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Abstract

Several studies have suggested that functional connectivity (FC) is constrained by the

underlying structural connectivity (SC) and mutually correlated. However, not many studies

have focused on differences in the network organization of SC and FC, and on how these

differences may inform us about their mutual interaction. To explore this issue, we adopt a

multi-layer framework, with SC and FC, constructed using Magnetic Resonance Imaging

(MRI) data from the Human Connectome Project, forming a two-layer multiplex network.

In particular, we examine whether node strength assortativity within and between the SC

and FC layer may confer increased robustness against structural failure. We find that, in

general, SC is organized assortatively, indicating brain regions are on average connected to

other brain regions with similar node strengths. On the other hand, FC shows disassortative

mixing. This discrepancy is apparent also among individual resting-state networks within SC

and FC. In addition, these patterns show lateralization, with disassortative mixing within FC

subnetworks mainly driven from the left hemisphere. We discuss our findings in the context

of robustness to structural failure, and we suggest that discordant and lateralized patterns

of associativity in SC and FC may explain laterality of some neurological dysfunctions and

recovery.
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1 Introduction

The relationship between structural connectivity and functional connectivity has attracted much

attention in recent years (Park & Friston, 2013; Sporns, 2013b; Damoiseaux, 2017; Uddin et al.,

2011; Mišić et al., 2016). Yet despite numerous empirical (Uddin et al., 2011; Betzel et al., 2014)

and computational studies (Sporns, 2013b; Park & Friston, 2013) the nature of their interaction

remains only incompletely understood. Several studies have suggested that functional brain net-

works are constrained by the underlying structural connectivity (Sporns, 2013a), and brain-wide

comparisons have supported the idea that functional connectivity (FC), measured in the resting

state, and structural connectivity (SC) are in general statistically correlated (Skudlarski et al.,

2008). For example, when there is a strong anatomical connection between two areas of the brain,

the corresponding functional connection is likely to be strong as well, but the inverse is not always

the case (Koch et al., 2002; Damoiseaux & Greicius, 2009; Messé et al., 2014; Mišić et al., 2016;

de Pasquale et al., 2017; Honey et al., 2010; Honey et al., 2009). A number of computational

models have successfully reproduced some features of empirical functional connectivity, including

models based on large-scale dynamics (Breakspear, 2017; Deco et al., 2013) or graph theory metrics

(Goñi et al., 2014). While most studies have emphasized the statistical association between SC

and FC, important differences and discrepancies remain (Honey et al., 2009; Messé et al., 2014).

This may be expected given that fMRI and dMRI measure different signals and use different

statistical approaches for estimating pairwise connections between regions of interest (ROIs).

Whereas SC estimates a direct relationship or path between two brain regions, measurements of

FC, for instance, estimated by Pearson’s moment correlation coefficients, incorporate both direct

and indirect relationships between two nodes influenced by other brain areas (van den Heuvel &

Sporns, 2013; Zalesky et al., 2012).

However, not many studies have focused on fundamental topological differences in the net-

work organization of SC and FC, and on how these differences may provide insight into their

mutual interaction. To explore this issue, we adopt a multi-layer framework, with SC and FC

forming a multiplex network (Buldyrev et al., 2010; Boccaletti et al., 2014; Kivelä et al., 2014).

What are the fundamental topological differences that underpin FC and SC, and are these
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differences biologically meaningful? Are there potential benefits that might arise from topological

differences among these two different types of brain networks? As previous studies have shown,

SC and FC are intricately (and non-trivially) linked – for example, by demonstrating that FC

arises from underlying anatomical connections. Thus, if any systematic/consistent topological

differences exist between these two networks, are they mere by-products of the generative process

or could they represent biologically meaningful features of multi-layer organization that carry

benefit or enhance overall functionality?

Specifically, we will examine the possibility that node strength assortativity between the SC and

FC layers may confer increased robustness to the multiplex system. Degree assortativity has been

extensively studied in the context of network robustness (Newman, 2003; Callaway et al., 2000;

Noldus & Van Mieghem, 2015). In isolated networks, assortativity stands for correlation among

nodes features (e.g., degree) of directly connected nodes (Newman, 2003). A network is said to

be assortative if its connectivity pattern is such that high-degree nodes are frequently attached to

other high-degree nodes, and low-degree nodes are preferentially connected to other low-degree

nodes. Assortative networks are generally resilient against the random removal of nodes and

edges (Newman, 2003; Pechenick et al., 2012; Vázquez & Moreno, 2003). In multiplex networks,

correlations among nodes features can be measured both within- and between-layers (Nicosia &

Latora, 2015; de Arruda et al., 2016). The two types of correlations provide different information

about the robustness of the interdependent system. In the absence of any correlations between

layers, it is well known that an interdependent network undergoes a sudden percolation transition

(Buldyrev et al., 2010). An increased within-layer degree assortativity decreases the robustness of

the network in terms of the percolation threshold (Zhou et al., 2012). On the other hand, positive

values of between-layer correlations generally mitigate the abrupt nature of the transition, making

the system more robust. Examples include degree-degree correlations (Reis et al., 2014), edge

overlap (Cellai et al., 2013; Min et al., 2015; Radicchi, 2015; Radicchi & Bianconi, 2017; Baxter

et al., 2016), clustering and spatial coordinates (Danziger et al., 2016; Kleineberg et al., 2016;

Kleineberg et al., 2017).

