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SUMMARY 
 
Inhibitory interneurons are diverse in the nervous system, though most have unknown 
functions. In sensory systems, two broad classes of computation have been considered – 
linear effects that generate the classical receptive field and nonlinear modulation that 
mediates non-classical contextual effects. Here we analyze salamander retinal amacrine 
cells using a general approach to directly measure and model how an interneuron pathway 
influences computation. Using simultaneous intracellular and multielectrode recording, we 
measure the linear feature contributed by an amacrine pathway and nonlinear modulatory 
effects on other visual features. We find great diversity in the functional effects of amacrine 
cells, with even apparently simple, linear amacrine cells creating both linear and diverse 
modulatory effects such as divisive gain control, polarity reversal and shifting threshold on 
distinct visual features conveyed to single target ganglion cells. The functional effects of 
amacrine cells parallel the previously noted anatomical and molecular heterogeneity of this 
interneuron population.  
 
 
Highlights 
  

• Some amacrine cells contribute a linear feature to ganglion cells but others do not 

• The visual feature conveyed by an amacrine pathway improves a ganglion cell model 

• One amacrine-ganglion cell pair has different modulatory effects on different features 

• Amacrine cells with linear responses have highly diverse nonlinear modulary effects 
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INTRODUCTION 
 

Sensory neurons combine signals delivered through multiple parallel pathways to produce 

computations in neural circuits. Although there have been many measurements of sensory 

responses in particular neurons, there has been limited understanding about how parallel 

pathways interact and what their functional implications are. This is particularly true for 

interactions between inhibitory interneurons and excitatory pathways, where the diversity of 

connections, cell-types and structure makes it difficult to understand how signals in separate 

pathways interact (Baccus, 2007; Markram et al., 2004; Masland, 2012b; Mott and Dingledine, 

2003; Roska et al., 2006). 

Historically, understanding the role of interneurons’ functions has been a challenge, mainly 

due to the limitations in selectively perturbing neurons in real time and recording the effects of 

such perturbations. As a result, many of the reported roles of inhibitory circuits are based on 

correlative evidence, supported by a variety of computational models (Isaacson and Scanziani, 

2011; Jadzinsky and Baccus, 2013). 

Yet despite many new methods to perturb interneurons selectively and record from neural 

populations, these techniques have not been applied in a general approach to understand how 

interneurons produce computations in a circuit, in particular because of the lack of computational 

methods fit directly to physiological data, to understand their effects quantitatively. The lack of 

an accepted way to understand complex nonlinear interactions in the nervous system is a 

widespread limitation that can potentially lead to misinterpretations of experimental 

perturbations of the nervous system (Otchy et al., 2015).  

Retinal amacrine cells are a class of diverse inhibitory interneurons that participate in 

multiple forms of inhibitory interactions including feedback, feedforward and lateral inhibition, 
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targeting bipolar cells, ganglion cells, and other amacrine cells, and are mostly diversified 

according to the types of ganglion cells (Masland, 2012a; Sanes and Masland, 2015; Werblin, 

2011). Methods exist to present visual stimuli while perturbing single interneurons and recording 

the effects with a multielectrode array (Asari and Meister, 2012, 2014; Baccus et al., 2008; de 

Vries et al., 2011; Manu and Baccus, 2011). Finally, the precision to which the retina responds 

(Berry et al., 1997), makes it possible to connect neuron-level mechanisms with circuit-level 

functions as represented by a computational model that accurately fits the neuron’s response. 

When considering the functional contribution of an interneuron pathway, one can divide 

signals into two broad components, those flowing through the interneuron, and those traveling 

through pathways parallel to the interneuron to the output cell. The interaction between those 

two pathways have been divided into two classes, a linear or classical effect (Dong and Hare, 

2003; Hubel and Wiesel, 1962; Machens et al., 2004; Masland et al., 1984; Molnar et al., 2009; 

van Hateren, 2005), whereby a neural pathway contributes to the linear or classical receptive 

field, and a modulatory effect whereby a neural pathway interacts nonlinearly with the output of 

other parallel pathways (Carvalho and Buonomano, 2009; Chance et al., 2002; Chen et al., 2010; 

Hallum and Movshon, 2014; Katzner et al., 2011; Mitchell and Silver, 2003; Molnar and 

Werblin, 2007; Olsen and Wilson, 2008; Ölveczky et al., 2003; Roska and Werblin, 2003). There 

has not existed an approach to study the overall contribution of specific neurons to these two 

types of effects.  

Here we use a general method to directly measure the visual feature transmitted by a neural 

pathway, and infer signals flowing through all other pathways. Furthermore, we use a general 

approach to analyze the linear and nonlinear interactions of the signals flowing through an 

interneuron pathway and other pathways. Using simultaneous intracellular and multielectrode 
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recording in the isolated retina, we found a range of effects from amacrine cells that include both 

mediating a component of the average visual feature encoded by ganglion cell, and diverse 

modulatory effects on other neural pathways. The range of modulatory effects represented a 

continuum that comprised six general categories, including different combinations of divisive 

gain control, shifting of threshold, an additive inhibitory effect, and reversal of polarity. 

Furthermore, even amacrine cells with simple, linear responses under stimulation by a uniform 

visual field could create linear and diverse types of nonlinear effects on multiple different 

features of single target ganglion cells. These results indicate that individual amacrine cells 

simultaneously create a wide range modulatory effects on different visual features transmitted by 

the retina. Any complete description of interneuron function in the retina must account for this 

diverse modulation. 

 

RESULTS  

The stimulus feature transmitted by an amacrine pathway 

We intracellularly measured and manipulated the activity of individual amacrine cells 

including sustained (n = 8) and transient (n = 3) in the isolated salamander retina and 

simultaneously recorded the spiking activity of many ganglion cells (n = 153) at once in response 

to visual stimulation and amacrine perturbation using an array of extracellular electrodes (Fig. 1).  

We first analyzed the visual feature transmitted by the amacrine pathway, which is formed 

in two stages – the amacrine cell’s visual response, and its transmission. We measured the visual 

response of amacrine cells by fitting a linear-nonlinear (LN) model consisting of a linear 

temporal filter followed by a time-dependent, or static nonlinearity (Fig. 2A). The linear filter 

represents the average effect of a brief flash of light on the amacrine cell membrane potential, or 
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equivalently can be interpreted as the time-reverse of the visual stimulus to which the amacrine 

cell was most sensitive on average. 

To characterize the second stage of the interneuron pathway – how signals transmitted 

through individual amacrine cells contributed to the ganglion cell response – we injected white 

noise current into the amacrine cell while presenting a white noise visual stimulus. Because the 

inner retina adapts to the stimulus contrast by changing its sensitivity (Baccus and Meister, 2002; 

Kim and Rieke, 2001), the visual stimulus was included to maintain the retina in a similar state 

of adaptation in the current injection and control conditions. We then computed an LN model 

between the amacrine current and the ganglion cell spike train (Manu and Baccus, 2011) (see 

Experimental procedures, Fig. 2B). In this transmission model, the transmission filter represents 

the average effect of current on the ganglion cell firing rate. The linear transmission filters were 

mostly inhibitory with different timecourses (Fig. 2C). Effects were seen on only a subtype of 

ganglion cells (Fig. 2 E, F). Consistent with previous results from steady current pulses (de Vries 

et al., 2011), transmission dynamics in some cases were specific to the amacrine cell – ganglion 

cell pair, with single amacrine cells having different dynamics for different target ganglion cells 

(Supp. Fig. S1).  

