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Recent theories have attempted to provide unifying accounts of dorsal anterior cingulate 

cortex (dACC), a region routinely observed in studies of cognitive control and decision-

making. Despite the proliferation of frameworks, rigorous empirical testing has lagged 

behind theory. Here we test competing predictions of three accounts of dACC using a 

simple value-based decision-making task. We find that the Predicted Response-Outcome 

model provides an integrative and parsimonious account of our results.  Our results 

highlight the need for increased emphasis on empirical tests of theoretical frameworks. 
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Activity in dorsal anterior cingulate cortex (dACC) and 

surrounding regions in medial prefrontal cortex (mPFC), 

is routinely observed in neuroimaging studies of cognitive 

control and decision-making1. Consequently, a number of 

computational accounts have been developed in the last 

two decades to describe the role and function of dACC2–

6. Formal tests between competing models are critical in 

order to drive efficient acquisition of knowledge, and 

recent efforts in this direction7,8 have done much in 

advancing the debate regarding brain function. 

In this manuscript, we focus on the predictions of three 

models of dACC. The Choice Difficulty (CD) account9 

states that dACC activity codes for choice difficulty 

(deriving from value similarity between available 

options), and has been advanced as a broadly-applicable 

model for explaining effects observed in dACC, 

including, e.g., as an alternative to the proposal that dACC 

calculates the relative value of foraging10. A second view, 

the Expected Value of Control (EVC) model11 states that 

dACC integrates value and cost information in order to 

derive an optimal control signal (balancing task demands 

against prospective rewards). Finally, the Predicted 

Response-Outcome (PRO) model12 states that dACC 

learns to predict the likely outcomes of actions and signals 

deviations between expected and observed outcomes.  

Simulations of these models in the context of value-based 

decision-making predict substantially different patterns of 

dACC activity (Figure 1A; see Online Methods).  Under 

the CD model, dACC should track the similarity of 

options: activity should be maximal for options with 

similar values, and decrease as the value difference 

increases. Predictions of the EVC model were derived in 

two ways. Using only the equations presented in Shenhav 

et al 2013, the EVC model (EVC1) predicts a pattern 

opposite to that of the CD model: dACC activity should 
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be minimal when options are similar (exerting control is 

not worth it as both option are equally valuable), and 

increase with increasing value difference between options 

(reflecting increased value for exerting control as the 

value of one option increases). If we include the idea 

(described but not formalized in Shenhav et al 2013) that, 

as decisions become easier due to large value differences, 

the value of additional control decreases, the EVC model 

(EVC2) predicts an 'M' shaped pattern. The optimal 

control signal for similar options is low (as in EVC1, 

additional control does not increase the value of 

outcomes), as is the control signal for extremely different 

values (no control is required to make a choice). Finally, 

the PRO model predicts a 'W-shaped' pattern in dACC 

activity (Figure 1), derived from the negative component 

of prediction error (PE), i.e. negative surprise12. PEs are 

commonly observed throughout the brain when actual 

events differ from expected or intended events.  For 

options with similar values, evidence for choosing either 

option is approximately equal (i.e., a person may equally 

intend to select either option) and therefore either choice 

entails surprise related to the unmet partial intention to 

select the alternate option. Surprise signals also apply at 

the onset of trials when options are revealed: on trials with 

extreme differences in the value between options, surprise 

derives from the unexpected deviation of option values 

from their long-run average.  The ‘W’ pattern predicted 

by the PRO model thus derives from standard PE 

calculations at the presentation of options and generation 

of a response (cf. Fig. S3, Online Methods).  

A convenient way to summarize these competing 

predictions is as polynomial equations (Fig. 1A), which 

transcend model-specific implementation details. The 

predictions of both CD and EVC1 can be characterized as 

quadratic polynomials9, the difference between the two 

being the sign on the coefficient for the quadratic term (U-

shaped for EVC1, inverted U for CD). The predictions of 

the PRO model and EVC2 are best characterized by a 

quartic (fourth-order) polynomial, also with opposite 

signs on the coefficient of the quadratic term (negative for 

the PRO model, positive for EVC2). 

 

Figure 1. A) Qualitative predictions of the models for dACC 

activity. Choice Difficulty and EVC1, predict a quadratic curve. 

The PRO predicts a W-shaped curve. EVC2 predicts an M-shaped 

curve. B) Summary of analysis rationale. Each model makes 

predictions that can be discriminated along two dimensions. C) 

The speeded decision-making task. Subjects choose between two 

options (left/right), with a 50% chance of receiving the points 

associated with each of the images for the selected option. 

