with an orientation sensitive receptive

field, such as the one shown in the inset of Figure 1a, were probed by stimuli of oriented gratings with fixed contrast level then

the nonlinearity described in (S1) would yield a typical tuning curve around the preferred orientation (Fig. 1B). Instead of

considering such a high dimensional receptive field we work with a simplified model of orientation tuning in order to provide

a clearer link between the parameters αk, βk and the shape of the orientation tuning curve. Specifically, for a neuron with

preferred orientation ϕk we define RF as ~wk = (cos(ϕk), sin(ϕk))T , while stimuli are described by ~s(θ) = (cos(θ), sin(θ))T .

Thus, in the framework of the linear-nonlinear model, the probability to observe a spike is given by:

P (rk = 1|θ) =
1

1 + e−2βk(cos(ϕk−θ)−αk)
. (S2)

The maximal spike rate is achieved for θ = φk, which is given by:

P0,k =
1

1 + e−2βk(1−αk)
. (S3)

The width of the orientation tuning curve, which we define as the inverse of the second derivative of the logarithm of the

tuning curve is:

δk ≡

(
− d2

dθ2
ln

(
P (rk = 1|θ)

∣∣∣∣
θ=ϕk

))−1

=
1

2βk(1− P0,k)
. (S4)

We can invert the above equations to express αk and βk in terms of P0,k and δk:

αk = 1− δk(1− P0,k) ln

(
P0,k

1− P0,k

)
,

βk =
1

2δk(1− P0,k)
. (S5)

Thus, there is a one-to-one correspondence between parameters of tuning curves and nonlineary of the LN model.
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Text S2 Information-Preserving Population Vector

Population response probability is an Exponential Family

We start by describing the case where neural responses are conditionally independent given the stimulus; the generalization

to the case of correlated neural variability will be discussed in Text S3. Further, we will begin our arguments by considering

the responses of a population of neurons at one time point, and in a time window small enough for the responses of individual

neurons to be binary. At the end of Text S2 we will discuss how the results can be generalized to tackle the case of longer

time windows where neurons produce multiple spikes.

It is helpful to re-write the response function of an individual neuron (S1) in an exponential form:

P (rk|~s) =
e(2rk−1)βk(~wk·~s−αk)

2 cosh(βk(~wk · ~s− αk))
= ehk(rk)+2~s· ~Mk(rk)−Ak(~s), (S6)

where we have defined the functions hk(rk), ~Mk(rk), and Ak(~s) for notational convenience:

hk(rk) = −βkαk(2rk − 1), Ak(~s) = ln(2 cosh(βk(~wk · ~s− αk)))− βk ~wk · ~s, ~Mk(rk) = βkrk ~wk. (S7)

For conditionally independent responses, the probability to observe a response pattern r1, r2, . . . , rN across N neurons to

stimulus ~s is:

P ({r1, . . . , rN}|~s) =

N∏
i

P (ri|~s). (S8)

Using Eq. (S6), this probability distribution can also be written in the exponential form:

P ({rk}|~s) = exp(h({rk}) + 2~s · ~M({rk})−A(~s)), (S9)

where the functions h({rk}), ~M({rk}) and A(~s) are the summations of the corresponding individual neuron functions:

h({rk}) =
∑
k

hk(rk), A(~s) =
∑
k

Ak(~s), ~M({rk}) =
∑
k

~Mk(rk). (S10)

The vector ~M({rk}) is the information-preserving population vector whose expression we explicitly write out because of

its importance:

~M({rk}) =
∑
k

βkrk ~wk. (S11)

It provides a mapping from a set of neural responses {0, 1}N to a finite subset of Rd. The important conclusion is

that the population response model (S9) forms an exponential family with natural parameter ~s and sufficient statistic

[Wainwright and Jordan, 2008] ~M({rk}) that corresponds to the information-preserving population vector. We will see in

Sec. Text S3 that the population response model with correlated variability across neurons also forms an exponential family

As a matter of terminology, a single exponential family is considered to have fixed values of {αk}, {βk}, and {~wk} with

different members of the family indexed by different stimulus values of ~s.
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Sufficient statistics preserve information

An important result of P ({rk}|~s) being an exponential family is that the mutual information is preserved by the sufficient

statistic [Cover and Thomas, 2012], which in our case is the information-preserving population vector M from the main text.