Robustness is an important feature of brain networks (Petrosini, 2017; Aerts et al., 2016;
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Bullmore & Sporns, 2012). In many cases, FC network patterns appear to maintain large-scale

patterns and functionality even in the face of serious disruptions or disturbance of underlying

SC. Can a multi-layer model shed light on the network basis for these observations? Here, we

investigate if these findings from theoretical investigations and non-biological networks carry

over to human brain networks derived from Magnetic Resonance Imaging (MRI) data from the

Human Connectome Project (Van Essen et al., 2013). SC was constructed based on diffusion

MRI and tractography and FC was estimated using regularized partial correlation coefficients

with the elastic net. The two layers (SC and FC) are coupled by creating links on pairs of

corresponding nodes in the two layers, thus creating a multiplex network. We examine assortative

mixing by strength both within SC and FC and between the two layers. We divided FC and

SC into 7 subnetworks according to a canonical resting-state partition (Yeo et al., 2011). We

find that coupled structural and functional human brain networks exhibit a combination of

similarities and differences. In addition, we find heterogeneous strength-strength correlations

across the two layers and within FC and SC subnetworks, as well as between the left and

right hemispheres. Our findings may offer clues to understand why some brain networks are

more vulnerable to or more resilient against functional disruption due to brain disorders or injuries.

2 Methods and materials

2.1 Data and data processing

The dataset was provided by the Human Connectome Project (HCP; http://www.humanconnectome.

org) from the Washington University-University of Minnesota (WUMinn) consortium (Van Essen

et al., 2013), acquired using a modified 3T Siemens Skyra scanner with a 32-channel head coil.

Resting-state fMRI data in an eyes-open condition were collected for approximately 14 min

(1,200 time points) with TR = 720 ms, TE = 33.1 ms, flip angle = 52°, voxel size = 2 mm

isotropic, and FOV = 208 × 180 mm2 and 72 slices. The data were acquired with opposing

phase encoding directions, left-to-right (LR) in one run and right-to-left (RL) in the other

run. Scanning parameters of a T1-weighted structural image were TR = 2,400 ms, TE = 2.14
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ms, flip angle = 8°, voxel size = 0.7 mm isotropic, FOV = 224 × 224 mm2 and 320 slices.

Diffusion-weighted images (DWI) were acquired with 270 gradient directions with b-values 1000,

2000, 3000 s/mm2, two repeats, and in a total of 36 b0 scans: TR = 5520 ms, TE = 89.5

ms, flip angle = 78°, FOV = 210 × 180 mm2, 111 slices, and voxel size = 1.25 mm isotropic.

A T1-weighted structural image was acquired with TR = 2400 ms, TE = 2.14 ms, flip an-

gle = 8°, FOV = 224 × 224 mm2, 320 slices, and voxel size = 0.7 mm isotropic. From the

minimally preprocessed DWI data, white matter fibers were reconstructed using generalized

q-sampling imaging (Yeh et al., 2010) and deterministic streamline tractography (de Reus &

van den Heuvel, 2013; de Reus & van den Heuvel, 2014; van den Heuvel et al., 2015; van den

Heuvel et al., 2016). Our study included 484 participants in total from the Q4 release of HCP data.

2.2 Structural connectivity (SC) and functional connectivity (FC)

Both structural networks and functional networks consisted of 219 cortical nodes using a subdivi-

sion parcellation (Cammoun et al., 2012) of the Desikan-Killiany atlas (Desikan et al., 2006). For

the structural networks, the edge weights were defined by the streamline count between two ROIs

derived from diffusion MRI tractography and the edge weights for the functional networks were

estimated as regularized partial correlation coefficients (see Section 2.6 for details).

2.3 Interdependent relationship between SC and FC

We model the interdependency of SC and FC using a multi-layer network approach (Boccaletti,

2004; Kivelä et al., 2014). SC and FC form two separate layers that are linked by multiplex

coupling, such that a node (ROI) in one layer is connected to the same node in the other layer in a

one-to-one correspondence (Figure 1, left). Building on previous work that has shown significant

interactions between SC and FC (Park & Friston, 2013; Sporns, 2013b; Damoiseaux, 2017; Uddin

et al., 2011; Mišić et al., 2016), the multi-layer approach is designed to consider SC and FC as

interdependent networks with a one-to-one correspondence. In this study, we consider a two-layer

multiplex network with unweighted dependency links between layers for simplicity with a minimal
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set of assumptions; however, one could extend the model to represent a more general multi-layer

network framework for future studies.