We can thus distinguish amongst the model predictions as 

follows (Fig 1B): first, comparisons of Akaike's 

Information Criterion (AIC) values for fits of polynomial 

equations to neural data provide an estimate of whether 

the data are better explained by quadratic (CD/EVC1) or 

quartic (PRO/EVC2) curves. Second, the sign on the 

quadratic term of the best-fit polynomial equation 

distinguishes between remaining models (negative 

(CD/PRO) or positive (EVC1/EVC2, Fig 1B). 

Model predictions were tested by having human subjects 

perform a speeded value-based decision task while 

undergoing fMRI (fig 1C). Data were modeled using a 

general linear modeling approach (GLM), and 2 GLMs 

were constructed for our analyses (See Online Methods). 

In GLM1, 11 regressors modeled the binned differences 

in the expected value of the two options (left/right). In 

GLM2, 8 regressors modeled left/right RT bins with an 

equal number of trials per bin. For each voxel in an 

anatomically-defined ROI including mPFC (Fig 2A), 

dACC, and SMA, polynomial equations (1st through 4th 

order) were fit to the estimated beta values for each voxel 

across all subjects for each regressor in GLM1 and 

GLM2. 
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Figure 2. A) Anatomically defined region including dACC, MPFC 

and SMA where model predictions were tested. B) Only signals 

associated with quartic polynomial equations (left) were identified 

in the region, consistent only with the PRO and EVC2 models. The 

best-fit equation for voxels in this region included a quadratic term 

that was significantly less than 0 across subjects (right), consistent 

with the PRO model, and inconsistent with the EVC2 model. 

Yellow dots indicate peak voxels reported in previous studies 

observing dACC activity related to Choice Difficulty (1 & 2) 9,14 

and Value Difference (3&4) 10 C) Average beta weights for voxels 

passing a threshold of p<0.001 within the anatomical region 

binned by value and D) reaction time.  E) Subjects’ ability to 

correctly select the option with the higher expected value 

improved as a function of the difference in expected value between 

options, and F) reaction times decreased as a function of value 

difference.  Behavioral results therefore rule out a possible 

explanation for increased dACC activity for extreme trials as 

being due either to increased error rate or increased reaction time. 

To assess which polynomial equation better explained the 

data, Akaike weights13 were computed for the AIC value 

obtained  in order to derive a probability for that each 

equation amongst those considered best explained the 

data. The probability for each equation at each voxel was 

thresholded at an Akaike weight of > 0.999 (equivalent to 

p=0.001). To calculate statistics with volume-based 

corrections, the best-fit polynomial equations for each 

voxel passing threshold were averaged and regressed 

against the BOLD signal. For both value-binned (GLM1) 

and RT-binned (GLM2) values, a cluster of voxels 

surviving cluster correction (voxel threshold of p=0.001, 

cluster-level FWE = 0.05) was observed in dACC/mPFC 

for the quartic polynomial (Fig. 2B, Left). No effects 

consistent with other polynomial equations (linear, 

quadratic, cubic) were observed in the region, even at a 

lenient threshold (p=0.05, uncorrected). Thus, activity in 

dACC/mPFC is best explained by a quartic polynomial, 

consistent with the PRO and EVC2 models. 

To distinguish between PRO and EVC2 models, the sign 

on the quadratic term for the voxels identified in our first 

step was tested; EVC2 predicts a positive quadratic term, 

while the PRO predicts a negative quadratic term. Only 

voxels with a quadratic term significantly less than 0 

(p<0.001) were identified, consistent with the PRO model 

and inconsistent with EVC2 (Fig. 2B, Right). In 

summary, these results favor the PRO model over the 

EVC and CD models in explaining dACC activity during 

value-based decision-making with time pressure.  

Additional support for the PRO model in our data comes 

from analysis of activity at the time of feedback.  As 

described above, under the PRO model dACC activity is 

related to the “suprisingness” of a salient event.  In our 

previous analyses, we limited ourselves to the interval 

starting from the onset of a trial to the generation of a 

response, primarily because the CD and EVC models do 

not make clear predictions regarding dACC activity 

absent the requirement for generating behavior.  If our 

data are consistent with the PRO model account, dACC 

activity following feedback should correlate with the 

(unsigned) feedback PE.  Regression of the per-trial PE 

for each subject on BOLD data yields a significant cluster 

(Fig. 3; peak voxel -4, 38, 42, cluster-corrected 

p(FWE)<0.001, voxel extent = 2029, voxel-wise 

threshold = 0.001) in dACC. The PRO model thus 

accurately accounts for dACC activity over the course of 

the entire trial in our speeded decision-making task. 
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Figure 3.  DACC activity correlates with unsigned prediction 

