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Abstract  21 

Optimal growth temperature is a fundamental characteristic of all living organisms. Knowledge 22 

of this temperature is central to the study the organism, the thermal stability and temperature 23 

dependent activity of its genes, and the bioprospecting of its genome for thermally adapted 24 

proteins. While high throughput sequencing methods have dramatically increased the availability 25 

of genomic information, the growth temperatures of the source organisms are often unknown. 26 

This limits the study and technological application of these species and their genomes. Here, we 27 

present a novel method for the prediction of growth temperatures of prokaryotes using only 28 

genomic sequences. By applying the reverse ecology principle that an organism’s genome 29 

includes identifiable adaptations to its native environment, we can predict a species’ optimal 30 

growth temperature with an accuracy of 4.69 °C root-mean-square error and a correlation 31 

coefficient of 0.908. The accuracy can be further improved for specific taxonomic clades or by 32 

excluding psychrophiles. This method provides a valuable tool for the rapid calculation of 33 

organism growth temperature when only the genome sequence is known. 34 

 35 

Author Summary 36 

The optimal growth temperature is a fundamental characteristic of all living organisms. It is the 37 

temperature at which the organism grows at the greatest rate, and is a consequence of 38 

adaptations of that organism to its native environment. These adaptations are contained within 39 

the genome of the organism, and therefore species from varying environments have distinct 40 

genomic characteristics. Here we use those genomic characteristics to predict a species’ 41 

optimal growth temperature. This provides a novel tool for describing a key parameter of the 42 

species’ native environment when it is otherwise unknown. This is particularly valuable as the 43 

rate of genome sequencing has increased, while the determination of growth temperature 44 

remains laborious.  45 
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 46 

Introduction 47 

Growth conditions of an organism are essential to its characterization. However, these values 48 

may be unknown in organisms which are difficult to culture, “unculturable”, or otherwise poorly 49 

characterized. Reverse ecology posits that the evolutionary effects of an organism’s native 50 

environment is reflected by adaptations in its genome [1]. Therefore, an organism’s native 51 

environment can be identified by comparing its genome to the genomes of other organisms from 52 

a range of environments. Notably, this is done without experimental manipulation or 53 

interrogation of the organism beyond genome sequencing. Such reverse ecology strategies 54 

have been successful in studying adaptation to soil conditions [2], salinity [3], and temperature 55 

[4].  56 

 57 

Of these environmental pressures, temperature, being a description of the internal energy of the 58 

environment, is a particularly strong driving force for adaptation. Prokaryotes are often viable 59 

over a range of temperatures, which varies by species. For a particular organism, increasing 60 

temperature beyond it’s growth range, corresponding to increased internal energy, can lead to 61 

loss of protein and nucleic acid structure. Conversely, a sub-optimal temperature leads to 62 

reduced enzyme kinetics and stiffening lipid membranes. Each of these biological 63 

consequences may be deleterious to un-adapted organisms. Therefore, it is perhaps not 64 

surprising that an organism’s optimal growth temperature (OGT) correlates to quantifiable 65 

properties (features) in the organism’s nucleotide and protein sequences. Features correlated 66 

with OGT can be identified in the genomic [5], tRNA [6,7], rRNA [6–8], open reading frame 67 

[9,10], and in the proteomic sequences [10–13]. Correlations between OGT and tRNA G+C 68 

content [6,7] or the charged versus polar amino acid ratios [14] are well known. 69 

 70 
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Clearly, OGT is a necessary parameter for analyzing physiological processes of an organism or 71 

activities of its genes and proteins. [15,16]. However, the experimental determination of OGT is 72 

laborious [17,18], and sometimes unattainable [19]. Also, recorded OGT or environmental 73 

temperature may be inconsistently measured, particularly in genetic samples not obtained from 74 

pure culture [20]. Further, for metagenomic samples the conditions during collection may 75 

significantly differ from the originating species' growth environment. This can be due to the 76 

organism or its genetic material being found distant from its originating environment [21], or the 77 

collected genomic material may be from organisms which are inviable [22]. Even in pure culture 78 

in the laboratory, the experimental growth conditions can vary greatly [23] and may not be at the 79 

source organisms’ OGT [24]. 80 

 81 

While many previous studies have aimed to identify genes and proteins [25], mutations [16], and 82 

mechanisms [15] that drive thermal adaptation, there is also great value in using these adaptive 83 

differences to provide data of an organism’s native environment when it may not be otherwise 84 

known or well-described. A number of parameters have been identified which correlate with 85 