Because the input signal to this cascade has a Gaussian probability distribution, the overall 

linear feature conveyed by this pathway can be obtained by convolving the two linear filters 

whether the amacrine visual response is linear or nonlinear (Hunter and Korenberg, 1986). In 

combining these two filters, we avoided a double contribution from the membrane time constant 

by deconvolving by an exponential filter representing that time constant (Manu and Baccus, 

2011). The features conveyed by the amacrine pathway were typically monophasic and positive, 
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formed by a negative response to light (Off response) followed by an inhibitory transmission; 

there was diversity in the time course of the feature (Fig. 2D). 

 

Signals traveling through parallel neural pathways 

To identify the signals conveyed by neural pathways other than through the amacrine cell, 

we took the amacrine pathway contribution out of the n-dimensional stimulus by computing the 

(n-1) dimensional stimulus space orthogonal to the amacrine feature (See Experimental 

Procedures). Within this new stimulus subspace, we computed the ganglion cell’s spike-triggered 

average (STA) feature, the orthogonal STA (oSTA) (Fig. 3A). This feature represents the 

average of other visual features encoded by the ganglion cell, that were not conveyed by (were 

orthogonal to) the amacrine pathway. This two-pathway model thus encodes two features of the 

stimulus, one average feature encoded by the amacrine cell, and one average feature encoded by 

all other pathways. Note that this does not account for the possibility that other interneuron 

pathways may be conveying the same feature as the amacrine cell, and so in this model we 

effectively refer all of the amacrine feature to be encoded by the amacrine pathway. 

Comparing the full STA of the ganglion cell and the oSTA, we found that in some cases the 

two differed, meaning that the amacrine pathway contributed to the average visual feature 

conveyed by the ganglion cell (Fig. 3B). In other cases, however, the STA and oSTA were nearly 

identical, meaning that the amacrine pathway feature did not contribute to the linear receptive 

field of the ganglion cell (Fig. 3C). The range of differences between the STA and orthogonal 

STA indicated substantial diversity in the linear contribution of an amacrine cell to a ganglion 

cell’s response (Fig. 3D).  
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Amacrine cells that contributed to the ganglion cell STA had a smaller time-to-peak 

difference between the amacrine cells’ own STA and the ganglion cell STA. For other properties 

such as ganglion cell STA, the timing of the amacrine transmission filter and the overall feature 

conveyed by the amacrine cell pathway, amacrine cells that contributed to the ganglion cell STA 

were similar to those that did not (Fig. 3E). Thus the contribution of an amacrine cell to the 

average ganglion cell visual feature did not appear to be a property of either cell type, but instead 

depended on the relative timing of the amacrine and ganglion cell responses. 

 

A model using the amacrine cell pathway more accurately predicts the ganglion cell 

response 

To examine if the amacrine pathway feature was necessary to capture the ganglion cell’s 

firing rate modulation in response to a visual stimulus, we compared whether a model consisting 

of the amacrine pathway and an orthogonal pathway could predict the ganglion cell more 

accurately than a single pathway LN model. The two pathway model combined the two 

pathways with a two-dimensional nonlinearity that mapped the output of the two pathways to the 

ganglion cell firing rate. We computed the model using the ganglion cell and amacrine cell 

response, and tested the model on a separate section of data, which was held out from the data 

used to fit the model. Figure 4 shows the firing rate of a sample ganglion cell using only the STA 

feature (an LN model), or a two-pathway model using the amacrine feature and average 

orthogonal feature. A third case was tested using a two pathway model fit using the ganglion cell 

response alone using the standard method of spike-triggered covariance (STC) analysis 

(Schwartz et al., 2006; Simoncelli et al., 2004). The accuracy of the amacrine model exceeded 

that of the LN model, and was similar to the two-pathway STC model. This increased 
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performance was not simply because there were more parameters in the multi-pathway models, 

because all results were cross-validated on different data than were used to fit the model, and in 

fact a model with more parameters would be expected to perform worse on a different test set of 

data due to overfitting of the training data set. Note that the standard STC analysis provides no 

information as to stimulus features conveyed by particular interneuron pathways. Thus, 

measuring a stimulus feature directly from an interneuron pathway creates a model that is both 

more accurate and represents a verified internal computation in the circuit. 

 

A general analysis of modulation in amacrine pathways  

A ganglion cell receives input from multiple neural pathways, and each pathway conveys its 

own preferred stimulus feature. An interneuron could potentially affect each of these features 

differently. We were interested in understanding (1) what ganglion cell visual features are 

affected by the amacrine pathway? (2) what kind of nonlinear interaction exists between 

amacrine pathway and other input pathways to a ganglion cell? and (3) are the amacrine effects 

different for different features? To address these questions, we decomposed the stimulus 

orthogonal to the amacrine feature into its principal components, each representing a separate 

feature, with all of these features being orthogonal to the amacrine feature. We used the standard 

approach of spike triggered covariance (STC) analysis to recover the entire linear subspace 

representing the space spanned by the features encoded by the multiple pathways feeding into a 

ganglion cell that does not include the amacrine pathway feature. For each ganglion cell, we 

recovered up to several features that were orthogonal to the amacrine feature, which do not 

necessarily correspond to other specific neural pathways (Fig.5C).  
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To quantify how the amacrine feature was combined with each of these orthogonal features, 

we computed for each feature a two-dimensional nonlinear function whose inputs were the 

projection of stimulus on the amacrine pathway feature, and the projection of the stimulus on that 

orthogonal ganglion cell feature (Fig. 5A and B). The output of this two-dimensional 

nonlinearity was the ganglion cell firing rate. Thus, this two-dimensional nonlinearity 

represented the firing rate as a function of the similarity of the stimulus and the ganglion cell 

visual feature, for different levels of the amacrine pathway output (Fig. 5D). Several different 

categories of effects were observed in these nonlinearities. In the example shown in Fig. 5D, one 

effect observed was that as an amacrine cell changed from depolarized to hyperpolarized, the 

ganglion cell response changed with respect to light from Off–type to On–type (Fig. 5D, first 

column). Previously it has been shown that the ganglion cell light response can change sign due 

to peripheral visual stimulation (Geffen et al., 2007). Our current analysis shows that a local 

amacrine pathway can change the sign of a ganglion cell’s response to light on a fast time scale. 

This result illustrates how inhibitory interneurons can rapidly and dramatically alter the behavior 

of the output neurons in the course of a computation.  

For a different orthogonal stimulus feature of the same amacrine–ganglion cell pair, the 

same analysis revealed a different type of nonlinear effect of amacrine transmission, an additive 

effect on firing, such that the baseline level was high when the amacrine cell was hyperpolarized 

(Fig 5D, col. 2). For the third ganglion cell’s significant feature, the cell was suppressed when 

the stimulus was similar or opposite in sign to this ganglion cell feature (Fig 5D, col. 3). Firing, 

however was also suppressed by the amacrine feature. For the fourth significant ganglion cell’s 

dimension, the amacrine feature caused a divisive depression (Fig. 5D, col. 4). Note also that 

even though the amacrine effect on the firing rate is similar for all of these features, in the sense 
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that whenever amacrine cell is hyperpolarized there is greater firing, the nature of the interaction 

of the amacrine output with the ganglion cell preferred feature is very different. This analysis 

reveals that simply designating a cell as inhibitory is insufficient to account for the complexity of 

its effects. Furthermore, even in a single amacrine–ganglion cell pair multiple types of effects 

can occur.  

We could identify six different categories for the nonlinear modulatory effect of the 

amacrine pathway on the ganglion cell’s light response, which included changing the sensitivity, 

controlling the gain, changing in the threshold, changing both gain and threshold, an additive 

inhibitory effect, and reversal of polarity, or alternating between Off– and On–type ganglion cell 

(Fig. 6). Figure 6A-C shows how these categories correspond to a shifting and scaling of the one-

dimensional nonlinear functions across different polarizations of the amacrine cell. As a strong 

threshold exists at the bipolar cell terminal, a horizontal shifting and scaling could potentially 

correspond to presynaptic inhibition, and a vertical shifting or scaling could potentially 

correspond to postsynaptic inhibition, although we did not specfically test these mechanistic 

hypotheses here. The effects found for the pairs studied here were not specific for a particular 

amacrine cell or ganglion cell type, but were specific for each amacrine–ganglion cell’s feature 

pair, with up to eight different features of a single cell pair with different effects (Fig. 6D).  