errors following task feedback consistent with the PRO account 

The PRO model accounts for quartic effects observed in 

dACC through the single mechanism of negative surprise, 

derived from standard calculations of prediction errors, 

and provides a strong prediction regarding the time course 

of dACC activity producing the 'W' pattern (cf. Fig. S3, 

Online Methods). At stimulus presentation and prior to 

response, the PRO model predicts increased activity as a 

function of value difference. Following a response, it 

predicts increased activity as a function of value 

similarity. It may be noted that the pattern of activity 

observed in our data might be captured by a combination 

of signals generated by the EVC and CD models; 

however, it is not clear what additional explanatory power 

would be provided by such a dual-mechanism account, 

nor under what circumstances such an account could be 

falsified. The PRO model, in contrast, provides a 

parsimonious and testable explanation for the pattern 

observed in our data. Future work should therefore focus 

on elucidating the temporal dynamics of dACC activity 

using methods with higher temporal resolution in order to 

test these specific predictions. More generally, direct 

empirical investigation is essential for adjudicating 

amongst competing accounts of brain function and 

developing a more complete understanding of the 

neurobiological mechanisms underlying cognition; the 

current work adds to the growing emphasis on developing 

and testing models of the brain 7–9. 
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Online Methods 

Participants 

Twenty-three healthy volunteers participated in this 

experiment (10 males), with a mean age of 23 ±2, ranging 

between 19 and 28. The Ethical Committee of the Ghent 

University Hospital approved the experimental protocol. 

All participants signed an informed-consent form before 

participating in the experiment, and filled in a safety 

checklist to exclude contraindications for participations, 

and neurological or psychiatric conditions. 

Experimental procedure 

Upon arrival, participants filled in and signed the 

informed consent and the pre-scanning checklist. 

Subsequently, they underwent a training session outside 

the scanner. The training consisted of performing a series 

of decisions. On each trial, participants were presented 

with two fractal images on the screen, one on the left and 

one on the right (1000ms). Participants could select one 

image by pressing the left or right response key on the 

keyboard. After 500ms, feedback was given, showing the 

selected image and the amount of points obtained in that 

trial (1000ms). After a blank screen (1000ms) the 

following trial started. There were 8 images in total. Each 

image was associated with a fixed amount of points, 

ranging (in 10 point increments) between 10 and 80 

points. Participants were instructed to learn the amount of 

points associated with every image. They were informed 

that the task during the subsequent scanning session 

would be different, but the same images would appear, 

and each image would be associated with the same 

amount of points as in the training. They were therefore 

specifically encouraged to remember this association. 

Participants were also informed that all points gathered 

during the scanning session would be converted into 

money, which they would be paid at the end of the 

experiment in addition to the amount paid for 

participation. At the end of the training session all 

participants confirmed that they learned the amount of 

points associated with each image, and that some images 

delivered more points than other images. Importantly, the 

amount of points associated with each fractal image was 

changed across participants according to 8 possible 

randomizations in order to control for visual features of 

the images.  

 

Speeded value-based decision-making task 

Participants performed a speeded value-based decision-

making task while undergoing fMRI. The task started 

with a short training session, to acquaint participants with 

the procedure and the response buttons in the scanner. A 

total of 20 training trials were performed. On each trial, 

participants were presented with 4 fractal images, two on 

the left side of the screen, and two on the right side of the 

screen (500ms; Figure 1C). They were instructed to select 

options (left or right side of the screen) in order to 

maximize the number of points earned. Of the chosen 

side, they had equal probability of receiving one of the 

two presented images as feedback, and the corresponding 

amount of points, as feedback. Following a response, a 

blank screen was presented for a jittered variable interval 

(randomly selected, range 3000-5000ms, mean 4000ms). 

A feedback display followed, showing the image selected 

by the computer among the images on the chosen side, 

with the corresponding amount of points obtained by the 

participant (500ms). Feedback was followed by a 

randomly jittered interval, ranging between 3000 and 

5000ms (mean 4000ms). After completing the training, 

participants were asked if the points associated with each 

image corresponded with what they had learned in the 

training outside the scanner, and every participant so 

confirmed. Subsequently, the task started, with same 

timing and procedure. The task consisted of 160 trials in 

total in one block, lasting approximately 25 minutes.  

Activity in dACC is known to correlate with uncertainty 

and choice variance1.  The model-derived predictions 

regarding dACC activity (see below) suggest that, under 

certain circumstances, dACC activity may increase as the 

difference between options increases.  In the speeded 

decision-making task, the possible outcomes for each 

option are selected at random from the set of 8 outcomes 

as described above.  As a consequence, the variance 

within each option decreases as the variance between 

options increases (Fig. S1), and we can rule out the 
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possibility that increase in variance drives increases in 

dACC activity for extreme trials. 