OGT [14]. However, those correlations are often weak and therefore of limited predictive value 86 

alone. Here, we aim to predict a prokaryotic species’ OGT only from its genomic sequence. We 87 

set out to develop a novel tool for the ecological characterization of a species based solely on its 88 

genome, the study of thermoadaptation, and bioprospecting for thermoadapted genes. 89 

 90 

Results 91 

Prokaryote genome redundancy is highly skewed 92 

Of the initial 8270 prokaryotic species with a reported OGT, genome sequences were available 93 

for 2708 species. These sequenced species were composed of 2538 Bacteria and 170 94 

Archaea, with OGTs ranging from 4 to 103 °C. A total of 36,721 sequenced genomes for these 95 
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species were downloaded, indicating multiple genomes for each species on average. However, 96 

the number of genomes per species was highly skewed, with great redundancy for model 97 

organisms and pathogens (Fig S1C). To avoid having these relatively few species dominate the 98 

analysis, features were averaged by species and all regressions were done by species rather 99 

than by genome.  100 

 101 

Individual genome derived features correlate with OGT 102 

Based on the reverse genomics principle that an organism’s adaptation to its environment is 103 

reflected within its genome, we hypothesize that a species’ OGT could be predicted based on 104 

characteristics of its genome and genome derived sequences. This hypothesis was supported 105 

by previous noted correlations between OGT and individual features of the genomic [5,6,26], 106 

tRNA [6,7], rRNA [6–8], open reading frame [7,9,10,27,28], and proteomic or protein sequences 107 

[10–14,29–35]. These features are quantifiable properties of the sequence, such as G+C 108 

content, length, and nucleotide or amino acid fraction. Of the features calculated, 42 were found 109 

in this work to be correlated with OGT in the present dataset by the Pearson correlation 110 

coefficient with |r| > 0.3 (Fig 1, Table S1). However, these correlations to OGT were often weak 111 

and therefore insufficient for the calculation of a species’ growth temperature. Furthermore, 112 

there was a strong association among many features (Fig S2). We therefore decided to consider 113 

them simultaneously, using multiple linear regression, with features added individually to 114 

minimize multicollinearity. We started by classifying features based on the source sequences 115 

(genomic, tRNA, rRNA, open reading frames, and proteome). Multiple linear regressions were 116 

calculated, progressively increasing the number of feature classes used in the regression. 117 

 118 
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 119 

 120 

Figure 1. Individual genome derived features correlate weakly with the originating species’ OGT. 121 

Measure optimal growth temperature for each species versus J2 index of genomic dinucleotide 122 

fractions (A) and total genome size (B).  123 

 124 

A regression using only genomic sequence based features is weakly predictive 125 

of OGT 126 

The genomic sequence provides information about the nucleotide content, nucleotide order, and 127 

chromosomal structure of an organism’s hereditable genetic material. In the absence of any 128 

other knowledge, this sequence still reflects adaptations to the particular thermal environment of 129 

the organism. For example, total genome size has been shown to be negatively correlated with 130 

a species’ OGT [26]. Accordingly, it has been proposed that the reduced time and energy of 131 

genomic replication offers selective advantages at higher temperatures. Additionally, the 132 

necessity of maintaining genomic structure with increased temperature is thought to be reflected 133 

in a species’ genomic dinucleotide fractions [36], which is quantified in the J2 index [5]. 134 

 135 
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In the present dataset, individual nucleotide and dinucleotide fractions of the genome, the J2 136 

index, the G+C content, and total size were calculated for each genome. Of these features, the 137 

J2 index, genome size, and the CT and AG dinucleotide fractions correlated with OGT, but only 138 

weakly. Using these poorly correlated and collinear input features for regression, the resulting 139 

multiple linear regression is poor at predicting OGT with a root mean squared error (RMSE) of 140 

9.86 °C (r = 0.469) (Fig S3).  141 

 142 

tRNA and rRNA sequences improve OGT prediction  143 

tRNA and rRNA are nucleic acids whose structure, and enzymatic activity in the case of rRNA, 144 

are essential to cell viability. Therefore, the direct correlation of OGT to G+C content of tRNAs 145 