2.4 Estimation of functional connectivity from resting-state fMRI

Many different measures have been used to estimate or construct functional brain networks (Bull-

more & Sporns, 2009; Deco et al., 2011; Friston et al., 2003). Among them, the Pearson’s moment

correlation coefficient has been the most popular choice among brain researchers, and, despite its

simplicity, it has provided valuable information regarding the intrinsic functional organization

of the brain (Wang et al., 2014). However, other measures for estimating pairwise functional

connectivity do exist, and they probe different aspects of dynamic interactions. Alternative choices

include partial correlation coefficients, coherence measures that estimate linear relationships

considering direct/indirect coupling effects in either the time domain or in the frequency domain,

or non-linear measures such as mutual information, second-order maximum entropy or generalized

synchronization (Simpson et al., 2013; Wang et al., 2014). In addition to the aforementioned

seed-based definition of ROIs for functional networks, spatial ICA-based functional networks are

also widely used (van de Ven et al., 2004; Calhoun et al., 2001; Smith et al., 2013). Importantly,

network properties of FC may differ depending on which dependency/synchrony measure one

chooses as each measure captures different aspects of the functional network (Wang et al., 2014).

Spatial ICA and seed-based FC have shown to be similar in certain cases (Van Dijk et al., 2010)

and both have advantages and disadvantages (for more quantitative comparison between the two

methods, see (Joel et al., 2011)). Importantly, network properties of FC may differ depending on

which dependency/synchrony measure or which type of derived FC one chooses to construct as

each method captures different aspects of the functional network (Simpson et al., 2013; Wang

et al., 2014; Zalesky et al., 2012; Liang et al., 2012; Jalili, 2016). Here, we use seed-based FC in

order to make a direct connection between SC and FC, in particular, we use regularized partial

correlation coefficients based on a regression approach (Krämer et al., 2009). In the following

section, we elaborate on why we chose to use regularized partial correlation coefficients.
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2.5 Full correlation versus partial correlation

The utility of a partial correlation approach to functional brain networks derives from the capacity

to remove indirect effects due to remote linear effects propagated from other regions (van den

Heuvel et al., 2008; Supekar et al., 2010; Ryali et al., 2012; Hampson et al., 2002; Marrelec et al.,

2006; Smith et al., 2011). However, using partial correlation coefficients entails some other issues,

such as requiring number of observations larger than the number of ROIs, potential overfitting

and less stable estimation (Ryali et al., 2012; Smith, 2012; Krämer et al., 2009; Nie et al., 2015;

Friedman et al., 2008; Huang et al., 2010; Lee et al., 2011; Peng et al., 2009; Meinshausen &

Bühlmann, 2010; Varoquaux et al., 2010). On the positive side, partial correlation coefficients

could estimate connection strengths between two brain regions that are conditionally independent

with a small coefficient, reducing or removing indirect connections (often referred to as spurious

connections) (Figure 1, left). Nonetheless, when the underlying structure happens to involve

conditional dependence, in other words, ‘explaining away’ phenomenon in the Bayesian modelling

literature (probabilistic graphical models) (Pearl, 1988), estimating partial correlation coefficients

can cause Berkson’s paradox, inducing a ‘spurious’ connection, which will not happen when we

use full correlation coefficient estimation (Figure 1B, right) (Berkson, 1946). This can be partially

solved by using regularized partial correlation coefficients (Nie et al., 2015).

2.6 Regularized partial correlation coefficients using elastic net

Regularized partial correlation coefficient estimation has been proposed for constructing functional

networks based on resting-state fMRI to overcome the limitation of partial correlation coefficient

estimation, while measuring direct relationships between two brain areas(Ryali et al., 2012; Smith,

2012; Krämer et al., 2009; Nie et al., 2015; Friedman et al., 2008; Huang et al., 2010; Lee et al.,

2011; Peng et al., 2009; Meinshausen & Bühlmann, 2010; Varoquaux et al., 2010) and, more

commonly, for constructing gene association networks (Krämer et al., 2009). Estimation of regu-

larized partial correlation coefficients has been carried out by applying regularization on Gaussian