 

Figure S1.  Within-option value difference as a function of 

between-option value difference 

 

fMRI data acquisition 

Data were acquired using a 3T Magnetom Trio MRI 

scanner (Siemens), with a 32-channel radio-

frequency head coil. In an initial scanning sequence, 

a structural T1 weighted MPRAGE sequence was 

collected (176 high-resolution slices, TR = 1550 ms, 

TE = 2.39, slice thickness = 0.9 mm, voxel size = 0.9 

x 0.9 x 0.9 mm, FoV = 220 mm, flip angle = 9°).  As 

second sequence, functional images were acquired 

using a T2* weighted EPI sequence (33 slices per 

volume, TR = 2000 ms, TE = 30 ms, no inter-slice 

gap, voxel size = 3 x 3 x 3mm, FoV = 192 mm, flip 

angle = 80°). On average 760 volumes per 

participants per task were collected. Each task lasted 

approximately 25 minutes.   

 

2.5 fMRI data analysis 

The first 4 volumes of each functional run were 

discarded to allow for steady-state magnetization. 

The data were preprocessed with SPM 8 

(http://www.fil.ion.ucl.ac.uk/spm). Images were 

realigned to the first image of the run. The structural 

T1 image was coregistered to the functional mean 

image for normalization purposes. Normalization 

was performed through the unified segmentation and 

nonlinear warping approach implemented in SPM8. 

Functional images normalized to the MNI template 

(Montreal Neurological Institute). Resulting 

functional images were smoothed with a Gaussian 

kernel of 8 mm full width half maximum (FWHM).  

 

Speeded value-based decision-making task 

For each single subject, a General Linear Model (GLM) 

approach was applied in order to identify condition-

specific activation. In a first GLM (GLM1), trials were 

divided in 11 different bins as a function of the value 

difference between the two sides of the screen (5 bins for 

the left side average value > right side average value 

ranging between 55 and 10 points difference, 1 bin for 

trials where both sides were close in value (-5 to +5 

average point difference for Right-Left options), 5 bins 

for the right side average value > left side average value, 

ranging between 55 and 10 points difference). For each 

regressor, a parametric modulator with RT at the current 

trial was added. An additional regressor was added to 

model responses over time limit (misses). Twelve 

regressors were added to model feedback in each 

condition and in misses. Six more regressors were added 

to account for motion (X,Y, Z translation, pitch, yaw, and 

roll). In a second GLM (GLM2), trials were divided in 8 

different bins as a function of RT and side. The purpose 

of this binning procedure was to equalize the number of 

trials per bin, and to ensure that possible increases in 

activity for extreme value difference could not be 

attributed to increased RT. For each regressor the RT on 

current trial was added as a parametric modulator. One 

regressor was added for responses over time limit. Nine 

regressors were added to model feedback in each 

condition and feedback for misses. Six regressors were 

added to account for motion as above.  

Because each computational model under consideration 

predicts effects specifically related to dACC and medial 

prefrontal cortex (mPFC), we restricted our analyses to an 
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anatomically-defined region including dACC, 

supplementary motor area (SMA), and superior mPFC, 

defined anatomically using the wfupickatlas toolbox 

(dilation=2).  The predictions of each model considered 

(see below) can be described in a straightforward fashion 

by polynomial equations. Therefore, for all voxels within 

this region, beta values estimated for that voxel at the 1st 

level, and for all subjects, for each regressor in GLM1 

were used to fit polynomial equations (linear, quadratic, 

cubic, and quartic). Following polynomial fits, an AIC 

value was computed for each polynomial equation, and 

AIC values were used to compute Akaike Weights2 

yielding a value between 0 and 1 for each model 

indicating the probability that model is the best of all 

models under consideration. For each voxel, therefore, a 

value was obtained indicating the probability that the beta 

values at that voxel were best explained by each of the 4 

polynomial equations.  These values were thresholded at 

0.999 (equivalent to p<0.001), and for all voxels 

surviving this threshold, the best-fit polynomial equation 

was determined, averaged over all surviving voxels, and 

regressed against the BOLD signal to compute whole-

brain statistics. These steps were repeated for GLM2 

(binned by RT). 

To analyze feedback-related activity, a third GLM 

(GLM3) was created in which one regressor, 

corresponding to the onset of task feedback was modeled 

on each trial.  A parametric modulator reflecting the 

(objective) unsigned prediction error (calculated from 

global task contingencies and based on subjects’ trial-by-

trial choices) was included for the feedback regressors.  A 

second regressor was used to model non-response trials, 

and 6 motion regressors were included as in GLMs 1 & 2. 

 

Modeling Methods. 