That is, our goal is to show that:

I({rk}, ~s) = I( ~M,~s) (S12)

To show this directly in our case we first define the “density-of-states” function C( ~M) as the sum of eh({rk}) over all {rk}

that map to the same value of ~M :

C( ~M) =
∑
{rk}

eh({rk})δ( ~M − ~M({rk})) (S13)

The conditional and marginal distribution of ~M can be expressed in terms of C( ~M), without direct reference to {rk}:

P ( ~M |~s) = C( ~M) exp(2~s · ~M −A(~s)),

P ( ~M) = C( ~M)

∫
P (~s) exp(2~s · ~M −A(~s)) d~s

We note the relationships between P ({rk}|~s), P ({rk}) and P ( ~M |~s), P ( ~M) respectively:

P ( ~M |~s) =
∑
{rk}

P ({rk}|~s)δ( ~M − ~M({rk})) (S14)

P ( ~M) =
∑
{rk}

P ({rk})δ( ~M − ~M({rk})).

We now have the following important identity:

P ({rk}|~s)
P ({rk})

=
exp(h({rk}) + 2~s · ~M({rk})−A(~s))∫

P (~s′) exp(h({rk}) + 2~s′ · ~M({rk})−A(~s′)) d~s′

=
exp(2~s · ~M({rk})−A(~s))∫

P (~s′) exp(2~s′ · ~M({rk})−A(~s′)) d~s′

=
C( ~M) exp(2~s · ~M({rk})−A(~s))∫

P (~s′)C(2 ~M) exp(~s′ · ~M({rk})−A(~s′)) d~s′

=
P ( ~M |~s)
P ( ~M)

. (S15)

This last equality applied to Eq. (S12) for the mutual information yields:

I({rk}, ~s) =

∫
P (~s)

∑
{rk}

P ({rk}|~s) ln

(
P ({rk}|~s)
P ({rk})

)
=

∫
P (~s)

∑
{rk}

P ({rk}|~s) ln

(
P ( ~M({rk})|~s)
P ( ~M({rk}))

)

This in turn yields that

I({rk}, ~s) =

∫
P (~s)

∑
~M

P ( ~M |~s) ln

(
P ( ~M |~s)
P ( ~M)

)
= I( ~M,~s). (S16)
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Another corollary of (S15) is that the posterior distribution of ~s given {rk} depends only on ~M({rk}):

P (~s|{rk}) = P (~s| ~M({rk})). (S17)

Therefore, a Bayes optimal decoder needs only to carry out the weighted summation rather than keep track of which

response (out of 2N possible) was observed. Similar sufficiency properties are known for Gaussian rk as well as binary

population models with independent and identically distributed neurons [Wainwright and Jordan, 2008, Ma et al., 2006].

The derivation provides the first demonstration, to our knowledge, for a sufficient statistics for a population model for

binary neurons that are neither independent (see also Text S3 below) nor identically distributed and which has dimension D

independent of population size (D is the stimulus dimension).

Cumulants of the information-preserving population vector ~M

The mean value of the information-preserving population vector varies smoothly with the stimulus as we illustrate in Figure S1.

