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Abstract 

High-throughput biological technologies (e.g., ChIP-seq, RNA-seq and single-cell RNA-seq) rapidly 

accelerate the accumulation of genome-wide omics data in diverse interrelated biological scenarios (e.g., 

cells, tissues and conditions). Data dimension reduction and differential analysis are two common 

paradigms for exploring and analyzing such data. However, they are typically used in a separate or/and 

sequential manner. In this study, we propose a flexible non-negative matrix factorization framework CSMF 

to combine them into one paradigm to simultaneously reveal common and specific patterns from data 

generated under interrelated biological scenarios. We demonstrate the effectiveness of CSMF with four 

applications including pairwise ChIP-seq data describing the chromatin modification map on protein-DNA 

interactions between K562 and Huvec cell lines; pairwise RNA-seq data representing the expression 

profiles of two cancers (breast invasive carcinoma and uterine corpus endometrial carcinoma); RNA-seq 

data of three breast cancer subtypes; and single-cell sequencing data of human embryonic stem cells and 

differentiated cells at six time points. Extensive analysis yields novel insights into hidden combinatorial 

patterns embedded in these interrelated multi-modal data. Results demonstrate that CSMF is a powerful 

tool to uncover common and specific patterns with significant biological implications from data of 

interrelated biological scenarios.  
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Introduction 

With the rapid development of high-throughput sequencing technologies, numerous omics data have 

been generated in diverse biological scenarios, which provide unprecedented opportunities to investigate 

the underlying biological processes among them (1). For example, the encyclopedia of DNA elements 

(ENCODE) project makes a variety of ChIP-seq data of a wide assortment of cell types available; The 

Cancer Genome Atlas (TCGA) project generates multiple types of omics data for various cancers. 

Moreover, the throughput of single-cell RNA sequencing (scRNA-seq) has been significantly improved, 

providing a chance for comprehensively viewing the heterogeneity of cells. Integrative and comparative 

analysis of such data is becoming an urgent need (1). Mathematically, these genomic data can be 

regarded as data matrices, whose analysis method is based on matrix signal extraction and computing.  

Classical data dimension reduction and pattern discovery tools such as principle component analysis 

(PCA), independent component analysis (ICA) and non-negative matrix factorization (NMF) are powerful 

techniques for analyzing high-dimensional data matrices. PCA is an effective tool for dimension reduction 

and visualization of such data. ICA seeks to separate such data into a set of statistically independent 

components. However, their decomposition results are restricted to orthogonal or independent vectors in 

new feature spaces and often lacks interpretability. Moreover, they are only designed for resolving one 

data matrix at a time. All of this limits their validity in joint pattern recognition and comparative analysis 

from the accumulated multiple datasets. Thus, the urgent needs for analyzing and integrating multiple 

data matrices prompt us to design new tools to extract hidden structures or patterns for many practical 

applications. 

  Compared to PCA and ICA, NMF not only performs dimension reduction, but also provides a better way 

to explain structured data. Early studies have also adopted joint non-negative matrix factorization (jNMF) 

and its network-regularized variant to conduct integrative analysis of multi-dimensional genomics data for 

extracting combinatorial patterns (2,3). More recently, an integrative NMF study further extends this 

framework to study heterogeneous confounding effects among different data sets (4). The 

aforementioned methods mainly focus on uncovering common patterns embedded in different types of 

data from the same biological condition. However, an unsolved valuable and urgent issue is how to 

perform integrative and comparative analysis on the same type of data from multiple biological conditions 

(e.g., different cancer types or subtypes, two or multiple epigenomic conditions) in the big data era.  

  A few advances have been made towards integrative and/or comparative analysis of datasets from 

multiple conditions. For example, differential principal component analysis (dPCA) is an efficient tool for 

analyzing multiple ChIP-seq datasets to discover differential protein-DNA interactions between two 

conditions (5). However, it only extracts differential patterns for data matrices with matched rows and 

columns. Tensor higher-order singular value decomposition method has also been adopted to perform 

integrative analysis of DNA microarray data from different studies (6). However, it was only designed for 

pairwise or multiple datasets (represented by tensors) that have the same row and column dimensions. 