[6,7] and rRNAs [8,37] is thought to reflect the necessary increase in base pair hydrogen 146 

bonding needed to maintain the structure of these nucleic acids at elevated temperatures. While 147 

a subset of the previously analyzed genomic sequence, we hypothesized that features derived 148 

from these tRNA and rRNA sequences might be more strongly correlated with OGT. To this 149 

end, we identified their sequences bioinformatically. tRNA and 16S rRNA sequences were 150 

identified in 100% and 98% of the species respectively, reflecting the highly conserved nature of 151 

these genes.  152 

 153 

Using these identified tRNA and rRNA sequences, nucleotide fractions and G+C content were 154 

calculated for each. All calculated features for tRNA and rRNA sequences were correlated with 155 

OGT. Calculating a new linear regression with the OGT using tRNA features, in addition to 156 

genomic features, improved accuracy (RMSE = 7.30 °C, r = 0.757) (Fig 2A). Similarly, a 157 

regression calculated with rRNA and genomic features also improved accuracy (RMSE = 6.99 158 

°C, r = 0.784) (Fig 2B). By using all available tRNA, rRNA, and genomic features, a still more 159 

accurate linear regression was calculated (RMSE = 6.71 °C, r = 0.802) (Fig 2C).  160 
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 161 

 162 

 163 

Figure 2. Using genomic and genic sequences improve OGT prediction accuracy. Predicted 164 

versus measured OGT for each species, using linear regressions with features derived from 165 

genomic and (A) tRNA, (B) rRNA, or (C) tRNA and rRNA sequences. Species used for 166 

regression and evaluation are shown in purple and green, respectively. The dotted line indicates 167 

a perfect prediction. 168 

 169 

ORF sequences improve OGT prediction 170 

As tRNA and rRNA features clearly improve the ability to predict a species’ OGT, we examined 171 

if other gene sequences might also improve the regression. In particular open reading frames, 172 

which code for proteins but exclude the non-coding regions of the genome, were considered. 173 

We hypothesized that using coding regions alone would increase sensitivity to changes in OGT. 174 

Additionally, codon biases have previously been reported to correlate with OGT [13], likely 175 

reflecting both amino acid differences and the necessity of maintaining proper codon-anticodon 176 

pairing in differing thermal environments. Furthermore, the greater number of ORFs in a 177 

genome, relative to tRNAs and rRNAs, make the features of ORFs less sensitive to single gene 178 
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aberrations or mispredictions.  Therefore, ORF derived features were hypothesized to more 179 

sensitively and accurately report on the thermal environment than tRNA or rRNA sequences.  180 

 181 

We identified ORFs within the genomic sequences bioinformatically. From these ORFs, a 182 

number of derived features were calculated including nucleotide and dinucleotide fractions, 183 

codon fractions, start and stop codon fractions, the coding ratio and fraction of the genome, the 184 

ORF density of the genome, G+C and A+G content, and average length. Of these, nine were 185 

found to be correlated with OGT. These include the A+G content, codon and dinucleotide 186 

fractions, and the fraction of the alternative start codon TTG. These ORF derived features, in 187 

addition to the genomic, tRNA, and rRNA features, were used to calculate a new multiple linear 188 

regression with significantly improved accuracy (RMSE = 5.77 °C, r= 0.857) (Fig 3).  189 

 190 

 191 

 192 

Figure 3. Open reading frame sequences further improve OGT prediction accuracy. Predicted 193 

versus measured OGT for each species, using a linear regression with features derived from 194 
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genomic, tRNA, rRNA, and ORF sequences. Species used for regression and evaluation are 195 

shown in purple and green, respectively. The dotted line indicates a perfect prediction. 196 

 197 

Including proteome features significantly improves OGT prediction 198 

While ORF feature correlation to OGT partially reflects the adaptation of the coding regions and 199 

mRNAs to the thermodynamic environment, it has been suspected that this correlation also 200 

reflected adaptations in each species’ proteome to OGT. Temperature is known to correlate with 201 

protein folding, biochemistry, and enzyme kinetics, all of which are essential to organismal 202 

viability [10,14,32]. Based on these biological consequences, proteome derived features were 203 

hypothesized to be especially sensitive to thermal environment. Therefore, the proteome was 204 

translated from each species’ ORFs, and features calculated from the proteome’s primary 205 

sequence. These features included amino acid fractions, the fraction of the proteome to be 206 

charged or thermolablile, and the EK/QH, LK/Q, Polar/Charged, and Polar/Hydrophobic amino 207 

acid ratios. 208 

 209 

Supporting this hypothesis, proteome derived features were found to have the strongest 210 

correlation to OGT  (Table S1), with the greatest correlation being the fraction of the proteome 211 

composed of the amino acids ILVWYGERKP [13]. The linear regression of OGT using proteome 212 

features, in addition to previously described features, significantly improved accuracy (RMSE = 213 