 

Diverse modulatory effects on the ganglion cell population  

To further analyze the modulatory effects of amacrine cells across the population of cell 

pairs, we parameterized the two-dimensional nonlinearity for each amacrine – ganglion cell 

feature pair, measured directly from ganglion spiking response, with a set of quadratic logistic 

functions as described in equation (10) (see Experimental Procedures for details). These 
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functions are consistent with a so-called maximum noise entropy model, that has the highest 

uncertainty about the neuron’s response, and so are least constrained or biased with respect to a 

given set of measurements (Jaynes, 1957a, b). This model-based description was necessary as the 

modulations caused by the amacrine cell’s signal operated on the same time scale as the response 

itself. The resulting functional characterization then enabled the separation between the 

mechanisms underlying the amacrine fast modulations and those that give rise to the stimulus-

evoked response.  

For the ganglion cell’s response at different levels of amacrine polarization, we fit a function 

with only three parameters to different one-dimensional response nonlinearities corresponding to 

each of these levels and saw how the amacrine cell changes these parameters (Fig. 7A, see 

Experimental Procedures). We fit the ganglion cell nonlinearity and one level of amacrine output 

to the equation, 

    

where P(ri = 1 | gi) is the probability that the response is a spike given a particular value of  , 

which is the projection of the stimulus on one of the ganglion cell’s orthogonal feature 

dimension at time i. The estimated parameters  change depending on the output of the 

amacrine pathway, which in turn depends on the specific stimulus sequence. Thus the parameters,

 are controlled by the amacrine pathway, and describe the immediate ganglion cell visual 

response to light. These parameters are not varied independently and so can only be jointly 

interpreted. Roughly speaking, γ mostly takes care of the lateral shift or threshold, β mostly takes 

care of the sensitivity, α takes care of mostly the vertical scaling and the amplitude, and additive 
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shift is controlled by the combination of all these parameters together. Polarity reversal can be 

realized by changing the sign of β. 

Figure 7B-D shows the pairwise distribution of these parameters for 101 pairs of amacrine 

and significant ganglion cell’s orthogonal features out of total of 160 pairs, selected by additional 

goodness of fit criteria, as well as how the parameters change as a function of amacrine pathway 

output. Although the nonlinear effects for different feature pairs did not appear to cluster, there 

were regions of varying density that are suggestive of more common types of effects (Fig. 7 B-

C). We observed substantial diversity in the types of nonlinear effects of amacrine cells. 

Additionally, the lack of clustering based on the type of either amacrine cells or ganglion cells 

indicates a continuum of possible behaviors. Furthermore, amacrine cells can have multiple 

effects on different features of the same ganglion cell. To validate the precision of the estimates 

of the effect for each feature pair, we performed a cross-validation procedure for the parameters 

estimation to find the standard error in estimation of each parameter (see Experimental 

Procedures). The results indicate that the error bars associated with each estimated parameter are 

smaller than variations across data points, confirming that many different behaviors are observed 

that form a continuum of distinct effects (Fig. 7C). Thus, amacrine cells cause diverse and 

specific modulatory effects on multiple stimulus features, even within single target ganglion cells.  

 

DISCUSSION 

Using our experimental and computational approach, we observed considerable diversity in 

the functional effects of amacrine cells. The first of these effects involved the linear contribution 

in which amacrine pathway contributes in building the receptive field of the output neuron. Such 

effects show that the amacrine cell contributes directly to the average ganglion cell stimulus 
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selectivity.  Secondly, by measuring the nonlinear effects of the amacrine cells, we saw great 

diversity in modulatory effects of these inhibitory interneurons on the response of ganglion cells. 

Amacrine cells can shift the threshold of the ganglion cell’s response function, or control the 

ganglion cell’s response sensitivity, or suppress a feature encoded by the ganglion cell, or gate 

the flow of information i.e. ganglion cell’s polarity reversal. Moreover, we saw diversity in how 

these effects are combined, with different effects combined for a single ganglion cell feature, and 

different effects for different features even with the same amacrine-ganglion cell pairs. These 

effects are modulatory, meaning that one feature – the amacrine feature – changes the response 

to other features. Across many amacrine cells with diverse effects, the amacrine cell population 

defines a context that modulates multiple other features conveyed by the ganglion cell.   

 

Linking a Functional Pathway to a Neural Pathway  

An important question in the study of sensory processing neurons is that what stimulus 

features drive the spiking response of the neurons. Recent studies have shown that many neurons 

respond to more than one feature in a high-dimensional stimulus space (Atencio et al., 2008; 

Brenner et al., 2000b; Cantrell et al., 2010; Chen et al., 2007; Fairhall et al., 2006; Felsen et al., 

2005; Fox et al., 2010; Hong et al., 2007; Horwitz et al., 2005, 2007; Kim et al., 2010; Maravall 

et al., 2007; Rust et al., 2005; Sincich et al., 2009; Tanabe et al., 2011; Touryan et al., 2005; 

Touryan et al., 2002). Although dimensionality reduction approaches, such as spike-triggered 

covariance (STC) and its extensions (Bialek and van Steveninck, 2005; Paninski, 2003; Park and 

Pillow, 2011; Pillow and Simoncelli, 2006; Schwartz et al., 2002; Schwartz et al., 2006; Van 

Steveninck and Bialek, 1988) or maximally informative dimensions (MID) and its extensions 

(Fitzgerald et al., 2011; Rajan and Bialek, 2013; Sharpee et al., 2004), have been successful to 
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find a relevant linear subspace that causes a change in the neuron’s response, the resulting 

features can not be easily interpreted in terms of functional computations. As a result, this 

subspace description provides little insight into the neural circuitry that gives rise to the neuron’s 

response. Moreover, it is not clear that dimensions extracted by these methods relate to neural 

pathways, and we only know that the space of these extracted dimensions encompasses the space 

of features encoded by all the neural pathways feeding into one neuron. Although other work has 

tried to rank these stimulus dimensions according to how much information they capture (Pillow 

and Simoncelli, 2006), it is still difficult to link the resulting features to the neural pathways 

encoding those features.  

In this study, by actually measuring the amacrine pathway feature, we can assign a neural 

identity to one of those pathways and characterize its effect in a way that would not be possible 

by modeling based on the ganglion cell response alone.  

 

Implications of amacrine cell modulation for natural scene processing 

It has been suggested that neural representations of stimuli may be optimized in some way to 

the statistics of the natural environment (Attneave, 1954; Barlow, 2001; Barlow, 1961; Twer and 

MacLeod, 2001).  An important property of natural signals is redundancy, because one spatial or 

temporal portion of a natural scene may be predicted from other areas nearby or signals from the 

past (Dong and Atick, 1995; Field, 1987). It has often been suggested that sensory systems are 

adapted to the statistics of the signals they encounter, and the underlying principle for this 

adaptation is to provide a statistically efficient representation of the information in the 

environment (Attneave, 1954). In the context of neural sensory processing this efficient coding 

hypothesis suggests that the common role of any early sensory system is to remove this statistical 
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redundancy to provide an independent neural representation of the natural signals (Barlow, 1961; 

Simoncelli and Olshausen, 2001). Initial efforts to support this theory have derived an optimal 

set of linear basis functions such that the redundancy in representation of a natural signal is 

minimized. These basis functions have been shown to have properties similar to receptive fields 

in the visual cortex (Bell and Sejnowski, 1997; Olshausen, 1996; van Hateren and van der 

Schaaf, 1998). It has also been shown that the optimal spatial filter for a simplified model of the 

retina resembles the center-surround receptive fields of retinal ganglion cells (Atick and Redlich, 

1990, 1993).  