Graphical Models (GGMs), which can be represented as a graph with edges estimating conditional

dependence between nodes (Whittaker, 2009; Krämer et al., 2009). Of those regularized models,
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Figure 1: (A) A schematic representation of a brain multiplex network, where the networks
of functional connectivity (FC) and structural connectivity (SC) are coupled via one-to-one
match between corresponding region of interests; hub nodes in the SC (denoted as bigger circles)
may not coincide with high-degree nodes in the FC; nodes linked in SC may not coactive
strongly, resulting in the absence of the edge in FC. (B) Limitations of Pearson’s correlation and
partial correlation. Depending on the underlying neuronal circuits both approaches can result in
undesirable connection weights in the functional graph. (Left) A case where Pearson’s correlation
coefficient fails to disregard a non-existent connection between node A and C. The visualization
stands for the underlying probabilistic graphical model among the variables A, B, and C, with
connections standing for dependencies among pairs of variables. The two matrices contain the
coefficients of Pearson’s correlation and partial correlation coefficients, respectively. Rows and
columns of the matrices refer to alphabetically ordered pairs of variable. Given their symmetry,
we show only the upper-triangle of the matrices. (Right) A case where the partial correlation
coefficient counter-intuitively imposes a high weight on the connection between node A and B
due to the dependence on C. (Adapted from Nie 2015)

the elastic net has been shown to be a good model to estimate resting-state functional connectivity

(Ryali et al., 2012). Although providing sparser solutions which do not require further statistical

thresholding, L1-norm regularization can only identify a number of functional connections that

is less than or equal to the number of observations (time points) and can detect only a subset

of connections when the time series are highly correlated (Zou & Hastie, 2005). On the other

hand, L2-norm regularization does not shrink small values of coefficients to zero, and hence we

may not achieve the desirable level of sparseness of the network (Zou & Hastie, 2005). We can

overcome these limitations by using the elastic net regression, which uses penalization of both L1

and L2 norms, or a linear combination of L1 and L2 norm regularization by solving the following

problem (Friedman et al., 2010).
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minβ0,β
1

N

N∑
i=1

wil(yi, β0 + βTxi) + λ

[
1

2
(1− α)‖β‖22 + α‖β‖1

]
(1)

β̂ = argmin
β
‖y −Xβ‖2 + λ

[
(1− α)‖β‖2 + α‖β‖1

]
(2)

While trying to minimize our objective function (eq.1), we need to optimize our parameters λ

and α. λ controls the overall penalization of the model and α determines how much we would

put weight on L1-regularization compared to L2 regularization. For example, if α is 1, our model

becomes LASSO or L1 regularization model, which will give us the sparsest graph. There are

several methods to identify optimal parameter values such as grid search, which is slow and

unstable because grid density affects the accuracy and depends on heuristic choices for parameter

ranges. Alternatively, one could also use a stability selection method, which aims to control

the false discovery rate (Meinshausen & Bühlmann, 2010) to determine the proper amount of

regularization. Here, we made use of the interval search EPSGO algorithm to tune our parameters

λ and α based on 10-fold cross-validation. This algorithm learns a Gaussian process model of the

loss function surface in parameter space and samples at points where the expected improvement

criterion is maximal (Sill et al., 2014; Frohlich & Zell, 2005; Jones et al., 1998). After calculating

regularized βs (coefficients of predictors) with the optimized regularization parameters, we obtain

partial correlation coefficients from βs (Whittaker, 2009; Krämer et al., 2009).

ρ̂ij = sign(β̂j
(i)
)min{1,

√
β̂j

(i)
β̂i

(j)
} if sign(β̂j

(i)
= sign(β̂i

(j)
) (3)

otherwise 0

where β̂j
(i)

is the regularized estimate of βs between brain region i and the rest of the brain

regions except the region i, which ensures the partial correlation coefficients are well-defined and

in the interval [−1, 1].
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2.7 Assortativity mixing within and between layers

Assortativity quantifies the tendency for nodes to connect to other nodes that are similar in some

way (Newman, 2003; Noldus & Van Mieghem, 2015). For example, modularity Q (Newman, 2003;

Newman & Girvan, 2004) is an assortativity-based measure which expresses the actual connection

density of nodes within the same community compared to the value of the connection density

expected in a suitably defined null model. We can also measure the tendency of ‘similar’ nodes

being connected to each other (actual vs. expected) based on some scalar nodal attribute such

as degree, or betweenness. One of the most common cases where we define assortative mixing

according to a scalar quantity is assortativity mixing by degree; positive degree assortativity

implies that high-degree nodes are preferentially connected to high-degree nodes on average and

low-degree nodes mainly connect to low-degree nodes on average. Since FC edges can carry either

positive or negative weights, we considered a version of assortativity that takes into account node

strengths, called node strength assortativity. The strength of a node is defined by the sum of

its all weights (Barrat et al., 2004). In FC a node’s strength is close to zero when its neighbors

maintain positive and negative weights that nearly balance out. In this study, high values of the

assortativity for the FC layer reflect a connectivity pattern where nodes with high strength are

tendentially connected, through positively valued edges, to nodes with high strength. We did not

weight the connection strength between two nodes, rather we measured the strength correlation

between two nodes. In other words, we calculated Pearson’s correlation coefficient between a pair

of nodes based on their strengths:

r =

∑
ij(Aij − kikj/2m)sisj∑
ij(kiδij − kikj/2m)sisj

(4)