4.69 °C, r = 0.908). (Fig 4, Eq S1). 214 

 215 
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 216 

 217 

Figure 4. Proteome derived features significantly improve OGT prediction accuracy. Predicted 218 

versus measured OGTs for each species, using a linear regression with features derived from 219 

genomic, tRNA, rRNA, ORF, and proteome sequences. Species used for regression and 220 

evaluation are shown in purple and green, respectively. The dotted line indicates a perfect 221 

prediction. 222 

 223 

Taxonomic clade specific regressions are the most accurate 224 

The regressions described up to this point were all made using all prokaryotic species. 225 

However, we had noted that the number of individual features correlated with OGT was much 226 

higher in Archaea than Bacteria (Table S1). In addition, we hypothesized that the magnitude of 227 

the response of each feature to OGT may be distinct in each superkingdom.  228 

 229 

Based on these distinctions, we tested whether superkingdom specific regressions would be 230 

more accurate than the regression of all prokaryotes (Fig. 5). Using the NCBI taxonomic 231 

assignment for each species, an Archaea-only regression dramatically improved accuracy for 232 
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these species (RMSE = 3.21 °C, r = 0.995) (Eq S2). However, the Bacteria-only regression only 233 

showed only a slight improvement (RMSE = 4.61 °C, r = 0.816) (Eq S3). This likely reflects bias 234 

of the general prokaryotic regression, due to the numerical majority of bacterial species and the 235 

greater diversity of bacterial species. 236 

 237 

 238 

Figure 5. Taxon specific linear regressions are most accurate. Predicted versus measured OGT 239 

for each species using superkingdom specific linear regressions for Archaea (A) and Bacteria 240 

(B). Species used for regression and evaluation are shown in purple and green, respectively. 241 

The dotted line indicates a perfect prediction. 242 

 243 

Addressing this diversity in bacteria, the taxonomic specific regression can be further improved 244 

when the data is separated by phylum or class. OGT regression was limited to clades where the 245 

number of species (N) was greater than 50 to ensure the significance of the regression. Of the 246 

individual phyla, the most accurate regressions are found in the Firmicutes (RMSE = 4.88 °C, r 247 

= 0.831), Actinobacteria (RMSE = 2.90 °C, r = 0.818), Bacteroidetes (RMSE = 1.58 °C, r = 248 
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0.964), and Euryarchaeota (RMSE = 4.00 °C, r = 0.985) (Fig S4). In contrast, the Proteobacteria 249 

regression had much more weakly correlated predicted and reported OGTs (RMSE = 4.10 °C, r 250 

= 0.569), though the small RMSE likely reflects the narrow OGT range of this phylum. Further 251 

subdivision of the Proteobacteria into classes (Fig S5) resulted in significant correlation of the 252 

Betaproteobacteria (RMSE = 2.94 °C, r = 0.789), and Deltaproteobacteria regressions (RMSE = 253 

2.04 °C, r = 0.761). However, no correlation was found in regressions for the Proteobacteria 254 

classes of Alphaproteobacteria or Gammaproteobacteria.  255 

 256 

Discussion 257 

Knowing an organism’s optimal growth characteristics is central to addressing basic biological 258 

questions about how organisms adapt to a particular environmental niche. Further, the 259 

systematic study of adaption often requires the optimal growth conditions of the species of origin 260 

for each species and gene or protein examined. Additionally, proteins from organisms adapted 261 

to particular environmental niches are often particularly suited for structural biology [38–40] and 262 

industrial applications [41,42]. 263 

 264 

However, if the growth characteristics of already sequenced organisms are uncharacterized, the 265 

physiochemical properties of these genes that otherwise might be inferred are lost [20]. 266 

Consequently, this limits the use of these genomes in academic study and mining for 267 

biotechnology applications. Exacerbating this issue, high throughput sequencing has enabled 268 

rapid growth in the number of available genomic, metagenomic, and derived proteomic 269 

sequences. This growth in genetic information is likely to outpace the laborious experimental 270 

task of characterizing the growth conditions of each species, leading to an increasing number of 271 

genomic sequences with unknown growth characteristics. This is already apparent by those 272 
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organisms which have been ‘unculturable’ to date, but which have been sequenced by 273 

metagenomics.  274 

 275 

To satisfy the need for growth condition data when only genomic sequences are available, here 276 

we demonstrate a novel reverse ecology tool to accurately predict the OGT using solely the 277 

genomic sequence as input. Our method can predict the OGT for sequenced Archaea and 278 

bacteria with an accuracy of 3.21 °C and 4.61 °C, respectively. 279 

 280 

OGT can be accurately predicted using only genome derived parameters  281 

Genome classification is clearly essential to the most accurate prediction of OGT. The programs 282 

used for tRNA, rRNA, and ORF identification all require some level of taxonomic classification. 283 