However, the statistics of the natural signals are too complex to be optimally decomposed by 

only a linear transformation. Moreover, the neural responses are highly nonlinear, for example 

the necessity of rectification or saturation of responses due to the physiological constraints 

(Carandini et al., 1997; DeAngelis et al., 1992; Javel et al., 1978; Kapadia et al., 1999; Knierim 

and Van Essen, 1992; Levitt and Lund, 1997; Sceniak et al., 1999; Shapley and Enroth-Cugell, 

1984; Slllito et al., 1995). Recent studies in primary visual cortex V1 and in the retina have 

shown that nonlinear relationships between stimulus and neuron’s response play an important 

role in decorrelating the visual image and therefore in the efficient coding of natural signals 

(Pitkow and Meister, 2012; Schwartz and Simoncelli, 2001).   

A class of multidimensional nonlinear models that has been able to link the natural signal 

statistics to the neural response properties exhibits so-called divisive normalization. The intuition 

behind this model is to divide the squared signal by its variance as predicted from the linear 

combination of its neighbors to obtain a representation that is approximately univariate. A 

divisive normalization describes the firing rate responses of cortical neurons as the ratio between 

the output of a linear receptive field and the magnitude of a set of different visual features 
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(Heeger, 1992). Such models are consistent with responses found across cortical areas and 

sensory modalities (Carandini and Heeger, 2012). The important functional role of divisive 

normalization, from a principled scene-statistics perspective, is the efficient encoding of natural 

signal by implementing redundancy reduction (Coen-Cagli et al., 2009; Karklin and Lewicki, 

2005; Schwartz and Simoncelli, 2001; Spratling, 2012). If different visual features often occur 

together, in other words they are redundant, then if one feature suppresses the other it will tend to 

create a less redundant representation.    

The amacrine pathways we have studied induce predominantly scaling and shifting effects. 

These effects are consistent with a key property of divisive normalization, namely that visual 

features reduce the sensitivity of other visual features. Our findings suggest that the normalizing 

directions are in fact the features encoded by the amacrine cells, and that the amacrine cell’s own 

preferred or optimal feature can be different from the preferred or optimal feature of the ganglion 

cell. We propose that a major function of amacrine cell circuits may be to undo the receptive 

field dependencies of multiple visual pathways by controlling the gain and sensitivity along the 

features encoded by each of these pathways.   

 

Spatiotemporal studies 

To test this redundancy reduction hypothesis, it will be necessary to measure amacrine 

nonlinear modulations when the features of amacrine pathway and other ganglion cell’s 

incoming pathways are coincident. Therefore, it will be necessary to repeat our experimental and 

computational procedure while presenting a spatiotemporal visual stimulus containing the type 

of structure observed in natural scenes.  In our current analysis, because stimuli were composed 

of a uniform field, we only measured the contribution of the temporal component of the stimulus. 
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However, all amacrine and ganglion cells were within < 200 µm, and thus are highly likely to 

have overlapping spatial receptive fields. It is thus likely that amacrine and ganglion cell features 

will be activated together by stimuli with sharp transitions such as an edge. Nevertheless, it will 

be important to directly measure the spatiotemporal filters of amacrine and ganglion cell 

features.  

Here we have presented a systematic way to understand the functional contribution of an 

interneuron. Consistent with the known anatomical diversity of amacrine cells (Masland, 2001), 

our findings about the linear and nonlinear contributions of the amacrine pathway to retinal 

output reveal diverse modulatory effects. Diverse interneuron circuits give the retina – and the 

brain – substantial complexity. Thus, revealing a general function for interneurons by studying a 

relatively simple circuit like the retina can substantially help toward understanding the 

organization and function of other inhibitory circuits in the brain, and thereby the neural circuit 

and mechanism underlying each neural computation.  
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Figure Legends 

Figure 1. Measuring responses and transmission in an amacrine cell pathway. (A) Diagram 

of experimental setup for simultaneous intracellular and multielectrode array recording: a 

uniform field randomly flickering visual stimulus with a white noise Gaussian distribution is 

projected through a video monitor onto an intact isolated salamander retina. Simultaneously, 

Gaussian white noise current (orange trace) was injected intracellularly into an amacrine cell 

(current condition) or the amacrine cell membrane voltage (green trace) was recorded 

intracellularly using a sharp microelectrode (control condition). A multi-electrode array of about 

60 extracellular electrodes recorded spiking activities of multiple ganglion cells simultaneously. 

Multiple traces on the left represent spiking response of multiple ganglion cells over time to a 

single stimulus trial during control condition (orange spikes) and during current condition (green 

spikes). (B) The membrane potential response of a sustained Off-type amacrine cell (top row), 

the response of a transient On-Off type amacrine cell (middle row), to a uniform field flashing 

stimulus (bottom row). (C) (Top) Receptive fields of a single amacrine cell and multiple 

ganglion cells. Each oval indicates one standard deviation of a two-dimensional Gaussian fit to 

the receptive field mapped using a white noise checkerboard stimulus. Red oval indicates an 

amacrine cell receptive field; black ovals indicate ganglion cells affected by current injection 

into the amacrine cell. Grey ovals are unaffected ganglion cells. (Bottom) Temporal filters 

computed for recorded cells, including: amacrine visual filter (red), computing by correlating a 

uniform-field visual stimulus and the amacrine cell membrane potential; ganglion cell visual 

filters, computed by correlating the  visual stimulus and ganglion spikes for the affected ganglion 

cells (black) and all other recorded ganglion cells (grey); and an amacrine transmission filter, 
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between the amacrine cell and one affected ganglion cell (blue) computed by correlating a white 

noise current stimulus injected into the amacrine cell and the ganglion cell’s spikes.  

Figure 2. The visual feature of an amacrine pathway.  (A) The linear filter and nonlineairty 

between a visual stimulus and a sustained Off amacrine cells membrane potential. This linear 

filter is refered to as the amacrine visual filter. (B) The transmission linear filter and nonlineairty 

between a current injected to an amacrine cell and a ganglion firing response. The amacrine 

pathway filter is obtained by cascading the amacrine visual filter and the amacrine transmission 

filter after compensating for the amacrine membrane voltage time constant. (C) From left to 

right: the first two principal components of 39 significant amacrine transmission filters 

(accounting for 64% of the variance); projection of all amacrine transmission filters onto these 

two principal components, colored similarly as in panels A-B; significant transmission filters 

color-coded according to their projection angle from the middle plot. (D) From left to right: the 

first two principal components of 39 amacrine pathway filters (accounting for 84% of the 

variance); projection of all amacrine pathway filters onto these two principal components (the 

points are coded by eight possible colors based on their angle around the origin of the two 

principal components plane); amacrine pathway filters color-coded according to their projection 

angle from the middle plot. (E) From left to right: the first two principal components of ganglion 

visual filters (accounting for 66% of the variance) based on responses of 104 recorded ganglion 

cells with firing rate greater than 0.5 Hz; projection of all ganglion cell filters onto these two 

principal components (the points are coded by eight possible colors based on their angle around 

the origin of the two principal components plane); visual filters of the recoded ganglion cells 

color-coded according to their projection angle from the middle plot. (F)  Illustrates a subset of 

points in the projection scatter diagram and their corresponding subset of ganglion visual filters 
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from (E) for the cases that a significant transmission filter was measured between an amacrine – 

ganglion cell pair. The significance of a transmission is judged by a peak in the filter and/or by 

comparison with a shuffled data.  