Therefore, neither of these two methods can be applied to data with only one matched dimension in a 

unified framework. In general, data under diverse conditions may have different sizes of samples or 

features. ICA has been recently employed to reveal cancer-shared and cancer type-specific signals by 

first applying it to each cancer expression data separately (7). Simultaneous determination of common 

and specific patterns for the data matrices with the same row (or column) dimension among different 

biological conditions remains an outstanding challenge.  

To this end, we propose an integrative and comparative framework CSMF to simultaneously extract 

Common and Specific patterns from the data of two or multiple biological interrelated conditions via Matrix 
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Factorization. CSMF can be suitable for analyzing RNA-seq, ChIP-seq and other types of data. Extensive 

analyses with four biological applications demonstrate that CSMF can help yield novel insights into hidden 

combinatorial patterns behind interrelated multi-modal data. Specifically, four applications include (I) the 

histone modification data for K562 and Huvec cell lines profiled using ChIP-seq from ENCODE, (II) the 

gene expression data of breast invasive carcinoma (BRCA) and uterine corpus endometrial carcinoma 

(UCEC) from TCGA, (III) the gene expression data of three breast cancer subtypes from Breast Cancer 

International Consortium (METRABRIC) datasets, and (IV) single-cell RNA-seq data of six time points 

about stem cell differentiation. CSMF is expected to be a powerful tool for uncovering common and 

specific patterns with significant biological implications across data of different interrelated biological 

scenarios.  

 

Results 

Problem formulation In this study, we aimed to develop a computational method CSMF for learning 

common and specific patterns (or modules) among data from multiple biological conditions (Fig. 1). Here 

we take the gene expression data X1 and X2 of n genes from two conditions with m1 and m2 samples 

respectively as an example to illustrate our method. A common pattern in these two gene expression data 

is defined by satisfying the criterion “the profiles extracted from a set of columns of X1 and X2 respectively 

across a common set of rows has strong association or similar profiles among them”. In contrast, a 

specific pattern in one gene expression data (e.g., X1) is defined by satisfying the criterion “the profiles 

extracted from a set of columns of X1 across a set of rows has strong association or similar profiles, but 

not in any sets of columns of another data (e.g., X2) across the same set of rows”. As shown in Fig. 1, our 

model has a set of variables Wc, Ws1, Ws2, Hc1, Hc2, Hs1, Hs2, where Wc ( cn n

cW R


 , nc is the common 

low-rank) is the common basis matrix shared by X1 and X2, Ws1 and Ws2 ( 1 2

1 2,s sn n n n

s sW R W R
 

   , ns1, 

ns2 are the two specific low-ranks) are the specific basis matrices for X1 and X2, and Hc1, Hc2, Hs1, Hs2 are 

the corresponding common and specific coefficient matrices for X1 and X2, respectively. We then use 

these variables together to generate the data matrices X1 and X2. Specifically,
1c c

ik kjw h is used for the 

expected expression of gi in the common pattern k, and
1 1

1 1s s

ik k jw h is used for the expected expression of gene 

gi in the specific pattern k1 for X1. Summing over common patterns k and specific patterns k1, the 

expected expression of gi in condition 1 is: 
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Similarly, we can get the expected expression of gi in the condition 2: 
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Equation (1) and (2) can be rewritten respectively in matrix format as follows: 

1 1 1 1c c s sX W H W H  ,                                  (3) 

2 2 2 2+Wc c s sX W H H ,                                  (4) 
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Inspired by NMF, using the squared loss function to measure the relaxation error, we can learn the 

variables by minimizing the following CSMF objective function: 

     
2 2

1 2 1 2 1 2 1 1 1 1 2 2 2 2F , , , , , , ,c s s c c s s c c s s c c s sF F
W W W H H H H X W H W H X W H W H       (5) 

where 
F

is the Frobenius norm of a matrix, and all variables are nonnegative matrices. The two terms 

denote the fitting between the expected and actual expression matrices of each system. Thus, the model 

solution can be obtained by solving this optimization problem: 

 
1 2 1 2 1 21 2 1 2 1 2 , , , , , , 0, , , , , , argmin

c s s c c s sc s s c c s s W W W H H H HW W W H H H H F . 

This problem can be regarded as an extension of the classical NMF, which factorizes a non-negative 

matrix into two low-rank ones. Naturally, the objective function  F  is not convex with respect to all 

variables. Therefore, it is unrealistic to adopt a standard optimization algorithm to find the global minimum. 