All scripts used to derive predictions from the various 

computational models are available online at 

https://github.com/modelbrains/EVC-Simulations 

Expected Value of Control (EVC1) 

Equations for the Expected Value of Control3 (EVC) 

model were taken from Shenhav et al. (2013).  

Specifically, for 1-step choice tasks, the EVC model is 

specified by the equations: 

𝐸𝑉𝐶(𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑡𝑎𝑡𝑒) =

[∑ 𝑃(𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖|𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑡𝑎𝑡𝑒) ×𝑖

𝑉𝑎𝑙𝑢𝑒( 𝑂𝑢𝑡𝑐𝑜𝑚𝑒𝑖)] − 𝐶𝑜𝑠𝑡(𝑠𝑖𝑔𝑛𝑎𝑙)   (1) 

𝑠𝑖𝑔𝑛𝑎𝑙∗ ← 𝑚𝑎𝑥𝑖[𝐸𝑉𝐶(𝑠𝑖𝑔𝑛𝑎𝑙, 𝑠𝑡𝑎𝑡𝑒)]    (2) 

Although many aspects of the EVC model, such as the 

form of cost functions related to effort and the relationship 

between effort and probability, are unspecified, there are 

three clear commitments the model makes.  First, 

increased control is positively and monotonically related 

to the cost of control: exerting more effort to make a 

choice always entails additional costs. Second, the level 

of control is positively and monotonically related to the 

probability of success: exerting more effort to make a 

choice always increases the probability of successfully 

making that choice. Finally, the EVC model states that 

dACC activity is proportional to the intensity of the 

optimal control signal (eq. 2). 

In order to derive predictions from the EVC model using 

only the equations provided in Shenhav et al., 2013 

(EVC1 in the main text), we simulated the EVC1 model 

on 100,000 trials of the speeded decision task. Since the 

EVC model leaves the specification of the functions (cost 

function and p(success|effort)) noted above ambiguous, 

the model was simulated multiple times using different 

functional forms that nonetheless satisfy the central 

commitments described above. Candidate signal costs 

(eq. 1) were modeled in the range [0 5] for each of the 

possible actions in the speeded decision-making task. The 

probability of the model selecting an option given a 

certain effort level was modeled as a sigmoid function 

𝑃(𝑂1|𝑒𝑓𝑓𝑜𝑟𝑡1) =
1

1+𝑒𝑥𝑝(−𝑒𝑓𝑓𝑜𝑟𝑡1×𝛽)  (3) 

where effort1 is the level of effort exerted in order to 

realize outcome O1 and 𝛽 is a scaling parameter that 

determines how quickly the sigmoid function asymptotes 

for increasing effort levels. Because there were only two 

possible options to choose from, P(O2|effort2) was 
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modeled as 1-P(O1|effort1). To accommodate possible 

nonlinearities in the cost function, the model was 

simulated with cost functions exponentiated by values of 

0.5, 1, and 2.  As with the cost function, the probability 

function was simulated in three different ways to account 

for possible non-linear relationships between effort and 

probability. Specifically, the parameter 𝛽 was assigned 

values of 0.1, .5 and 10.  Crossing the 3 cost function 

manipulations with the 3 probability function 

manipulations yields 9 simulated conditions. Regardless 

of the particular form of cost and probability functions, 

however, the qualitative predictions of the EVC1 model 

are identical in that they all produce a U-shaped curve (cf. 

figure 1A, main text) centered at a value difference of 0. 

The predictions of the EVC1 model are therefore 

approximated by a quadratic polynomial with a positive 

sign on the quadratic term. 

Expected Value of Control 2 (EVC2) 

An additional aspect of the EVC model, not specifically 

formalized in Shenhav et al., (2013) is that, as decisions 

become easier, control costs decrease.  In the speeded 

decision task, options with large value differences may 

therefore represent easy decisions in which control is not 

necessary since the response is largely driven by bottom-

up processes. In order to derive predictions from the EVC 

model incorporating this intuition, we altered eq. 3 to 

include a shifting set point for determining choice 

probabilities 

𝑃(𝑂1|𝑒𝑓𝑓𝑜𝑟𝑡1) =
1

1+𝑒𝑥𝑝
(−(𝑒𝑓𝑓𝑜𝑟𝑡1+

𝑉1−𝑉2
𝛾

) ×𝛽)
 (4) 

where 𝑉1 and 𝑉2 are the expected value of options 1 and 

2, respectively, and γ scales the value difference between 

the 2 options (𝛽 = 1). The effect of this addition to the 

model for choice probability is to change the effort point 

at which the model is indifferent between options.  When 

𝑉1 = 𝑉2, eq. 4 is the same as eq. 3. As 𝑉1 becomes greater 

than 𝑉2, the point at which the model is equally likely to 

select either option shifts toward 𝑉2 - the model would 

need to exert effort favoring the selection of 𝑉2in order to 

have an equal probability of selecting either option. Put 

another way, it is more likely that the model selects 𝑉1 

with no effort expended, and this probability increases 

with the difference in value between options. Thus eq. 4 

captures the intuition that choice becomes easier as the 

difference in values increases. 