To show this analytically, we provide in this sub-section analytic expressions for the first two cumulants of ~M as a function

of ~s. Since ~s is the natural parameter of the class of models we consider, the cumulants of ~M can be computed by taking

derivatives of different orders of the log-partition function A(~s) with respect to ~s. In particular the mean and covariance are

the gradient and Hessian respectively:

~T (~s) = 〈 ~M〉 ~M |~s =
1

2
~∇~sA(~s), (S18)

Va,b(~s) = 〈(Ma − Ta(~s))(Mb − Tb(~s))〉 ~M |~s =
1

4

∂2A(~s)

∂sb∂sa
. (S19)

Since covariance matrices are always positive semi-definite we see here that A(~s) is a convex function. We also note that

Va,b(~s) is the Jacobian of ~T (~s), as well as the Fisher information matrix of ~M with regards to ~s. When the neurons are

conditionally independent, ~T (~s) and Va,b(~s) take simple forms:

~T (~s) =
∑
k

βk ~wk σ(2βk(~wk · ~s− αk)), σ(x) =
1

1 + e−x
, (S20)

Va,b(~s) =
∑
k

(βk)2wa,kwb,kσ(2βk(~wk · ~s− αk)) (1− σ(2βk(~wk · ~s− αk))) (S21)

Because Va,b(~s) is a continuous mapping we see here that ~T (~s) is a smooth function of ~s. It is sometimes the case that

stimulus parameter is embedded in a higher dimensional space as the natural parameter (e.g. ~s(θ) has higher dimensionality

then θ, a single parameter). In this case the family is said to be curved with respect to θ. We note that the information-

preserving property also holds for curved exponential families. However, when calculating the cumulants, it is necessary to

take gradients with respect to ~s and not θ.
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Analysis of non-binary neural responses

We now discuss how these analyses can be generalized to non-binary neural responses that may appear over longer time

windows. The time window size T still needs to be constrained by the stimulus dynamics to ensure that the stimulus

does not change appreciably during the response time window. Nevertheless, for natural visual stimuli it would not be

uncommon for stimuli to be approximately constant over the time period of ∼ 30 msec, given the predominance of low

temporal frequencies in natural stimuli [Simoncelli and Olshausen, 2001]. Over this time window the responses of visual

cortical neurons, for example, would commonly produce more than one spike. How should we treat such multiple responses?

Formally, we can split the time window of interest T into smaller bins of width ∆T of such duration that the neural response

can only be binary (e.g. ∼ 1 msec) when considered in these ∆T time intervals. The maximal number of spikes that a

neuron can produce is then Nt = T/∆T . We can model responses of this neuron that as a set of Nt binary neurons with

identical LN parameters. Therefore, applying the same mathematical arguments as above, one observes that the responses

of these auxiliary neurons can be simply averaged without incurring information loss. (These summed responses will follow

a binomial distribution.) Returning to the population of N neurons with different RFs and non-binary responses, we can

expand this population to size Nt ·N where each neuron from the original population is represented by a subpopulation of

Nt neurons, with the same RF and β factors as the original neuron, and whose responses can therefore be averaged. This

analysis indicates that the responses of non-binary neurons can be analyzed by fitting the neural responses to stimuli with a

logistic function scaled by a constant Rmax. The inverse of the scaling constant Rmax yields the time window duration over

which the responses of this neuron can be considered binary. The expression (S11) for the information preserving population

vector remains unchanged, ~M{r1, . . . rN} =
∑
i βi ~w

(i)ri, except now ri are no longer binary variables and instead represent

the number of spikes produced by ith neuron during time interval T . Furthermore, because the response averaging holds in

the presence of noise correlations, as long as they are stimulus-independent (see Text S3 below), the averaging across time

will be valid even when responses across different time bins are not independent, again as long as these correlations across

time bins do not depend on the stimulus.

Text S3 Taking into account correlated variability across neurons

We now expand the population response model to allow for the presence of correlated variability among neurons observed

under repeated stimulus presentations. A standard way to include such pairwise “noise” correlations between neurons is with

the following probability response distribution [Granot-Atedgi et al., 2013]:

P ({r1, . . . , rN}|~s) = exp

h({ri}) + 2~s · ~M −A(~s,J) +
∑
ij

rirjJij

 (S22)

The new term
∑
ij rirjJij that describes noise couplings between neurons does not depend on the stimulus, and so can be

incorporated into h({rk}):

h({rk},J) =
∑
i,j

Jijrirj −
∑
k

βkαk(2rk − 1) (S23)
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The joint distribution on population responses is again an exponential family:

P ({rk}|~s,J) = exp
(
h({rk},J) + 2~s · ~M({rk})−A(~s,J)

)
(S24)

Importantly, the vector of sufficient statistics ~M({rk}) is the same as before and still preserves information in neural responses.