To address this problem, we develop the following algorithm (Algorithm 1) by alternatively minimizing two 

sub-problems, which can be easily solved using the classical NMF algorithm. The algorithm converges to 

a local minimum efficiently. To obtain a robust solution, we adopted the disturbed solution of a heuristic 

method iNMF+ as the initial one of CSMF, and selected the solution with least collinearity (measured by 

Pearson correlation coefficients between any pair columns of W) from multiple repetitions (SI Appendix).  

 

Algorithm 1: CSMF 

 Step 1: Initialize Wc, Ws1, Ws2, Hc1, Hc2, Hs1, Hs2 with nonnegative values, and set the iteration step 

0.t   

 Step 2: Fix Ws1, Ws2, Hs1, Hs2, and solve the constrained sub-problem, 

 
1 2

22

W , , 0 1 1 1 1 2 2 2 2min ( ) X
c c cH H s s c c s s c cF F

X W H W H W H W H      . 

Let  
~

1 1 1 1max ,0s sX X W H   and  
~

2 2 2 2max ,0s sX X W H  . Then, 

1 2

2 2 2
~ ~ ~ ~

W , , 0 1 1 2 2 1 2 1 2min = [ , ] [ , ]
c c cH H c c c c c c c

F F F

X W H X W H X X W H H     . 

That is, solve a typical NMF problem to find Wc, Hc1 and Hc2. 

 Step 3: Fix Wc, Hc1, Hc2, 
solve the constrained problems, 

              
1 1

2

, 0 1 1 1 1min
s sW H c c s s F

X W H W H    and  
2 2

2

, 0 2 2 2 2min
s sW H c c s s F

X W H W H    

Let  
^

1 1 1max ,0c cX X W H  and  
^

2 2 2max ,0c cX X W H  . Then, 

             
s1 1 2 2

2 2
^ ^

, 0 1 1 1 , 0 2 2 2min and min
s s sW H s s W H s s

F F

X W H X W H   . 

    That is, solve two typical NMF problems to find 
1 1 1 1

1 1 2 2, , ,   t t t t

s s s sW H W H , respectively. 

 Step 4: Let 1t t  , repeat Steps 2-3 until convergence criteria are satisfied. 
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  We adopt a Nesterov's optimal gradient method to solve the typical NMF problem (NeNMF), which 

alternatively optimize one factor matrix with another fixed (8). NeNMF can solve the slow convergence 

and nonconvergence problems of other algorithms (SI Appendix). It is easy to see that the time 

complexity of CSMF algorithm is O(ToTinr2), where To and Ti are the number of outer and inner iterations 

wherein outer iteration indicates the iteration step t and the inner iteration represents the iteration needed 

for solving any sub-problem in Algorithm 1, respectively, r is the sum of common and specific ranks, and 

n is the dimension of rows. The general form of CSMF for any number of data matrices is described in 

Materials and Methods. We implemented CSMF in a MATLAB package, which is available at 

http://page.amss.ac.cn/shihua.zhang/software.html. We first demonstrated the effectiveness of CSMF 

using simulation data and compared it with two naïve methods for the same purpose (SI Appendix). 

 

 

Fig. 1. Illustration of the key idea of CSMF. X1 and X2 are the data matrices which show common 

characteristics with WcHc1 and WcHc2, and specific characteristics with Ws1Hs1 and Ws2Hs2. The reordered 

common and specific patterns in the reconstructed X1 and X2 (reordered) are demonstrated in the right 

panels. 

 

Determination of patterns. The obtained Wc, Wsi and Hci, Hsi (i=1,2) are used to assign both rows 

(features) and columns (samples) to patterns (or say modules). The maximum coefficient can be used in 

each column of Hs (or each row of Ws) to determine pattern memberships. This method restricts the 

assignment for each sample or feature to one and only one pattern (9). In our application, we expect one 

sample or feature can be assigned to multiple or none of patterns. Therefore, we employed the 

column-wise (row-wise) z-score of Ws (Hs) to determine pattern memberships as used before (3). For 

example, we calculated the z-score for wij, which is the element i in the j-th column of W by 

( )ij ij j jz w w s  , where jw  is the average value of jw  and js  is its standard deviation. We 

assigned element j as a member of common pattern i if zij was greater than a given threshold T. 