Where ki is the degree of node i and 2m =
∑
i ki. Aij = 1 if a connection between nodes i and

j exists, otherwise Aij = 0. si =
∑
j wij is the sum of the weights of all connections departing

from node i. δij = 1 if i = j and δij = 0, otherwise. The numerator of Eq. 4, is the covariance of

the pair of si and sj on the edge (i, j) averaged over all pairs of edges. We define the mean µ of

the si at the end of an edge as µ =

∑
ij Aijsi∑
ij Aij

=

∑
i kixi∑
i ki

=
1

2m

∑
i kixi, which is is the average

over edges rather than over all vertices. Then the covariance of si and sj over edges is the following.
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cov(si, sj) =

∑
ij Aij(si − µ)(sj − µ)∑

ij Aij

=
1

2m

∑
ij

Aij(sisj − µsi − µsj + µ2)

=
1

2m

∑
ij

Aijsisj − µ2

=
1

2m

∑
ij

Aijsisj −
1

(2m)2

∑
ij

kikjsisj

=
1

2m

∑
ij

(
Aij −

kikj
2m

)
sisj

(5)

To normalize this, we devide Eg.5 by the following equation where all edges connect two nodes

with the equal values of si. When we replace sj with si, we have

1

2m

∑
ij

(
Aijsi

2 − kikj
2m

sisj
)
=

1

2m

∑
ij

(
kiδij −

kikj
2m

)
sisj (6)

Thus, our node strength assortativity is r = cov(si, sj)/var(si), which is Eq.4 (Newman, 2010).

We measure the coefficient r within the SC and FC layers. Furthermore, we subdivide our

networks into Yeo’s 7 networks (Yeo et al., 2011) and investigated strength assortativity within

each subnetwork for FC and SC as well as the strength assortativity between FC and SC for each

network. In addition, we compared the left and the right hemispheres for each subnetwork.

2.8 Statistical analysis

Paired permutation test was used to compare the left and right hemisphere median differences

for each subnetwork (Strasser & Weber, 1999) by approximating the exact conditional dis-

tribution using conditional Monte Carlo procedures (10000 permutations) and corrected by

Bonferroni method (Dunn, 1959). A two-tailed test was used with alpha level 0.05 and adjusted

p-values were reported based on Bonferroni correction. All statistical tests and calculations

were performed either in Matlab R2016b (Mathworks Inc., Natick, MA) and R with R packages

(http://www.R-project.org/) (R Core Team, 2013).

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2018. ; https://doi.org/10.1101/273136doi: bioRxiv preprint 

http://www.R-project.org/
https://doi.org/10.1101/273136
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Results

3.1 Assortative within-layer structural connectivity (SC), disassorta-

tive within-layer functional connectivity (FC) and between-layer

assortativity (SC and FC)

We first calculated node strength assortativity in each individual data set across the entire cerebral

cortex. Within each layer, FC was characterized by disassortative connectivity (i.e., negative

assortativity, Figure 2C Left), while (SC showed assortative connectivity with a somewhat broader

variability among individuals (Figure 2C Right). The coupling between FC and SC assuming

multiplexity between the two layers demonstrated a weak but positive assortativity in general

(Figure 2D).

3.2 Within-layer assortativity between canonical resting-state networks

Next, we investigated if these assortativity patterns were distributed homogeneously across

the whole brain or whether they exhibited local order within or between subnetworks. The

overall disassortative mixing in FC was more prominent within functional subnetworks derived

from the canonical Yeo parcellation (Figure 3B), showing a contrast between diagonal (within

a subnetwork) and off-diagonal (between subnetworks) elements. SC demonstrated overall

assortative mixing between subnetworks (Figure 3A), while showing a slightly higher range of

assortativity within a subnetwork (diagonal) and some more strongly disassortative mixings

between certain subnetworks.