 

Figure S2. Predictions for the EVC2 model as a function of 

temperature (gamma) 

 

The predictions derived from EVC2 are slightly more 

nuanced than those for EVC1.  For very low values of γ, 

the influence of value differences overrides the effect of 

effort - any value difference becomes the dominant factor 

in determining choice.  Here, the predictions of EVC2 

correspond to those of the choice difficulty model (see 

below), with the greatest predicted activity for choices 

close together, and the least activity for options with large 

value differences. Conversely, when γ is very high, 

predictions of EVC2 correspond to those of EVC1 - here, 

effort is the decisive factor in choice behavior, and the 

rationale derived from simulations of EVC1 applies. Of 

interest, however, is the behavior of the model for 

intermediate values of γ. As γ increases from low to high 

values, the model predictions assume an 'M' shape.  

Notably, at no point in this progression does the predicted 

activity assume a 'W' shape. Thus the EVC2 model may 

be consistent with either EVC1 or CD, but not with the 

PRO model (see below). 

The ‘M’ shape has minima at the following points: when 

the value difference between options is most extreme, and 

when the options are approximately equally valuable.  

Intuitively, this arises from the sensitivity of the optimal 

control signal both to changes in incentives as well as the 
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costs required to realize the incentives.  At extreme value 

differences, incentives are high, associated with a 

stronger control signal.  However, the decision for 

extreme value difference trials is relatively easy, meaning 

that the costs of control are low, requiring a weaker 

control signal.  Conversely, when both options are equally 

valued, the incentive for choosing one over the other is 

minimal, implying a weak control signal, while the 

decision costs are higher due to the similarity of the 

options, implying a strong control signal.  The minima in 

the ‘M’ pattern therefore correspond to situations in 

which the control signal intensity depends entirely only 

on one factor in the decision process, i.e., only costs or 

reward.  The peaks of the ‘M’, in contrast, reflect those 

trials in which both cost and reward substantially 

contribute to the reward signal. 

 

Applicability of EVC to speeded decision-making and 

derivation of predictions 

As indicated above, several aspects of the EVC model are 

left un- or under-specified. Nevertheless, previous 

statements in publications describing the EVC model 

informed our choice of a speeded value-based decision-

making task to test predictions of the EVC model.  Here, 

we specifically cite those statements justifying our choice 

of task, as well as the manner in which we derive 

predictions from the model.  All emphasis is not in the 

original, but included to highlight points relevant to the 

current manuscript. 

1) EVC applies to economic tasks with control 

requirements.  In Shenhav et al., 2014, the authors state:  

"We recently described an integrative theory of 

dACC function, which proposed that the dACC is 

responsible for estimating the expected value of 

control-demanding behaviors (EVC) and selecting 

which to execute. Like the KBMR theory, this 

theory predicts that dACC activity should track 

the expected reward for engaging in non-default 

behavior, inasmuch as this can be considered to 

be control-demanding.” 4   

2) Time pressure is a control-demanding experimental 

manipulation.  In Shenhav et al., 2013, the authors state:  

"The EVC model proposes that dACC mediates 

these adjustments, by monitoring for the conditions 

that require them, and specifying the necessary 

adjustments for other systems responsible for 

implementing them. This makes two predictions: 

first, that dACC should be responsive to 

conditions indicating the need to adjust control 

intensity; and, second, that it should be associated 

with the engagement of neural systems responsible 

for implementing these adjustments (i.e., the 

regulative function of control). 

“There is extensive evidence in support of the first 

prediction, indicating that dACC is responsive to 

conditions requiring adjustments of threshold 

and/or response bias, such as increases in time 

pressure and changes in prior probabilities..." 3 

3) DACC activity and the optimal control signal.  The 

authors of EVC indicate a direct relationship between the 

optimal control signal and dACC activity.  Specifically, 

in Shenhav et al., 2013, they write: 

 "Under plausible assumptions about the shape of 

the payoff and cost functions (see Kool and 

Botvinick, 2012), the optimal control signal 

intensity will rise with the magnitude of task 

incentives (see Figures 4A and 4B). This predicts 

that dACC activity should grow both with task 

difficulty and with the stakes associated with 

task performance." 3 

The speeded decision-making task used in this study 

involves making economic choices within a relatively 

short time window, a context in which the authors of EVC 

specifically state that dACC activity should track reward 

(1) since it involves making responses under time 

pressure (2), a control-demanding manipulation 

specifically noted in Shenhav et al., 2013.  Our 

implementation of the EVC model derives predictions of 

dACC activity based on the intensity of the optimal 

control signal (3); the positive relationship between the 
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optimal control signal intensity and dACC activity is 

specifically endorsed by the authors of EVC. 