When applying the general prokaryotic regression, this is only requires the relatively simple 284 

exclusion of eukaryotic samples prior to sequencing [43]. However, the most accurate OGT 285 

regressions are taxon specific, and therefore genomic samples require further classification. 286 

This assignment is routinely addressed in silico, using specialized bioinformatic tools which can 287 

easily assign taxonomic clade to genomic material [44,45]. 288 

 289 

As a simple proof-of-concept, the prokaryotic genomes were also classified by superkingdom 290 

using the best scoring 16S rRNA hidden Markov model in Barrnap (Fig S6). These regressions 291 

were of similar accuracy to those using NCBI superkingdom assignments.  292 

 293 

Excluding genome size does not alter the regression accuracy 294 

While prokaryote genome size is strongly correlated with OGT, it is unique among all features 295 

used here in requiring a complete genome for calculation. Therefore, this feature might not be 296 

available in metagenomic samples, or otherwise incompletely assembled genomes. Excluding 297 
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this feature has only a minor impact on the regression for all prokaryotes (RMSE = 5.07 °C, r = 298 

0.891), or the separate regressions for Bacteria (RMSE = 4.97 °C, r = 0.783), or Archaea 299 

(RMSE = 3.21 °C, r = 0.995) (Fig S7).  300 

 301 

Psychrophiles are poorly fit  302 

While the final regressions of prokaryotes and Bacteria were generally accurate, species with 303 

optimal growth temperatures less than approximately 25 °C are clearly poorly fit. This outcome 304 

is unsurprising, as few psychrophilic sequences are present in the dataset (Fig. S1), and the 305 

mechanisms of thermoadaptation to higher and lower temperatures are not equivalent [46]. 306 

Excluding those species with an OGT of less than 25 °C yields a slightly better general 307 

prokaryotic regression (RMSE = 4.42 °C, r = 0.916) (Fig. S6). The archaeal regression was 308 

slightly worse (RMSE = 3.12 °C, r = 0.993), while the bacterial regression improved (RMSE = 309 

4.26 °C, r = 0.832), reflecting the known OGT ranges of each superkingdom. 310 

 311 

Improvements over comparable methods 312 

Our method significantly expands and improves upon the individual features previously 313 

described to correlate with OGT. By studying a much larger set of genomes, a more precise 314 

correlation between each feature and OGT can be calculated. Further, by using multiple 315 

features, more accurate and predictive regression models have been calculated. Notably, our 316 

method improves on previously reported analyses requiring particular genes being present in 317 

the genome, thereby making the method more general in application [47]. Also, this method 318 

quantitatively predicts an OGT rather than using classification (psychrophile, mesophile, 319 

thermophile, or hyperthermophile). This improves on methods which predict OGT ranges [47–320 

50], where classification necessarily limited accuracy.  321 

 322 
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The most comparable method is reported by Zeldovich et al. calculating OGT from the proteome 323 

as OGT = 937F – 335, where F is the sum of the proteome fraction for the amino acids 324 

IVYWREL [13]. Using the current larger dataset, we calculate a lower correlation (r = 0.726) and 325 

accuracy (RMSE = 10.5 °C) than previously reported. This is likely a consequence of more 326 

genomic sequences being available, and our keeping of individual species separate rather than 327 

averaging those with the same OGT. By considering more features derived from the source 328 

organism’s genome, the prokaryotic regression presented here clearly advances upon this 329 

previous method improving in both correlation and accuracy. While we focus on growth 330 

temperature, the same principle could be readily applied to other quantifiable characteristics of 331 

an organism’s optimal growth environment, such as pH, salinity, osmolarity, or oxygen 332 

concentration.  333 

 334 

Application and validation 335 

Applying these regressions, we predicted OGTs for those species with a genomic sequence 336 

available, but without a reported OGT in Sauer et al. (2015), using the most taxon specific linear 337 

regression available. Only the Betaproteobacteria and Deltaproteobacteria classes of 338 