3.3 Between-layer versus within-layer assortativity between 7 subnet-

works

The overall assortative linkage between SC and FC could be also displayed between SC subnetworks

and FC subnetworks assuming one-to-one correspondence (Figure 4). We find that the magnitude

of subnetwork coupling between SC and FC ranged fairly heterogeneous across different networks.
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Figure 2: (A) Averaged SC across all subjects, with edges representing log transformed streamline
counts. (B) Averaged FC across all subjects with edges representing regularized partial correlation
coefficients. Nodes in both panels (A) and (B) are sorted by membership in 7 canonical resting-
state networks (C) Within-layer assortativity: histograms (tallying numbers of individual subjects)
of the strength assortativity within the functional network (FC) and the structural network (SC),
respectively. Red: FC, Blue: SC. (D) Between-layer assortativity between FC and SC

For instance, Dorsal Attention and Fronto-Parietal networks exhibited between-layer assortativity

that was twice as large as compared to the rest of the subnetworks. Interestingly, those networks

with higher between-layer assortativity (Dorsal Attention and Fronto-Parietal) also showed strong

disassortativity within the FC layer and strong disassortativity within the SC layer. We could
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Figure 3: (A) Within-layer assortativity in SC between 7 canonical resting-state networks (B)
Within-layer assortativity in SC between 7 canonical resting-state networks

differentiate within-layer SC assortativity for each subnetwork, showing both assortative and

disassortative mixings for subnetworks as opposed to the overall assortative mixing pattern when

aggregated in a single network. Within-layer FC assortativity showed disassortativity across all

subnetworks although each network exhibited a different assortativity value.
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Figure 4: (First row) Between-layer assortativity between SC and FC, (Second row) Within-
layer assortativity in SC (Third row) Within-layer assortativity in FC, numbers indicate median
between-layer assortativity of the all subjects and numbers in the parentheses are median absolute
deviation (MAD), V: Visual, SM: Somatomotor, DA: DorsalAttention, VA: VentralAttention, LB:
Limbic, FP: FrontoParietal, and DM: Defaultmode network.
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3.4 Left versus right hemisphere assortativity differences both within

and between layers

When we further investigated the above characteristics by separating the left and the right

hemispheres, we found that the characteristic disassortative mixing in within FC layer is mainly

driven by the left hemisphere (Figure 5 and Figure 6). In fact, the subnetworks in the right

hemisphere showed weak disassortativity within the right FC layer; Dorsal Attention and Fronto-

Parietal networks still demonstrated stronger disassortativity compared to other networks but

all subnetw orks in the right hemisphere showed much weaker disassortativity than those of

the left hemisphere (Figure 6, all p-values < 10−21 after Bonferroni adjustment). In contrast,

those with higher between-layer assortativity (Dorsal Attention and Fronto-Parietal) in both

hemispheres displayed also strong disassortativity within the FC layer and within the SC layer in

the similar way when both hemispheres were aggregated (Figure 5). We quantified the contrasts

A. Left Hemisphere B.Right Hemisphere

V

SM D
A VA LB FP D
M

FCwithin

SCwithin

SC_FC

−0.19 −0.17 −0.28 −0.20 −0.21 −0.29 −0.16
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 0.21  0.19  0.27  0.15  0.15  0.34  0.16

V

SM D
A VA LB FP D
M

−0.08 −0.05 −0.18 −0.08 −0.09 −0.14 −0.05

−0.09  0.06 −0.27 −0.14  0.07 −0.12  0.08

 0.23  0.18  0.29  0.12  0.15  0.24  0.18

−0.3 0 0.2 −0.2 0 0.2

Figure 5: (A) Left Hemisphere, (B) Right Hemisphere. (First row) Between-layer assortativity
between SC and FC, (Second row) Within-layer assortativity in SC, (Third row) Within-layer
assortativity in FC, V: Visual, SM: Somatomotor, DA: Dorsal Attention, VA: Ventral Attention,
LB: Limbic, FP: Fronto Parietal, and DM: Default mode network.

between hemispheres in both within and between-layer assortativity using permutation test based

on 10000 Monte Carlo resampled approximate distribution (See methods for details). Three

common features were observed for all subnetworks (Figure 6). The assortativity distributions for
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the left and right hemispheres showed a smaller difference between layers compared to within

layer assortativity distributions except Fronto-Parietal and Default networks. Of note, the left

and the right hemisphere differences showed opposite patterns between within SC and within

FC; within SC, the right hemisphere was characterized with negative and smaller assortativity

than those in the left hemisphere except Ventral Attention (not significant) and Fronto-Parietal

networks (the trend is reversed) (Figure 6). In addition, the stark difference between hemispheres

demonstrated mainly within FC. Moreover, the pattern is the opposite of within SC difference,

which is summarized as box plots in the last panel of Figure 6; the left hemisphere showed strong

disassortative connectivity and the right hemisphere showed weak disassortativity within the FC

layer (Figure 6). However, there are interesting differences among subnetworks. For instance,

unlike other subnetworks, the frontoparietal network and Default network showed small but

significant strong lateralization in terms of between-layer assortativity.