Thus, the strategy for reading out the activity does not need to be modified in the presence of correlations. The normalization

factor A(~s,J) is now defined as a stimulus dependent normalizing term but in general lacks a closed-form expression similar

to A(~s) from Eq. (S10).

In the simulations in Figure 2D, we used coupling coefficients parameterized by {ϕ} as follows:

Jij =
1 + cos(ϕ(i) − ϕ(j))

10
√
N

. (S25)

It is worth nothing that the framework remains valid in the presence of noise correlations that depend on differences in the

stimulus selectivity between neuronal pairs. We note that for non-zero J, computing P (rk|~s) requires marginalizing over the

states of all other neurons in the population and will in general differ from the logistic response function Eq. (S1). This

observation demonstrates that it is not the logistic form Eq. (S1) that guarantees ~M preserves information but rather that

the population’s response distribution is coupled to ~s only through ~M({rk}). Furthermore, since the expressions relating the

cumulants of ~M({rk}) to gradients of A(~s) are still valid in this case and Va,b(~s) remains positive semi-definite by construction,

the mapping described by the expected value ~T (~s) of the information-preserving population vector remains a smooth function

of stimuli ~s.

Text S4 Stimulus Decoding from Population Vectors

We now describe convergence properties of the information-preserving population vector in the limit of large neural popu-

lations. Here, the response function of individual neurons does not have be to a logistic function for most of the important

properties to hold. Therefore, we write this response function from Eq. (S1) more generally in terms of a smooth monotonic

function g:

P (rk = 1|~s) = g(w̃k · ~s− α̃k), (S26)

where we introduced a new notation w̃k = βk ~wk for the RF scaled by its amplitude βk. The thresholds have also been

correspondingly scaled α̃k = βkαk.

We will normalize both the information-preserving and the standard population vectors by the number of neurons N in

the population

M̄ =
1

N

∑
k

w̃krk),

ū =
1

N

∑
k

w̃k
|w̃k|

rk.
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By the weak law of large numbers both M̄ and ū converge in probability to their expected value as N grows large:

M̄
p−→ M̄(~s) ≡

∫
P (w̃) w̃g(w̃ · ~s) dw̃

ū
p−→ ū(~s) ≡

∫
P (w̃)

w̃

|w̃|
g(w̃ · ~s) dw̃,

where P (w̃) describes the distribution of (scaled) RF components. We now show that when P (w̃) is described by a multivariate

Gaussian distribution, the information-preserving vector will produce unbiased stimulus estimates, whereas biases will persist

in reconstructions based on the standard population vector. For clarity of the presentation, we first consider the case where

RF components have zero mean and that all neurons have the same scaled thresholds α̃k. Later we will show how solutions

generalize to the case of unequal thresholds and nonzero RF components.

Just like in the analysis of STA convergence properties [Paninski, 2003, Sharpee et al., 2004], we can use Stein’s lemma

for Gaussian P (w̃) [Stein, 1981] that expresses averages of RF components weighted by the nonlinear function g of these

components as the product of correlations between components and the average of the gradient of g:

〈w̃g(w̃)〉 = C〈~Og(w̃)〉. (S27)

Here 〈·〉 denotes expectation with respect to P (w̃) and Cij = 〈w̃iw̃j〉 is the covariance of RF components across the population.

Stein’s lemma applies as long as g is a smooth function. [Technically, ∂g
∂w̃i

should exist almost everywhere and 〈 ∂g∂w̃i
〉 < ∞].