 

Application I. Determine common and specific protein-DNA interaction patterns in enhancer 

region between K562 and Huvec cell lines. In cellular systems, enhancers can be bound by proteins to 

influence gene expression by activating or repressing transcription in cells. Differential analysis of 

modifications of two or multiple cells are valuable to decipher their underlying distinct combinatorial and 

regulatory patterns. Here we demonstrate that CSMF can reveal not only differential modification patterns 
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but also common ones. We applied CSMF to the pairwise ChIP-seq data with 58997 loci of 18 histone 

marks or TFs of K562 and Huvec cell lines with nc=1, ns1=3, ns2=3 (SI Appendix), and obtained Wc, Ws1, 

Ws2, Hc1, Hc2, Hs1, and Hs2. Then we combined them to form W (each row represents a locus) and H (each 

column represents a mark) by  

W = [Wc,Ws1,Ws2], 

1 2

1

2

0

0

c c

s

s

H H

H H

H

 
 


 
  

. 

Interestingly, we can see that the common pattern (named C) has strong signals with CTCF mark. 

Coincidently, the loci of C pattern are significantly enriched with the motifs of CTCF (SI Appendix, Table 

S5). It is well known that CTCF is a ubiquitously expressed DNA-binding protein. Previous study suggests 

that CTCF-binding sites are relatively invariant across diverse cell types or cell lines including K562 and 

Huvec (10). Moreover, DNase mark also show strong signal in the common pattern C (Fig. 2B), which is 

consistent with that CTCF-binding sites co-localize with DNase I hypersensitive sites. This illustrative 

example demonstrates that CSMF can reveal common or shared protein-DNA interaction patterns 

between two cell lines, which was ignored by dPCA (5). 

 

Fig. 2. Pattern discovery by CSMF from the pairwise ChIP-seq data of K562 and Huvec cell lines with 
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nc=1, ns1=3, ns2=3. (A, B) Heatmaps of the basis and coefficient matrices W and H, and W is reordered 

according to the value of its each column. Note ChIP-seq data were obtained from two different institutes 

(i.e., Broad Institute and University of Washington), and thus one mark may have two corresponding data. 

(C) Venn diagram representing the overlap loci of da and dW2 across K562 and Huvec. da represents a 

locus set in which active marks have strong binding probability in K562 compared to Huvec, and vice 

versa detected by Wilcoxon test in the original data respectively. dW2 represents the loci with significantly 

higher binding probability in K2 column of W than H2 column, and vice versa, respectively. (D) The gene 

network of K2 constructed using IPA and the size of gene node is proportional to its node degree. (E) The 

top enriched functional terms of the gene network (D) associated with cellular development (green), cell 

cycle (blue), and cell death (red) respectively. (F) Top 5 motifs enriched in the loci of K2 and H2 with 

q-value < 0.0001.  

 

We further note that the three specific patterns (denoted as K1, K2, K3 in K562 and H1, H2, H3 in 

Huvec) are marked with diverse marks for K562 and Huvec, respectively (Figs. 2A and 2B), and the 

marks in K1 and K2 patterns are almost the same as marks in dPC1 and dPC2 determined by dPCA. 

Specifically, K1, K2, K3 are marked by strong signals of a repressive mark (H3K27me3), four active marks 

(H3K4me2, H3K4me3, H3K9ac and H3K27ac), and a structural mark (H3K36me3), respectively. The 

entries of a column in W represent the binding potential of marks in the corresponding pattern to the loci. 

Although the three patterns H1, H2, H3 are marked with the same marks as those in K562 (K1, K2, K3), 

the corresponding binding loci or binding intensity show distinct difference (Fig. 2A), which shapes the 

specificity of the two cell lines. We extracted the loci with differential binding probability (SI Appendix) and 

find that such loci in pattern K2 (dW2) are enriched in the differential loci with strong signals of active 

marks (da) in K562 compared to signals of active marks in Huvec detected by Wilcoxon test (Fig. 2C). 

Moreover, the genes closing to the loci of K1, K2 and K3 are significantly enriched in leukemia associated 

functions (Fig. 2E, SI Appendix, Fig. S7), indicating these patterns indeed show strong specificity relating 

to K562. We constructed a gene functional network for each specific pattern in K562 and explore their 

functions by Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com) (Fig. 2D and SI Appendix, Fig. 