 

Figure 3. Range of contributions of amacrine cells to the average ganglion cell visual 

feature. (A) Illustration of a model containing two main pathways, an amacrine pathway whose 

feature is shown by the red linear filter, and another pathway representing other ganglion cell 

features whose average is shown by the blue linear filter. The output of these two pathways are 

combined by a two-dimensional nonlinear function to generate the firing rate of ganglion cell. 

(B) (Top) Sample amacrine–ganglion cell pair for which amacrine pathway feature (red curve) 

does not contribute to the ganglion cell’s STA (black curve) as indicated by the observation that 

the STA is the same as the oSTA (blue curve). (Bottom) The distribution of raw stimulus 

distribution (light gray) and the spike-triggered stimulus ensemble distribution (green), as well as 

the amacrine pathway nonlinear response function (computed as a quotient of the spike-triggered 

and raw stimulus distributions) (magenta), when the stimulus is projected onto the amacrine 

pathway feature (red). (C) Same as B for an amacrine cell that contributed to the STA of a 

ganglion cell. (D) Histogram of the observed similarities between the STA and oSTA for 39 

amacrine–ganglion cell pairs, representing the range of the amacrine cells’ linear contribution to 

the average temporal feature for the ganglion cell (15.05±7.71 degrees (mean±SD)). Greater 

distance between STA and oSTA indicates larger linear contribution from amacrine cell. Colored 

symbols indicate the angle differences for the cell pairs shown in B and C. (E) Difference 

between the time to peak of an amacrine pathway filter and the target ganglion cell for amacrine 

cells that contribute to the visual feature of the ganglion cell or not (contributing: 2.57±0.93 ms 
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(SEM), n = 28; non-contributing: 23.27±4.5 ms (SEM); n = 11; two-sample t test, p-value < 

0.001). (F) Temporal dynamics of ganglion visual filters (left), amacrine transmission filters 

(middle), and amacrine pathway filters (right), for 39 amacrine–ganglion cell pairs where the 

amacrine cell contributes to the visual feature of the ganglion cell or not (different colors). 

Principal components used here are the same as those in Figure 2.  

 

Figure 4. A model using the measured amacrine pathway more accurately predicts the 

ganglion cell response. (A) Diagram of the two-pathway model used to predict the ganglion 

cell’s firing rate response. The response of a ganglion cell was fit to the visual stimulus with a 

model containing two main pathways. The left pathway is the amacrine pathway visual feature 

(red filter), obtained by cascading the amacrine temporal receptive field and amacrine 

transmission kinetics. The right pathway is the average of other visual features encoded by the 

ganglion cell excluding the feature conveyed by the amacrine cell. Then, the outputs of these two 

pathways were combined through a two-dimensional instantaneous firing rate nonlinarity to 

predict the response of the ganglion cell. (B) Illustrates the prediction of the model in (A). The 

actual firing rate (black) is plotted together with the predicted firing rate of a ganglion cell for a 

2-s stimulus segment from the test data (not used for fitting the model). (C) The correlation 

coefficient between the ganglion cell firing rate for two-pathway model in (A), a one-pathway 

LN model, and a two-pathway model using STA and the most significant STC feature 

orthogonalized to STA. The model using the amacrine pathway accurately predicts responses of 

ganglion cells (n = 39) to a novel white noise visual stimulus with a performance (0.75 ± 0.10) 

greater than that of the widely used LN model (0.53 ± 0.11) and on par with the performance of 

the two-pathway model using STC method (0.78 ± 0.07).  
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Figure 5. Differential modulation by an amacrine cell on multiple distinct ganglion cell 

visual features. (A) The multi-pathway model: The space of visual features encoded by a 

ganglion cell was decomposed into its principal components using STC analysis on the stimulus 

space when the amacrine pathway feature is projected out. Then for each of the ganglion cell’s 

dimension and the amacrine pathway dimension a two-dimensional nonlinear firing rate function 

is computed. (B) (Left) Illustrates a nonlinear interaction between the amacrine pathway and one 

of the orthogonal STC features in (A) for a pair of an amacrine cell and a ganglion cell. Red plot 

represents the amacrine pathway feature; black plot represents the orthogonal STC feature; and 

green traces show one-diemnsional nonlinear response functions computed from the two-

dimensional instantaneous firing rate nonlinearity for three bins of amacrine pathway output 

values. (C) Eigenvalue profile of the STC matrix of the stimulus orthogonal to the amacrine cell 

pathway. For this sample amacrine–ganglion cell pair four significant STC dimensions 

corresponding to four significant eigenvalues were found. The total stimulus dimension was 60 

stimulus frames over time in this example. (D) Amacrine–ganglion cell’s features nonlinearity 

characterization: (Top) Orthogonal STC significant dimensions representing the ganglion cell’s 

other features, excluding the amacrine pathway feature for a sample amacrine–ganglion cell pair 

in (C). (Middle) Two-dimensional firing rate nonlinearity as a function of the amacrine pathway 

output and the projection of the stimulus on each orthogonal feature. Lighter regions correspond 

to higher ganglion firing rate (FR) in the two-dimensional stimulus subspace. The y-axis is the 

projection of stimuli on the amacrine pathway dimension, and the x-axis is the projection of the 

stimuli on the corresponding ganglion cell’s recovered dimension. The two-dimentional 

instantaneuous firing function was computed as a quotient of the spike-conditional and raw 
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stimulus distributions. (Bottom) One-dimensional slices of each two-dimensional firing rate as a 

function of the projected stimulus onto the corresponding ganglion cell’s feature for different 

levels of the amacrine cell’s feature output. Trace color indicates different levels of the amacrine 

feature output. Because the amacrine cell is an Off cell, a high level of the preferred feature 

roughly corresponds to the amacrine cell being more hyperpolarized.  

 

Figure 6. Diverse modulatory effects of amacrine cells on the ganglion cell population.  (A) 

Illustrations of how changes in threshold, sensitivity, gain, offset and polarity reversal can be 

obtained by simple additive or multiplicative operations on ganglion cell’s nonlinear response 

function. (B) (Left) Computational framework that can capture the modulatory effects of 

amacrine cell based on how the parameters in the ganglion cell’s synaptic threshold function are 

tuned by the output of amacrine pathway. (Right) Potential mechanistic model for how 

computational effects might be implemented by presynaptic input, which would be delivered 

prior to the threshold of the bipolar cell synapse or postsynaptic input. Such an effect would 

cause a horizontal shifting or scaling of the sigmoidal response curve. A postsynaptic additive or 

multiplicative effect would cause a vertical shifting or scaling. (C) Six example different classes 

of nonlinear modulatory effects were observed across 150 amacrine–ganglion cell’s feature pairs, 

which include combinations of additive and multiplicative transformations of the ganglion cell’s 

nonlinear response function as the output of amacrine pathway varied. Additive inhibition could 

appear with other effects as well. (D) Example of modulatory effects of amacrine cells on 

ganglion cell visual feature. Each column is one cell pair, with different panels showing different 

visual features for the same ganglion cell. Panels above the dotted line represents a visual 

excitatory feature (positive eigenvalue), below the dotted line represents a suppressive visual 
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feature (negative eignevalue). The colored squares in each box denote the class of modulatory 

effects from (C), sensitivity, threshold etc., that was detected for each sample amacrine–ganglion 

feature pair.  