Finally, in informal discussions relating to our 

simulations of the EVC model, it was questioned why a 

model with perfect information regarding available 

choices, as is the case in our initial simulations, should 

require control in the first place.  In response, we note that 

our simulations were conducted specifically with the 

speeded decision-making task in mind, and, as has been 

noted, time pressure is specifically identified as a control-

demanding manipulation.  That is, even if perfect 

information regarding options is available, control is still 

necessitated in order to govern an ongoing response 

process that, due to time pressure, needs to be initiated 

and completed relatively quickly after stimulus 

presentation.  Additionally, even though our initial 

simulations assumed perfect information, this is not 

required in order to derive the predictions we attribute to 

the EVC model.  In additional simulations of the EVC 

model, we introduce estimation noise as follows: on each 

trial, rather than calculating the veridical expected value 

of each option, we instead took the average of 5 random 

samples drawn from a uniform distribution bounded by 

the minimum and maximum possible value for each 

option.  The results of these simulations reproduce the 

qualitative patterns observed for simulations of the EVC2 

model above.  

 

Choice Difficulty 

The Choice Difficulty model4 is formulated as the 

negative absolute value of the difference in subjective 

value between two options: 

  𝐶𝐷 = −|𝑉1 − 𝑉2|                            (3) 

 Subjective value may be biased due to task demands, 

such as the presence of a default response that biases 

subjects against selecting a non-default option.  

Additionally, it is possible that additional terms may 

further inform the calculation of value difference - e.g., 

exponential terms that add a nonlinear component to 

value.  Nevertheless, the CD model is quite clear that 

dACC activity should be maximal for subjective value 

differences near zero, and minimal for extreme value 

differences. That is, regardless of response bias, the CD 

model can be approximated by a quadratic polynomial 

equation with a negative sign on the quadratic term. 

Predicted Response-Outcome Model 

The Predicted Response-Outcome5 (PRO) model, in 

contrast to the previous models, does not interpret dACC 

function as specifically learning about value information, 

but rather about the likely outcomes of actions. 

Nevertheless, in our initial publication of the model5 as 

well as in applications of the model to substance 

dependence6, we noted that value could influence the 

salience of an observed outcome - high value outcomes 

are more salient than low value outcomes, and thus the 

predictions learned by the PRO model could reflect a 

biased estimate of the likelihood of outcomes depending 

on subjective value. We simulated the PRO model on the 

speeded decision-making task using our previously 

published parameter set. Inputs to the model were the 8 

possible task stimuli, and two outcomes were modeled for 

each option, with the value of the outcome modeled as the 

total number of points earned by selecting an option. 

Following feedback, model activity was allowed to decay 

back to baseline prior to the onset of the next trial. 

Activity (negative surprise) was recorded from the model 

beginning at the presentation of the two options in the task 

until 20 iterations (200ms) following the generation of a 

response. The model was simulated on 10 different 

experimental runs of 3000 trials each, and data were 

recorded after the first 500 trials to allow the model time 

to learn task contingencies. Predictions for the PRO 

model are 'W'-shaped, with predicted activity in dACC 

high for conditions in which the value of 2 options is 

similar, as well as conditions with extreme value 

differences.   

The PRO model interprets dACC activity as being 

primarily related to the calculation of prediction error 

(specifically, the negative component of a prediction 

error), a quantity that has frequently been applied to the 

interpretation of neural data.  In the speeded decision task, 

prediction errors (PEs) occur at three points in each trial.  

First, over the entire experiment, the mean value of both 
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the left and right options is approximately 45 points – that 

is, at the onset of a trial, and prior to seeing the fractal 

images, it can be predicted   that , on average, each

 

Figure S3. PRO Model Simulated Activity - Following presentation of a stimulus, model activity increases as a function of value differences 

due to the surprisingly low value of one option.  Following a response, PRO model activity increases with the similarity of option values - 

choosing either response entails increased surprise at not choosing the alternative response. 

option will be worth around 45 points.  When the fractal 

images are presented, the actual value of each option can 

be estimated, and may be larger or smaller than the long-

run average.  The discrepancy between the option value 

and the long run average results in a PE specifically 

related to stimulus presentation (Fig. S3, Left Frame).  