S7). In K1, we see a highly connected gene RUNX1, which is the most frequent targets of chromosomal 

translocations in AML, playing a critical role in leukemia development. Moreover, a previous study (11) 

suggested that RUNX1 promoter are bound by EZH2 which is negatively regulated by H3K27m3, a key 

mark in K1. In the gene functional network of K2 (Fig. 2D), many genes (e.g., KMT2A, MECOM, ROCK1, 

VAV1, BCL2L11, SIN3A, PARP1) are related with leukemia, indicating K2 is indeed a K562-specific 

pattern. For example, KMT2A (also known as ALL-1 and MLL1) is a key epigenetic regulator in leukemia, 

which up-regulates mono-, di- and trimethylation of H3K4 (12). Moreover, many genes are connected with 

MYC in the gene network of K2 (Fig. 2D), which is consistent with the fact that these genes locate nearby 

the MYC motif. These results demonstrate that the specific binding loci of K562-specific patterns revealed 

by CSMF are significantly associated with leukemia. 

  Transcription factors (TFs) play a key role in regulating the expression of many cell line-specific genes 

by binding certain motifs. We note a number of significantly enriched motifs locates in the differential loci 

using Homer (Fig. 2F, SI Appendix, Table S5). In K2, the top 5 TF motifs are all of GATA TFs, which are 

zinc finger DNA binding proteins, regulating transcription in cell development and cell differentiation. The 

functional role of most members of GATA family in leukemia has been reported in literature (13). For 

example, GATA1 is a relevant biomarker for acute myeloid leukemia and its over-expression is related to 

the expression of CD34 antigen and lymphoid T markers (14). GATA2 is found in a subset of human 
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chronic myelogenous leukemia (15) and its over-expression determines megakaryocytic differentiation 

(16). Overall, these results imply that GATA TFs are expected to have a higher level of expression in K562, 

which is consistent with K2 being a pattern of activate marks. In H2, the top 5 TF motifs are of ATF3, 

FRA1, BATF, AP1 and Jun-AP1 (Fig. 2F, SI Appendix, Table S5), which play key roles in the development 

of endothelial cells (28,29). For example, ATF3 is highly expressed in Huvec, which protects Huvec from 

TNF-α induced cell death (17). FRA1 is up-regulated in endothelial cells (18), which is consistent with that 

H2 is marked by active marks revealed by CSMF. Lastly, insulin/IGF pathway, PDGF signaling pathway, 

and VEGF signaling pathway are significantly enriched in the genes locating to the loci in H3, indicating its 

specificity to endothelial cells. 

 

Application II. Determine common and specific gene modules between BRCA and UCEC. We 

applied CSMF to two gene expression data of BRCA (Breast invasive carcinoma) and UCEC (Uterine 

Corpus Endometrial Carcinoma) and obtain five common modules (C1,C2,C3,C4,C5), two UCEC-specific 

modules (U1,U2) and three BRCA-specific modules (B1,B2,B3) with nc=5, ns1=2, ns2=3 (SI Appendix). 

Five common modules show diverse significant function enrichments with FDR<0.05 (Fig. 3A). These 

enriched biological processes relate to several key cancer hallmarks (19, 20) including cell cycle, cell 

division, immune response, cell death, and molecule metabolic process, suggesting their underlying 

common mechanisms between UCEC and BRCA. 

We find that the two UCEC-specific modules U1 and U2 are significantly enriched in the two tumor 

histological types uterine serous carcinoma (type II) and endometrioid tumor (type I) (Fig. 3B), revealing 

their functional specificity as we expected. The biomarkers associated with type II carcinoma (21) such as 

TROP-2, kallikrein-6 and -10, claudin-3 and -4 are enriched in module U1. Intriguingly, the U1 patients are 

older and thinner than the U2 patients when they got sick, which is consistent with a previous conclusion 

about type II and type I tumors (Fig. 3C). Moreover, the age difference between patients of U1 and U2 is 

more significant than that between the remaining ones of type I and type II. Lastly, the estrogen receptor 

status of the patients in B1 are almost all positive, and top two significant hallmark gene sets enriched in 

this module are all associated with estrogen response (Fig. 3D, SI Appendix, Table S9). In module B3, 

the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 all tend to 

be in negative status (Fig. 3E), implying that the module B3 is enriched with triple-negative breast tumors. 