 

Figure 7. Amacrine modulatory effects across the ganglion cell population described by a 

multipathway model framework. (A) Fitting results using a quadratic-logistic nonlinear model 

for the ganglion cell’s response function at different amacrine polarization levels. (B) Pairwise 

distribution of estimated parameters for 3 different amacrine polarizations, denoted by three 

shades of green color, showing how joint distribution of parameters change when the amacrine 

pathway output changes across 104 amacrine–ganglion feature pairs for which the logistic 

nonlinear function could fit the data nonlinearity. Histograms along each plot axis represent the 

distribution of the parameter values along that axis for three different amacrine polarizations (α: 

[5.74 ± 0.72 5.08 ± 0.70 4.6 ± 0.62], β: [2.04 ± 1.61 1.84 ± 1.41 1.95 ± 1.49], γ: [-0.05 ± 0.45 -

0.05 ± 0.36 -0.05 ± 0.33] (mean ± SD)). Each grey line indicates the direction of the change 

along the x- and y-axes from the most depolarized amacrine pathway output to the most 

hyperpolarized amacrine pathway output, and a longer line indicates a greater change and their 

directionality indcate the joint behavior of the two parameters. All grey lines are centered at the 

mean value of the x-axis and y-axis, indicating that amacrine depolarization for most cell pairs 

caused a change in α in one direction, but changes for β and γ could occur in either direction, and 

were uncorrelated with the effect on α. (C) Scatter plots of pairwise normalized changes in 

estimated parameters show diversity in how the amacrine pathway can affect the parameters of 

the model. Each data point (n = 104) represents the slope of a least-squares line fit to the values 

of each parameter estimated across different levels of amacrine pathway polarization, normalized 
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by standard deviation of the distribution of each parameter’s values. The amacrine pathway 

output is quantized into three levels from highly depolarized to highly hyperpolarized for these 

plots. Histograms along each plot axis represent the distribution of the normalized values along 

that axis (normalized Δα = -2.24 ± 1.0, normalized Δβ = -0.05 ± 0.59, normalized Δγ = 0 ± 0.11 

(mean±SD)). The light gray ellipses around each point indicate the uncertainty of the parameters 

as evaluated by a five-fold cross-validation procedure. The distrbution of the variability in 

parameter estimation indicate that the model is robust given the data. Schematic nonlinearities 

illustrate the range of nonlinearity shapes that the model can fit. For some amacrine-ganglion 

feature pairs the nonlinearity was not monotonic and a combination of scaling/shifting in both 

horizontal and vertical direction were observed. (D) Histogram of the sensitivity of the three 

nonlinearity parameters to the different levels of amacrine polarizations. The parameter 

sensitivity was measured as the percentage of times in which the slope of the least-squares line 

fit to values of a parameter was significant. 

 

Figure S1 (related to figure 2). Diversity of amacrine transmission dynamics for single 

amacrine cells versus multiple ganglion cells. Each plot shows the significant transmission 

filters from one amacrine cell to the affected ganglion cells in an experiment, for four sample 

amacrine cells. The colors represent the type of transmission filter as classified according to the 

principal component analysis in figure 2C. 

 

Figure S2 (related to figure 2 and figure 6). Diversity both in linear transmissions and in  

nonlinear modulatory effects from one amacrine cell to multiple ganglion cells. The plots 

illustrate the linear and nonlinear interactions between one sample amacrine cell versus five 
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ganglion cells. Each row represent a pair of amacrine and ganglion cells where the amacrine cell 

is the same across rows. Red waveforms (first column) represent amacrine pathway filters 

between the amacrine cell and each ganglion cell. Black waveforms (second column) represent 

ganglion visual filters for each five affected ganglion cells in the experiment. Green traces (third 

column) show ganglion firing rate as a function of projection of stimulus on the ganglion visual 

features with the amacrine pathway feature excluded.  

 

Figure S3 (related to figure 5). Significance test of STC features. (A) Eigenvalue spectrum is 

computed for different fractions of data, ranging from one-tenth to the entire number of spikes. 

Those eigenvalues that remain stable across different fraction of data (sample green trace) are 

considered as significant eigenvalues, i.e., those that are different from the bulk spectrum due to 

the spiking events not due to random fluctuations along poorly sampled dimensions. Those 

eigenvalues that vanish (sample brown traces) when the size of data increases are considered as 

nonsignificant. (B) Nested bootstrap method was performed to test the significance of each 

eigenvalue. The null hypothesis starts with the assumption that there is no significant eigenvalue, 

then a confidence interval for each eigenvalue is computed, if at least one eigenvalue falls 

outside of the confidence interval the null hypothesis is rejected (left plot), and the next null 

hypothesis with the assumption of only one significant eigenvalue is tested, and this procedure 

continues until a null hypothesis is accepted (right plot), i.e. assuming the null hypothesis, no 

eigenvalue falls outside of the confidence interval. For the example shown here four significant 

eigenvalues were found.  
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EXPERIMENTAL PROCEDURES 

Electrophysiology 

Visual Stimulation 

Visual stimuli were projected onto the retina from a video monitor, at a photopic mean 

intensity of 8 mW/m2, and at a frame rate of 63 Hz. The video monitor was calibrated using a 

photodiode to ensure the linearity of the display. Stimuli were spatially uniform and were drawn 

from a White Noise Gaussian distribution with a constant mean intensity. Contrast was defined 

as the standard deviation divided by the mean of the intensity values. Contrast was fixed 

throughout the experiment, and ranged 0.06–0.25 across recording sessions. The duration of 

stimuli was 300–1200 s. By keeping the mean light intensity and contrast constant throughout 

the experiment, we avoided any contributions from light or contrast adaptation (Baccus and 

Meister, 2002; Manu and Baccus, 2011).  

Simultaneous intracellular and multielectrode recording 

Multielectrode Recording 

To record the spike trains of retinal ganglion cells, the retina of the larval tiger salamander 

was isolated intact and was placed on a dialysis membrane attached to a plastic holder. Then the 

holder was lowered onto a flat array of 61 microelectrodes (Multichannel Systems) and bathed in 

oxygenated Ringer's solution buffered with bicarbonate (Meister et al., 1994; Smirnakis et al., 

1997). Extracellular electrodes were spaced 100 µm apart. The electrical signals from the array 

of electrodes were digitized at 10 kHz and recorded to a computer. Results included 153 
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recorded ganglion cells, which comprised biphasic Off-type, monophasic Off-type, biphasic on-

type, and On-Off cells classified with a uniform field visual stimulus. 

Intracellular Recording 

Simultaneous intracellular recordings were made with sharp electrodes from eleven 

amacrince cells with a resting membrane potential −55 ± 4 mV, mean ± SEM), including 

sustained (n=8) and transient (n=3) off amacrine cells. Amacrine cells were identified by their 

light responses, the presence of an inhibitory surround, and their inhibitory transmission to Off-

type ganglion cells with overlapping receptive field centers. The retina was held in place over the 

electrode array under a 100-µm layer of 0.6% agarose, covered by a dialysis membrane 

containing several 100-µm holes. The intracellular electrode was then guided under infrared light 

through a hole and the agarose layer to penetrate the retina from the photoreceptor side. 

Intracellular electrodes (150–250 MΩ impedance) were filled with 1–2 M potassium acetate.  

Current Stimulation 

Current was injected through sharp microelectrodes (150–250 MΩ) with an amplifier 

operating in bridge mode, into individual amacrine cells. Current and the visual stimulus were 

aligned in time within 0.1 ms, to allow reproducible recordings across the same visual and 

current stimuli presentations. The current amplitudes were chosen so they maintain the 

membrane potential within a physiological range. The estimated membrane conductance 

measured by using pulses of current was 40 ± 17 MΩ, and the measured membrane time constant 

was 17 ± 7 ms (n = 6). The current with 0–50 Hz bandwidth was convolved with an exponential 

filter of the appropriate amplitude to estimate the resulting membrane potential standard 

deviation (9.6 ± 3.63 mV) (Manu and Baccus, 2011). 
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Analysis 

The significance level is 0.05 in all analyses. 