Second, due to the time pressure manipulation in the task, 

responses are generated in a noisy, probabilistic fashion: 

even though a subject may intend to select one option, it 

may be the case that the other option is selected due to 

noise in the response process.  On trials in which the 

difference between two options is low, evidence in favor 

of each option is about the same, and thus the selection of 

one option over the other entails PE regardless which 

option is picked.  On the other hand, when value 

differences are extreme, evidence overwhelmingly favors 

one option over the other, and thus PE is minimal when 

that option is selected.  Together, both stimulus- and 

response-related (Fig. S3, Right Frame) PEs contribute to 

the ‘W’ pattern predicted by the PRO model. 

Finally, PEs are generated following task-related 

feedback.  Once an option has been selected, subjects 

have a 50% chance of receiving the points associated with 

either of the fractal images that made up that option.  The 

discrepancy between the points actually received and the 

possible points results in a feedback-related PE. 

Alternative formulation of the PRO model 

Like the EVC model, the PRO model is based on standard 

reinforcement learning models; in particular, the PRO 

model uses temporal difference (TD) formulations7 in 

order to capture temporal dynamics of activity in ACC5.  

While the use of TD learning allows the model to capture 

a range of effects in ACC related to temporal 

contingencies8 and learning9, it also involves additional 

model complexity that may obscure a direct comparison 

with the EVC model.  In order to facilitate such a 

comparison, and to demonstrate that the predictions of the 

PRO model do not depend on the additional complexity 
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involved in learning and tracking temporal contingencies, 

we provide a simplified formulation of the PRO model 

using equations substantially similar to those used to 

specify the EVC model. 

The two core functions of the PRO model can be distilled 

to prediction and prediction error (PE)5,10, and these 

functions apply generally to salient sensory events9,11.  In 

our speeded decision-making task, there are three distinct 

points in each trial in which such a salient event occurs: 

1) the delivery of task feedback in the form of points 

awarded for a trial, 2) the generation of a response, and 3) 

the presentation of task stimuli. The range of effects 

attributed to dACC by the PRO model are described by 

“negative surprise” – the negative component of PE5 – 

following the occurrence of a salient event: 

  𝜔𝑁 = |𝐸𝑣𝑒𝑛𝑡 − 𝐸𝑣𝑒𝑛𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛|+ (4) 

where 𝜔𝑁 is the negative component of the PE associated 

with the non-occurrence of a predicted event.  The 

functional form of eq. 4 remains identical for all salient, 

predictable events; in order to derive predictions from the 

PRO model, then, it is only necessary to specify what is 

being predicted at each point in the speeded decision-

making task.  At the delivery of task feedback, the model 

predicts the amount of points to be received based on the 

selected option.  As noted above, the predictions of the 

model may be biased by the salience/value of possible 

outcomes – model predictions are therefore proportional 

to the expected value:  

𝐸𝑉𝑜𝑝𝑡𝑖𝑜𝑛 = ∑ 𝑃(𝑜𝑢𝑡𝑐𝑜𝑚𝑒|𝑜𝑝𝑡𝑖𝑜𝑛) ×𝑜𝑢𝑡𝑐𝑜𝑚𝑒

𝑉𝑎𝑙𝑢𝑒𝑜𝑢𝑡𝑐𝑜𝑚𝑒     (5)  

Response-generation in our simplified version of the PRO 

model is modeled using a sigmoid function, similar to that 

used in our implementation of the EVC model 

𝑃(𝑂1) =
1

1+𝑒𝑥𝑝
(−

𝑉1−𝑉2
𝛾

 )
    (6)_ 

with the exception that there is no effort term and β is 

subsumed by the γ term.  As with feedback, choices are 

informed by the salience/value of that choice:   

 𝐸𝑉𝑐ℎ𝑜𝑖𝑐𝑒 = 𝑃(𝑂1) × 𝐸𝑉𝑜𝑝𝑡𝑖𝑜𝑛  (7) 

Finally, over the entire task, each option will have a long-

run average value of around 45 points.  That is, given all 

possible combinations of stimuli, the long-term expected 

value of an option before observing the stimuli 

themselves will be 45 points.  Prior to the presentation of 

task stimuli, therefore, the model predicts that, on 

average, this average value: 

𝐸𝑉𝑡𝑎𝑠𝑘 =
1

𝑡𝑟𝑖𝑎𝑙𝑠
∑ 𝐸𝑉𝑜𝑝𝑡𝑖𝑜𝑛𝑡𝑟𝑖𝑎𝑙𝑠    (8) 

The quantities in eqs 5, 7 & 8 are compared with the actual 

event that occurred at each salient point in each trial as in 

eq. 4 in order to generate model predictions.  Model 

activity is therefore the product of only a single equation 

that applies over a broad range of possible inputs. 
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