4 Discussion

In this study, we constructed a two-layer multiplex interdependent network from structural

and functional connectivity estimated from MRI data to examine if within- and between-layer

node strength assortativity differs between SC and FC and how such differences may affect the

robustness of the brain functions. In particular, we divided SC and FC into a canonical partition of

seven resting state networks (RSNs) to examine within- and between-layer assortativity differences

in subnetworks; furthermore, we investigated hemispheric differences to see if our findings could

provide some explanations of asymmetric vulnerability and recovery process in each hemisphere.

We find that, in general, SC is organized in an assortative manner, indicating brain regions are,

on average, connected to other brain regions with similar node strengths. On the other hand,

FC showed disassortative mixing in node strength. More detailed analysis showed that this

discrepancy between SC and FC assortativity was pronounced to a different extent within- and

between- RSNs. In SC, brain regions within the same subnetwork are connected with similar

node strengths; in contrast, in FC brain regions are more likely connected to brain regions with

similar node strengths between subnetworks rather than within its own subnetwork. In addition,
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Figure 6: (First row) Between-layer assortativity between SC and FC, (Second row) Within-layer
assortativity in SC, (Third row) Within-layer assortativity in FC (Box plots, Dashed lines indicate
the medians of two distributions, Black solid line is added to identify zero on the horizontal
axis. A summary box plot for the median differences between the left and the right hemispheres.
X-axis: Green: between-layer assortativity, Purple: within-FC assortativity, Orange: within-
SC assortativity, y-axis: the difference between the median of the left hemisphere distribution
of assortativity and the median of the right hemisphere distribution of assortativity in each
subnetwork.

these patterns showed lateralization; the overall disassortative mixing within subnetworks in FC

was mainly driven from the left hemisphere. The degree of laterality also showed differences

among subnetworks, which may explain why certain neurological dysfunctions mainly seem to be

originated from certain subnetworks and not in the other or different recovery rate after unilateral

brain injuries.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 28, 2018. ; https://doi.org/10.1101/273136doi: bioRxiv preprint 

https://doi.org/10.1101/273136
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.1 Assortative SC and Disassortative FC

Degree assortativity, as typically applied in network science is computed as a global network

metric and typically ranges between −0.3 and 0.3 (Newman, 2003). Among biological networks,

previous studies have shown disassortativity in several biological networks, including those defined

by protein interactions (Newman, 2003). Instead, synaptic networks in C. elegans (Chatterjee

& Sinha, 2007) and human structural brain networks estimated with diffusion imaging and

tractography (Hagmann et al., 2008; Van Den Heuvel & Sporns, 2011)are assortative, and this

assortativity appears associated with the existence of modules (Avalos-Gaytán et al., 2012). Func-

tional connectivity has been reported to show assortative mixing (Eguiluz et al., 2005) when edges

are computed as standard Pearson correlations. Assortativity in FC networks rises in the course of

epileptic seizures (Bialonski & Lehnertz, 2013). To our knowledge, no previous study has examined

assortative coupling within a two-layer multiplex SC/FC model. Assortative mixing in networks

is known to confer greater robustness against random removal of nodes or edges compared to

disassortative networks (Newman, 2003; Pechenick et al., 2012; Vázquez & Moreno, 2003). On the

other hand, when it comes to spreading infectious diseases or seizure activity, assortativity makes

it easier for these disruptions to spread across the whole network (Newman, 2003; Pechenick

et al., 2012; Vázquez & Moreno, 2003). Against this background of theoretical work, the observed

assortative and disassortative organization of SC and FC, respectively, may be important to keep

brain networks intact or resilient against potential failures. For SC, to counter the effects of lesions

from injuries or disease processes, having a connected network may be a priority to keep the flow

of neural signals and processing as intact as possible, even if signaling paths or delays may increase

due to the lesions. Hence, SC may need to be organized with positive assortativity to promote

resilience. On the other hand, limiting the extent of shared neuronal information (as expressed

in the statistical construct of partial correlations) or controlling the spread of abnormal brain

activity such as seizures could be a significant aspect in the architecture of FC, with disassorta-

tivity helping FC to maintain its functionality against indiscriminate propagation of perturbations.
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4.2 Between-layer assortativity between SC and FC

When more than two networks are coupled, or more generally, in a multi-layer network, the

coupling between nodes in different layers affects the robustness of the system (Danziger et al.,

2016). When nodes in different layers are connected regardless of their degrees, cascading failures

of the nodes can destroy the network easily because even if a low-degree node is removed, that

node can be connected to a high-degree node in another layer, and its removal could thus fragment

the network into disconnected parts (Danziger et al., 2016; Reis et al., 2014). In general, when

there is a positive correlation of the degree-degree coupling between layers, the interdependent

networks are known to be more robust (Reis et al., 2014). In this study, we find that overall SC

and FC are coupled in a way that nodes with similar strengths are connected between layers

in all subnetworks (Figure 3 and Figure 4). This topological feature of the brain’s multi-layer

organization may explain why the brain’s overall resilience against loss of nodes and edges.