Measuring linear-nonlinear cascade models of the recorded responses 

Recordings were used to produce LN models of visual responses and of responses to current 

injection (Baccus and Meister, 2002). The input to the model could be a visual stimulus or a 

current stimulus, and the output of the model could be either the predicted ganglion cell’s firing 

rate or the predicted amacrine cell’s membrane voltage. The estimated linear filters ranged from 

200 to 600 ms in duration, and were estimated using white noise stimuli of length 300-1200 s. 

To estimate the parameters of the LN model we used a semiparametric approach, in which 

the filter !(!) and the nonlinearity !(!) were computed at once. For a Gaussian white noise 

input, the optimal linear filter is indeed the Wiener system solution, which was computed in the 

Fourier domain by equation (1) (Bussgang, 1952; Hunter and Korenberg, 1986).  

! ! = !∗(!)!(!)
!∗(!)!(!) ,  (1) 

where s̃(ω) is the Fourier transform of the stimulus s(t), s̃*(ω) its complex conjugate, r(̃ω) is the 

Fourier transform of the response r(t), and 〈…〉 denotes averaging over 1 s segments spaced 

every 0.1 s throughout the recording (Baccus and Meister, 2002). The stimulus intensity !(!) 
was adjusted to have a zero mean. The denominator is the input auto-correlation, which corrects 

for possible deviation from the white Gaussian solution due to possible correlation structures in 

the input. For fitting of the ganglion cell spiking response, spike trains were converted into a 

continuous firing rate by binning the spike times in 1 ms intervals. 
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The predicted linear ganglion cell’s firing rate response or the amacrine cell’s membrane voltage 

!(!) was computed by convolving !(!) with the stimulus !(!). 

! ! = ! ! ! ! − ! !"  (2) 

Then, a nonlinear function !(!) mapping the response to the linear prediction !(!) was 

found by computing the average value of !(!) over bins of !(!) containing an equal number of 

points. The output of !(!) determines the instantaneous firing rate of a Poisson spike generator 

(Chichilnisky, 2001). 

The amplitude of the filter was normalized such that the variance of the filtered stimulus, 

!(!), was equal to the variance of the stimulus, ! !  (equation 3), to avoid the ambiguity existing 

in the scaling of linear filter y-axis and the nonlinearity x-axis. 

!! ! !" = !! (!)!"  (3) 

With this normalization, !(!)  summarizes temporal processing, and !(!)  captures the 

sensitivity of the stimulus (Baccus and Meister, 2002). 

Finally, the prediction of the LN model was calculated as  

!! ! = ! !(!) = ! ! ! !(! − !)!"   (4) 

Spikes are then assumed to be generated by a Poisson process with a rate equal to !(!). 

Computation of amacrine pathway feature 

Amacrine visual response LN models were constructed using a white noise visual stimulus 

with a Gaussian distribution and the amacrine’s membrane potential recorded intracellularly 

(Fig. 2A). Similarly, a linear filter corresponding to amacrine cell transmission was computed by 

correlating the white noise Gaussian current signal with the spiking response of the ganglion cell, 
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and then a static nonlinearity was computed by comparing the current linear prediction and the 

firing rate of the ganglion cell. These linear and nonlinear stages together were called the 

amacrine cell’s transmission LN model (Fig. 2B). Since the injected current and the visual 

stimulus were uncorrelated, the visual stimulus could be excluded in computing the amacrine 

transmission filter. 

The output of the first LN model was amacrine’s membrane voltage produced by the current 

generated by presenting the visual stimulus to the amacrine cell. However, the input to the 

second LN model was the white noise Gaussian current injected to the amacrine cell, which by 

itself induced a voltage across the amacrine’s membrane. So in order to compensate for the 

discrepancy in the output of amacrine visual response LN model and the input of the measured 

transmission filter, we deconvolved the measured transmission filter by the amacrine’s 

membrane time constant (equation 5), to get the amacrine voltage transmission filter (Manu and 

Baccus, 2011); the membrane time constant of the cell was measured by applying current pulses 

of 1 s. An exponential filter (equation 5) was fit to the voltage response with membrane time 

constant τ.  

!! ! = !!!/!   (5) 

Computing the output of amacrine pathway 

Once the complete amacrine pathway model was obtained, the output signal of the amacrine 

pathway was computed during the current injection, which was used to study the effect of 

amacrine pathway on the response of the ganglion cells. During current injection, the amacrine 

membrane voltage was produced by two sources of currents including the white noise Gaussian 

current injected to the amacrine cell and the current generated by the visual stimulation of the 
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amacrine cell. We assumed for these two currents to be linearly combined in the amacrine cell 

before transmission to the ganglion cell, where the magnitude of their individual contributions 

(linear weights) was obtained by an additive least-squares model. This summed current was then 

convolved with the voltage transmission filter and then passed through the transmission 

nonlinearity.  

STA and STC analysis 

The STA represents the difference between the mean (center of mass) of the spike-triggered 

ensemble and the mean of the raw stimulus ensemble and is estimated as follows (assuming that 

the raw stimuli have zero mean): 

! = !
! !!

!!! !! ,   (6) 

where !! is the time of the !th spike, !(!!) is a vector representing the stimuli preceding !!, and 

! is the total number of spikes (Schwartz et al., 2006). 

For a neuron with a single linear filter, the STA provides an unbiased estimate of the neuron’s 

linear filter (as obtained by reverse correlation in equation 1), provided that the input has a 

spherically symmetric distribution, like a white Gaussian stimuli (Bussgang, 1952; Chichilnisky, 

2001; Paninski, 2003; Schnitzer and Meister, 2003; Simoncelli et al., 2004; Theunissen et al., 

2001), and the nonlinearity of the model is such that it leads to a shift in the mean of the spike-

triggered ensemble relative to the raw stimulus ensemble. 

To capture multiple features, the spike-triggered covariance (STC) technique was used 

(Brenner et al., 2000a; Rust et al., 2005; Simoncelli et al., 2004), where additional filters were 

recovered by seeking directions in the stimulus space in which the variance of the spike-triggered 
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ensemble differs from that of the raw ensemble. Unlike the change in the mean that defines a 

single dimension, the variance can recover many dimensions at once.  

The covariance matrix is formed from the outer product of the stimulus histories averaged across 

all spikes as follows.  

!!"#$ = !
!!! ! !! − ! ! !! − ! ! ,!

!!!    (7) 

where !! is the time of the !th spike, !(!!) is a vector representing the stimuli preceding !!, and 

! is the total number of spikes, and ! is the STA (as computed in equation 6) (Schwartz et al., 

2006). 

!!"#$  contains the multidimensional variance structure of the spike-triggered stimulus 

ensemble, such that the variance of the STE along any direction ! (! is a unit vector) is 

!!!!"#$!. We were interested in finding the features in the stimulus space for which the variance 

changes from that of the prior distribution of stimuli, which is Gaussian along all stimulus 

dimensions, independent of the response. We first construct the covariance difference matrix by 

subtracting !!"#$" from !!"#$,   

∆! = !!"#$ − !!"#$",   (8) 

where !!"#$" = !(!!)!(!!)!! . 

Then the posterior second moment matrix !!"#$ can in general only differ from !!"#$" in 

directions spanned by the model filters (Brenner et al., 2000b). An eigenvector analysis of this 

matrix can determine the stimulus directions that account for most of the variance.  

Computation of orthogonal features 
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To model the other parts of the circuit feeding into the ganglion cell, we focused on the 

subset of stimuli that were not encoded by the amacrine cell pathway. To do this, we 

orthogonalized the stimulus space with respect to the direction of the total amacrine pathway 

feature using a Gram-Schmidt procedure. Then we computed the ganglion cell’s STA in this new 

stimulus space as follows, 

!′ = !
! !′!