Applying the Stein’s lemma to Eq. (S27) for the information-preserving population vector one finds that:

M̄(~s) = C~s〈g′(w̃ · ~s)〉 (S28)

In these equations, the average 〈g′(w̃ ·~s)〉 describes the compressive nonlinearity of the kind shown in Fig. S1. The important

conclusion from Eq. (S28) is that the information-preserving population vector is aligned with C~S. The stimulus direction

can therefore be determined by multiplying the information-preserving population vector by the inverse covariance matrix

C−1. This procedure is completely analogous to the one used to reconstruct the RF from the STA in the presence of stimulus

correlations [Sharpee et al., 2004, Ringach et al., 2002].

One finds a very different answer when applying Stein’s lemma to the standard population vector. In this case:

ū(~s) = C~s

〈
1

|w̃|
g′(w̃ · ~s)

〉
− C

〈
w̃

|w̃|3
g(w̃ · ~s)

〉
. (S29)

Here, the average in the second term will not be aligned with the stimulus ~s unless the input distribution has spherical

symmetry [Chichilnisky, 2001, Paninski, 2003]. Thus, the right hand side is not aligned with C~s. This indicates that that

decoding based on the standard population vector does not readily produce an estimate of the stimulus, even in the limit of

large neural populations.

Standard numerical issues might arise when computing the inverse of the covariance matrix C if RFs primarily sample one

portion of the stimulus space. These issues have been discussed in detail in the context of RF estimation [Sharpee et al., 2008,
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Sharpee, 2013, Ringach et al., 2002, Theunissen et al., 2000]. In Figure 4 we plot, the correlation between stimuli ~s and

C−1M . However, one can also follow [Simmons et al., 2013] to bypass these issues by analyzing the correlation between ~M

and C~s:

Corr( ~M,C~s) =
~M · C~s
| ~M | |C~s|

. (S30)

We now return to consider generalizations to the case where RF components have non-zero mean and thresholds vary

among neurons. To compensate for the non-zero mean, one can subtract from the information-preserving population vector

a vector of 〈w̃〉〈g(w̃ · ~s)〉, the average RF scaled by the population firing rate in response to ~s. This linear procedure can be

achieved in the brain in the balanced regime [van Vreeswijk and Sompolinsky, 1996] where excitatory and inhibitory inputs

are balanced on average together with homeostatic scaling of synaptic inputs.

The case of variable thresholds is treated by considering the average nonlinear function

geff(w̃ · ~s) =

∫
P (~α) g(w̃ · ~s− α) dα (S31)

The above results remain valid as long as α are distributed independently of w̃.

Finally, the distribution of RF components might not be purely Gaussian. Such deviations will cause systematic distortions

in the mapping (Fig. S1). As long as these distortions are indeed systematic, they can be learned and compensated for. Such

learning also needs to happen every time the RF changes following adaptation to changes in the stimulus statistics. One

possible approach for computing the expected deviations of the estimator Eq. (S27) for weakly non-Gaussian stimuli can be

found in Appendix A of [Sharpee et al., 2004].

The question of what sets of receptive fields might provide maximal information about natural scenes and allow for

their accurate reconstruction represents an active area of research [Olshausen and Field, 1996, Olshausen and Field, 1997,

Henniges et al., 2010, Bornschein et al., 2013]. Here we pursued a separate question of how to decode neural responses based

on a fixed set of receptive field while minimizing information loss. Finding optimal receptive field parameters is an important

task for future research, with results that will likely differ for linear-nonlinear or quadratic decoding.

Receptive field decorrelation by recurrent networks with divisive normalization

According to Eq. (S28), the information-preserving population vector yields an estimate of the stimulus ~s multiplied by the

covariance matrix C of neural RFs in the population. This systematic shift can be compensated for by “decorrelating” RFs to

applying such transformations that the resultant covariance matrix becomes proportional to a unit matrix. We now discuss

how divisive normalization in a recurrent network can approximate this operation.