Theoretical studies suggest (Reis et al., 2014) that positive inter-layer assortativity promotes the

retention of functionality unless a significant volume of the brain has been affected for example in

the course of progressive neurodegenerative disease (Valenzuela & Sachdev, 2006; Yoo et al., 2015).

4.3 Subnetwork differences of SC and FC in within- and between- layer

node strength assortativity

After demonstrating these topological patterns within whole-brain networks, we carried out a more

detailed analysis of specific RSNs, or subnetworks, to discern if these effects were predominantly

found in specific subdivisions of the cerebral cortex. We found that Visual, Somatomotor, Limbic

and Default Mode Networks displayed assortativity patterns within and between layers that

are consistent with robust organization. In contrast, the Dorsal Attention, Ventral Attention

and Fronto Parietal networks showed disassortativity within both SC and FC layers, suggesting

greater vulnerability to loss of structural network components which limits the robustness of the

multi-layer network In line with previous studies, we also find distinctive differences between

Dorsal and Ventral Attention networks, for instance, the between-layer assortativity of the Dorsal

Attention network averaged over all participants was approximately twice as higher than that of
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the Ventral Attention network (Figure 5); SC within-layer assortativity in the right and the left

hemispheres showed significant differences in DA but not in VA (Figure 6) (Fox et al., 2006; He

et al., 2007; Vossel et al., 2014).

4.4 Lateralization of assortativity and its implication

In some cases, most notably in unilateral neglect (Heilman et al., 1984; Hillis, 2006; Karnath et al.,

2004), lesions have differential effects on behavior and cognition depending on the laterality of the

lesion site. Hence, we were interested to determine of our model predicted hemispheric differences

in robustness. Indeed, the strong disassortativity in the FC layer observed in the whole brain

mainly seems to derive from the left hemisphere, although both hemispheres show disassortativity

in general within the FC layer. Stronger disassortativity in the left hemisphere suggests greater

robustness to the disruptive effect of the brain injuries – conversely, weaker disassortativity in

the right hemisphere suggests greater vulnerability. Increased robustness in the left hemisphere

may also be followed by faster recovery post-injury. Indeed, previous studies showed ankle muscle

recovery differences between the hemispheres (Kim et al., 2006). This pronounced lateralization

of the FC layer can also be related to previous studies that showed disrupted laterality in the

functional brain network in brain disorders (Swanson et al., 2011; Royer et al., 2015; Ocklenburg

et al., 2015). The Ventral Attention network (as opposed to Dorsal Attention network) showed

a large difference in the disassortativity between the left and the right hemispheres; the right

hemisphere VA exhibited much weaker disassortativity than that of the left hemisphere, which

is consistent with the prevalence of spatial neglect when patients experienced strokes in the

right hemisphere in regions associated with the VA (He et al., 2007; Corbetta et al., 2005). We

note that our findings suggest hemispheric differences in robustness despite largely symmetric

distributions of standard topological measures related to both SC and FC.
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4.5 Limitations

There are several limitations of our study. First, there are many ways to estimate functional brain

networks. Depending which preprocessing steps one chooses to use, the relationship of subnetworks

can vary; for instance, negative correlations between some RSNs are observed only when global

signal regression is applied (Murphy & Fox, 2017). In our study, we adopted an approach to

estimate partial correlations in order to allow the assessment of assortativity within a sparse

functional network composed of functional links that express specific shared pairwise dependencies.

More commonly used full correlation methods yield full networks and are prone to transitivity

and spurious dependencies that artifactually boost shared variance. Second, assortativity could in

principle be calculated based on other nodal attributes such as node between-ness or page-rank,

and node strength can be also defined in different ways depending on how we define weights in

FC. Third, as the assortativity is a global measure, estimating it within and between subnetworks

might suffer as there are smaller numbers of nodes within each subnetwork than in the network

as a whole. Future studies could investigate more detailed analyses using various nodal attributes

using alternative definitions of weighted assortativity and with different parameters during time

series processing.

5 Conclusion

In this study, we have systematically examined topological discrepancies between SC and FC by

estimating node strength assortativity, using a framework of two-layer multiplex interdependent

networks. We find that SC is, in general, organized as an assortative network while FC is orga-

nized as a disassortative network, with assortative coupling between the layers, an arrangement

that promotes robustness within the interdependent network considered as a multi-layer system.

Moreover, we find differences in subnetworks for within and between layer assortativity. Finally,

we find there is a characteristic lateralization of assortativity expressed in the FC layer. Our

study may be useful for quantifying the robustness of human brain networks, and for predicting

individual differences in the response to injury, recovery rate or prognosis.
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