!!! !! ,   (9) 

where !′ = ! − !, ! !/ ! , 〈…〉 denotes the inner products of two vector arguments, and ! 

represents the amacrine pathway feature. We refer to !′ as ganglion cell’s orthogonal STA 

(oSTA). 

Similarly, we used the STC approach to recover the entire linear subspace representing the space 

spanned by the features encoded by the multiple pathways feeding into a ganglion cell that does 

not include the amacrine pathway feature. To find such features, we first projected out the 

amacrine pathway feature from the stimulus space, and construct the sample second moment 

matrix of the spike-triggered ensemble in the new stimulus space and the covariance difference 

matrix and found its eigenvectors and corresponding eigenvalues as explained above.  

These eigenvectors identify the dimensions in the stimulus space along which the variance 

of spike-triggered stimulus distribution changes from that of the prior distribution of stimuli. 

Therefore, each eigenvector of this matrix represents a visual feature that might elicit spikes in 

the ganglion cell. The associated eigenvalue is equal to the variance of spike-triggered stimuli 

along this feature direction. Because the prior stimulus covariance matrix is subtracted from the 

posterior stimulus covariance matrix, an eigenvalue of zero corresponds to the prior variance and 

indicates that its associated eigenvector is not a relevant feature for ganglion cell response. So to 
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find the relevant subspace, we extract the eigenvalues of the difference covariance matrix that 

are significantly different from zero. The number of significant eigenvalues gives an estimate for 

the dimensionality of the relevant stimulus space. 

Assessing the number of significant orthogonal ganglion cell features  

In the absence of any relationship between the stimulus and the spikes, the variance of the 

spike-triggered ensemble would be identical to that of the raw stimulus ensemble, i.e., when we 

project the stimulus along an irrelevant dimension, in the limit of infinite sampling, the resulting 

spike triggered stimulus ensemble would be only a random subset of the raw stimulus ensemble. 

However, in a real experiment, due to the finite sampling we saw random fluctuations in the 

variances in different directions. But we were interested in recovering only relevant features, i.e., 

those dimensions in the stimulus space along which we saw an increase or decrease in the 

variance of the spike-triggered ensemble that was greater than the variance change due to finite 

sampling. Figure 5C shows the eigenvalue profile for a sample amacrine–ganglion cells pair, in 

which the eigenvalues of the covariance difference matrix were sorted from large to small values. 

The majority of the eigenvalues descend gradually indicating random fluctuations due to finite 

sampling issue (the white noise covariance difference matrix should have had constant 

eigenvalues at zero).  

To assess the significance of eigenvalues we adopted a variety of the significance tests, as 

sometimes the insufficient number of samples along some dimensions due to the low firing rate 

of the neuron, caused noisy estimations for the confidence intervals. In general, we preferred 

more qualitative definitions of significance, i.e., choose all eigenvectors corresponding to 

eigenvalues, which appear qualitatively different in magnitude from the “bulk spectrum” 
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(Johnstone, 2000) (Fig. 5C). Even this simple approach could provide a consistent estimator for 

the relevant subspace in the case of a standard Gaussian input stimulus (Paninski, 2003). 

However, due to orthogonalization there were cases that we could detect eigenvalues, which 

were significantly below or above the gradually descending region, but with arbitrary associated 

eigenvectors. For these cases, we used quantitative significance tests and concluded about the 

significance where the distinction was not so clear. We assessed eigenvalue significance by 

computing the eigenvalue spectrum as a function of the number of spikes for a range of data 

fractions (y Arcas et al., 2003). Eigenvalues that were stable with respect to the number of spikes 

used in the analysis were judged to be significant (green trace in Fig. S3A). We also used a 

nested hypotheses testing approach to determine the number of relevant dimensions 

corresponding to significant increases or decreases in variance (Rust et al., 2005). This nested 

approach was necessary as the distribution of the lowest and highest eigenvalues under the null 

hypothesis depended on the dimensionality of the space. Figure S3B shows the nested 

bootstrapping procedure for a sample amacrine–ganglion cells pair. Thus, both the quality and 

number of filters recovered by STC depend not only on the strength of their influence on neural 

response, but also on the number of spikes collected (Paninski, 2003; y Arcas and Fairhall, 2003). 

So the number of significant eigenvalues we obtained by these methods is a lower bound to the 

true dimensionality of the subspace of relevant ganglion cell’s features. To get more accurate 

results, we only included ganglion cells from which we recorded at least 1200 spikes that is at 

least 20 spikes per temporal dimension for 60-dimensional linear temporal filters. We used 60 

stimulus values preceding a spike. Thus for stimuli presented at a frame rate of 63 Hz, the 

stimulus !(!) extended back to 960 ms before a spike.  

Parameterization of amacrine nonlinear effects 
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Our goal was to find a model of modulatory functions of amacrine cells, which is consistent 

with a set of experimentally estimated correlations between the stimulus and neuron’s response, 

and at the same time imposes as little structure as possible for the nonlinear interactions among 

different pathways. 

To this end, we estimated the ganglion nonlinear response function using the maximum 

entropy framework borrowed from statistical mechanics (Jaynes, 1957a, b). According to the 

maximum entropy principle, to obtain the least-biased model of a given set of data, we must 

choose the distribution that has the maximal entropy, i.e. is minimally constrained, among all the 

distributions that may be consistent with the data. It has been suggested that such a model has the 

best performance in predicting a novel or unobserved set of data (Jaynes, 2003). This approach 

has been recently used to characterize the responses of neural populations (Schneidman et al., 

2006; Shlens et al., 2006). On the other hand, for a system with a binary output (such as spike 

trains) and a given set of constraints on the input-output moments, the maximum entropy models 

are logistic functions whose arguments depend on the correlation constraints. A constraint on the 

average output turns these models into minimum mutual information models, which allows for 

an information theoretic characterization of the system’s computations (Fitzgerald et al., 2011).  

Thus, inspired by the maximum entropy methods, we used a set of quadratic logistic 

functions (equation 10) to describe the nonlinear interactions between amacrine pathway 

dimension and other ganglion cell dimensions.  

   (10) 

where  is the projection of stimulus on one of the ganglion cell’s orthogonal feature dimension 

at time !, and  are parameters to be estimated. The response !! is obtained by binning the 
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ganglion spike trains such that  if there was at least one spike in bin !, and  otherwise. 

We fit this function to the ganglion cell’s response at different levels of amacrine polarization 

and used the estimated parameters to quantify the modulatory effects of the amacrine pathway.  

Assuming a Poisson like spiking response, the probability of observing a sequence of spikes  

!!, !!,⋯ , !! ,⋯ is the product over ! of , where  is the probability of spiking at 

time !. Then, the log-likelihood is:  

   (11) 

The optimal values of  are then obtained by minimizing , which is the negative of 

log-likelihood function. None of the parameters in this optimization problem have a constrained 

range. Finding appropriate initial parameter values therefore involves experimentation. We often 

used ; ; . The appropriate sign of  

depends on whether the nonlinearity looks Gaussian-like (  > 0 ) or U-shaped (  < 0).  

Cross-validation of the nonlinear model parameters 

To distinguish between the variability in the change of parameters across amacrine – 

ganglion cell feature pairs and the variations from noise, we performed a cross-validation 

procedure for the parameter estimation: data was divided into five randomly assigned subsets; at 

each iteration, 80% of data was used to estimate the parameters and the remaining 20% of data 

was used to evaluate the goodness of fit in terms of the log-likelihood of the observed ganglion 

response; the resulting five sets of parameters were used to find the standard error in estimating 

each parameter. The results in figure 7C indicate that the error bars associated with each 
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estimated parameter are smaller than variations across data points, confirming that many 

different behaviors are observed that form a continuum of distinct effects. 
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