In the divisive normalization model [Carandini and Heeger, 2012] neural responses depend on the activation of other

neurons in the network as follows:

rk(~s) =
g(w̃(k) · ~s)

1 +
∑
j εjkg(w̃(j) · ~s)

, (S32)

where g(w̃(k) · ~s) describes the activation function of the kth neuron without taking into account recurrent connections. The

activation function g(x) is again a smooth, monotonically increasing function. The parameters εjk describe the strength of the
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recurrent connection from neuron j to neuron k. In general they are not symmetric, εjk 6= εkj . We let ~ε(k) ≡ (ε1k, ..., εNk)
T

denote the vector of incoming connections to neuron k.

We consider effective receptive fields w̃
(k)
eff = C−

1
2 w̃(k) (the Cholesky decomposition of C−1), so that the covariance

matrix of w̃eff across the population is the D-dimensional identity matrix I. We seek to find a setting of ~ε(k) so that

rk(~s) ≈ g(w̃
(k)
eff · ~s) as close as possible:

~ε
(k)
∗ = arg min

ε(k)

1

2

〈(
rk(~s)− g(w̃

(k)
eff · ~s)

)2
〉
~s

, (S33)

where the stimuli are drawn from a distribution P (~s). We note that the optimization in (S33) can be carried out independently

for each k. We performed an example computation with the following parameters: D = 2, N = 500, P (~s) was a white noise

gaussian that we drew 1,000 samples from. Rfs w̃ were drawn from a zero mean Gaussian distribution with the following

covariance matrix:

C =

 3.0 1.05

1.05 0.5

 (S34)

The optimization in (S33) was computed using L-BFGS algorithm, and εjk was initialized as cos(θjk)/N where θjk is the

angle between w̃j and w̃k. This initialization was chosen to ensure that no numerical overflow occurred in the evalation of

rk(~s). After finding ~ε
(k)
∗ for all k, we computed the pearson correlation between εjk and cos(θjk). For this example we found

a correlation of 0.02 with p-value p = 4.2 × 10−23, indicating a weak but statistically significant correlation between the

strength of recurrent connections and receptive field overlaps, as is observed experimentally [Yoshimura and Callaway, 2005,

Yoshimura et al., 2005].

Text S5 Quadratic Expansion of the Input Space

To account for non-monotonic spike probabilities as well as the dependence on multiple stimulus components, one can follow

the framework of minimal models [Fitzgerald et al., 2011] to expand the stimulus by including all pairwise products between

stimulus components. If the original stimulus has D components, the expanded stimulus will have D + D2 components of

the following form:

~ζ(~s) ≡ {~s, ~s~sT }. (S35)

The neural response probability

P (rk = 1|~s) =
1

1 + exp(−2(w̃k · ~s− α̃k + ~sTγk~s))
(S36)

can be compactly written as

P (rk = 1|~s) =
1

1 + exp(−2(W̃k · ~ζ − α̃k)
(S37)

in terms of the RF W̃ of D + D2 dimensions in the expanded input space. Thus, the information-preserving properties
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analyzed in Text S2 and decoding properties discussed in Text S4 will hold. We note that the quadratic matrix γ can have

both positive and negative eigenvalues to describe both excitatory and suppressive stimulus dimensions [Rust et al., 2005].

The information-preserving population vector will now also have D +D2 components:

~Mexpanded({rk}) = { ~M lin({rk}), ~Mquad({rk}),

where

~M lin({rk}) =
∑
k

w̃k(2rk − 1), ~Mquad({rk}) =
∑
k

γk(2rk − 1). (S38)

If both w̃ and γ are normally distributed, then, following the arguments from Text S4, the information-preserving population

vector in the expanded space will be aligned with Cexpandedζ. Here, Cexpanded is the covariance matrix of the D + D2

dimensional vector {w̃,γ}. On a particular trial, ~Mexpanded may produce a direction ζ that does not satisfy the constraint of

Eq. (S35) associated with quadratic expansion of the stimulus. However, we can search for a value of ζest that satisfies this

constraint and is most consistent with ~Mexpanded. This will in turn produce a stimulus estimate in the original input space.