Proteobacteria were predicted, excluding the Alphaproteobacteria, Gammaproteobacteria, and 339 

other Proteobacteria due to the poor predictive values of those taxon specific regressions. In 340 

total, 482 species’ OGTs were predicted (Table S2). Of the species with newly predicted OGTs, 341 

a more recent literature search revealed reported OGTs for 36 species [51–87]. The predicted 342 

and measured OGTs were strongly correlated (RMSE = 6.94 °C, r = 0.857), validating the 343 

predictive value of this method (Fig S9). 344 

 345 

Materials and Methods 346 

Source data and sequence extraction 347 
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Experimentally measured OGTs of various prokaryotic species were used as previously 348 

published without modification [88]. Taxonomic assignments for each species were collected 349 

from NCBI [89].  All available top level genome sequences for each species were downloaded 350 

from Ensembl [90]. tRNA sequences were identified with tRNAScan-SE 1.3.1 [91] with general 351 

settings. Ribosomal RNA genes were identified with Barrnap 0.8 [92] using superkingdom 352 

specific hidden Markov models, and rRNA sequences extracted from the genome using 353 

BEDtools 2.26.0 [93]. Open reading frame sequences were identified with GenemarkS 4.32 [94] 354 

using the default settings. ORFs were also translated into protein sequences using the standard 355 

genetic code. Features were calculated for each genome and derived proteome, ignoring 356 

ambiguous nucleotides and amino acids. All calculated features were averaged by species. 357 

Twenty percent of the species with available genomes were set aside as a test set and never 358 

used for regression, only evaluation. 359 

 360 

Multiple linear regression 361 

Only individual features linearly correlated with OGT (|r| > 0.3) were used for multiple linear 362 

regression. To minimize multicollinearity, the initial regression input feature set consisted of only 363 

the feature most correlated with OGT. To this set all other correlated features were added 364 

individually, and multiple linear regressions were calculated. If the correlation between 365 

measured and predicted OGTs increased for any regression, the input feature which most 366 

increased the correlation was added to the input set. This was repeated until the correlation did 367 

not increase. 368 

 369 

Regression evaluation and prediction 370 
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The test set was only used for evaluation of the multiple linear regressions, comparing the 371 

calculated and measured OGTs. Regressions were evaluated by comparing the predicted and 372 

reported OGT using the Pearson correlation coefficient and root mean square error.  373 

 374 

De novo OGT prediction and validation 375 

All top level genomes in Ensembl Bacteria were downloaded for each species where there was 376 

not a reported OGT in the Sauer et al. (2015) dataset. Taxonomic assignment and feature 377 

calculation were preformed as described above. The most taxonomic specific regression 378 

available, using genomic, tRNA, ORF, and proteome features, was used to predict the OGT for 379 

each species. For these newly predicted species, Pubmed was searched using the binomial 380 

name and “optimal growth” as keywords. From the returned publications, OGTs were manually 381 

collected where available. 382 

 383 

Analyses were carried out using custom Python scripts using Biopython 2.7.12 [95], NumPy 384 

1.13.3 [96], SciPy 1.0.0, Scikit-learn 0.19.1 [97], and MatPlotLib 2.1.0 [98]. 385 
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Supporting Information Captions 681 
 682 
Figure S1. The genomes available are dominated by mesophiles, bacteria, and repetitively 683 
sequenced organisms.  684 
 685 
Figure S2. Features are often highly associated.  686 
 687 
Figure S3. Using only genomic sequence features is poorly predictive of OGT. 688 
 689 
Figure S4. Phylum specific regressions are often strongly predictive.  690 
 691 
Figure S5. Class specific regressions can be strongly predictive.  692 
 693 
Figure S6. Bioinformatic classification allows for accurate OGT prediction.  694 
 695 
Figure S7. Genome size is not necessary for OGT prediction accuracy.  696 
 697 
Figure S8. Excluding psychrophiles improves OGT prediction.  698 
 699 
Figure S9. OGT prediction validated using previously unknown species-OGT values. 700 
 701 
Equation S1. Features and coefficients for the prediction of the OGT for a prokaryote. 702 
 703 
Equation S2. Features and coefficients for the prediction of the OGT for an Archaea. 704 
 705 
Equation S3. Features and coefficients for the prediction of the OGT for a Bacterium. 706 
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Table S1. Correlation of features to OGT. 708 
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Table S2. De novo predicted OGT for species without a measured OGT in Sauer et al. 2015 710 
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