To find such a pattern, we note that ~Mquad is a symmetric matrix. The best rank one approximation of this matrix, according

to the Eckart–Young–Mirsky theorem, is λ1~e1~e
T
1 , where λ1 is the largest (in absolute value) eigenvalue of ~Mquad and ~e1 its

associated eigenvector. We set q̂ = ±~e1 and resolve the ambiguity in sign by requiring consistency with the estimate derived

from ~M lin.

The power iteration algorithm can be used to find ~e1. For our purposes, we initialize q̂0 randomly and apply the following

iteration:

q̂t+1 =
~Mquad q̂t

| ~Mquad q̂t|
(S39)

q̂t will eventually converge to ~e1. We note that the iteration in (S39) involves a sequential application of matrix multiplication

by ~Mquad (recurrent processing), followed by normalization of the resultant vector (gain normalization). The vector q̂ provides

the best approximation of Mexpanded that can be constructed from D dimensional vectors as {q̂, q̂ q̂T }.

For the decoding of V1 data, we took {w̃(1)
k } and {w̃(2)

k } to be the first and second receptive field components of

[Sharpee et al., 2006]. The quadratic kernel γk is computed as β11,k · w̃(1)
k w̃

(1)T
k + β22,k · w̃(2)

k w̃
(2)T
k + β12,k · w̃(1)

k w̃
(2)T
k +

β12,k · w̃(2)
k w̃

(2)T
k , where coefficients β11, β12 and β22 are defined in Eq. (2). In this case it can be shown that under the

assumption that RF components w̃ are described by a Gaussian distribution with zero mean, the covariance matrix in the

expanded space allows a decomposition such that

Cexpandedζ = {C~s, C2~s (C2~s)
T }, (S40)

where C2 = 1
N

∑
k λ1,kẽkẽ

T
k + λ2,kũkũ

T
k , λ1,k and λ2,k are the first and second eigenvalues of the quadratic kernel for kth

neuron, and ẽk and ũk are their corresponding eigenvectors. Specifically, λ1,2 = 1
2 (β11 + β22 ± (β11 − β22)/ cos(2θ)) and

θ = arctan(2β12/(β22 − β11))/2. Thus, we did not need to compute the full covariance matrix in the expanded space.

Comparing Eq. (S40) and the definition of q̂, we can find the stimulus direction based on quadratic decoder by applying

C−1
2 to q̂. Alternatively, to avoid inversion of a poorly conditioned C matrix, we compute, just as in Text S4, the vector

31

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 28, 2018. ; https://doi.org/10.1101/273854doi: bioRxiv preprint 

https://doi.org/10.1101/273854


M
a

Stimulus component Stimulus component 1

S
ti
m

u
lu

s
 c

o
m

p
o

n
e

n
t 
2

-3

-3

3
3

0

0

2-2

-2

-1

2

1

1-1
M

 c
o

m
p

o
n

e
n

t 
a

lo
n

g

th
e

 s
ti
m

u
lu

s
 a

x
is

Stimulus component 

along chosen axis

1.40.80.2

16

-16

0

cb

-3 30 2-2 1-1

0

1

-1

Figure S1: (A) The expected value of the information-preserving spike count varies smoothly as a function of the stimulus

component along the RF. Gray shading represents one standard deviation around the mean (black line). (B) Illustration of

the compressive nonlinearity in a population tuned to different input features. The curves relate the magnitude of stimuli

along one of two axes in the input space (green or yellow) to the magnitude of the information-preserving population vector

along these axes. Green/yellow curves are for directions of maximal/minimal variance of RF components. (C) Map of

the compressive nonlinearity showing the magnitude of the information-preserving population vector multiplied by C−1 (to

correct for differences in RF distribution) for different stimuli, see also Text S4. The red dotted line shows the standard

deviation of the RF distribution.

correlation between q̂ and C2~s.
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