Though uterine serous carcinomas share many molecular features with basal breast tumors such as high 

frequency of TP53 mutation and low frequency of TPEN mutation, they did show some differences 

including distinct mutation frequency of PIK3CA, PPP2R1A and FBXW7 (22). CSMF reveals differently 

expressed genes between triple-negative breast cancer in B3 module and uterine serous carcinomas in 

U1 module (Fig. 3F), among which, the over-expressed genes KRT5, KRT6B, and KRT14 in B3 are 

indeed basal markers (23). 
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Fig. 3. Functional and clinical analysis of UCEC and BRCA common and specific modules. (A) Functional 

enrichments of five common modules between UCEC and BRCA. The significance values 

(-log10(q-value)) of the enriched biological processes are shown. (B) The distribution of histological types 

of patients in the two UCEC-specific modules (denoted as U1 and U2). Type I and II are endometrioid 

endometrial adenocarcinoma and uterine serous endometrial adenocarcinoma, respectively. (C) 

Comparison of age and weight distribution of patients in the two UCEC-specific modules and other 
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patients of type I and II, respectively. 
_

I  and 
_

II  denote the type I and II patients except those in U1 and 

U2, respectively. (D) Top 5 enriched hallmark signatures of B1 module. (E) The Immunohistochemistry 

hormone receptor status enriched in B3 module. (F) The heatmap of the combined genes of top 20 highly 

expressed genes from U1 and B3 modules, respectively. Note *: 1e-5<p-value<0.05, **: p-value<1e-5.  

 

Application III. Determine breast cancer subtype common and specific gene patterns. We applied 

CSMF to gene expression of three breast cancer subtypes including lum (denoting the combination of 

luminal A and B tumors), basal and her2 tumors to explore the underlying mechanisms among them with 

nc=4, ns1=1, ns2=1, ns3=1 (SI Appendix). We determined four common gene patterns (C1, C2, C3, C4) 

and one specific pattern (L, B, H) for each subtype using CSMF. We can see that these four common 

gene modules are involved in the typical cancer hallmarks like cell cycle, cell death, immune response 

and cellular metabolic process (SI Appendix, Fig. S9). More interestingly, each subtype-specific pattern 

tends to relate to subtype-specific pathways (Fig. 4A, SI Appendix, Table S11). For example, lum-specific 

pattern is enriched with PID HNF3A pathway, where HNF3A (also known as FOXA1) is a marker of good 

outcome in breast cancer. Tumors with highly expressed FOXA1 are mostly classified as luminal A ones 

(24). Thus, this pattern is indeed a subtype-related functional module. Basal-specific pattern B tends to be 

enriched in PID Rb1 pathway and in biological processes like cell cycle, G1 phase, and G1 S transition, 

which is consistent with that the tumor suppressor gene Rb1 plays a key role in regulating the cell cycle 

process. We note that Rb1 deletion or mutation, INK4a (also known as CDKN2A) deletion, mutation or 

silencing and CCND1, CDK4 and CDK6 over-expression can cause Rb1 loss or Rb1 

hyperphosphorylation which further disorders G1/S checkpoint (25). A previous study uncovered a strict 

inverse correlation between E2F3 and Rb1 expression in human basal-like breast cancer (27). 

Surprisingly, E2F3 is highly expressed in B module, which is consistent with that Rb1 loss is more 

common in triple negative breast cancers than in other subtypes (26). Interestingly, although patients with 

triple negative breast cancers lacking Rb1 may have good clinical outcome under conventional 

chemotherapy (25), the clinical performance of patients in the basal-specific pattern B are worse among 

all patients in basal subtype. Therefore, the result implies that a simple loss of Rb1 function is not 

responsible for the increased sensitivity of triple negative tumors to chemotherapy as suggested by 

previous study (26). Lastly, her2-specific pattern H tends to be enriched in PID PLK1 pathway. PLK1 is a 

key regulator associated with cell cycle, and it is also associated with her2 (28).  

We further constructed a gene functional network considering only the experimental verified 

relationships with IPA (Fig. 4B) to demonstrate the distinct functional specificity of the three 

subtype-specific patterns. Literature study suggests that lots of gene nodes in the network are associated 

with each breast subtype (SI Appendix, Table S12). For example, GATA3 has been implicated in the 

luminal types of breast cancer, which is over-expressed in the lum-specific subnetwork. Moreover, its 

coding protein is a transcription factor which regulates the differentiation of luminal cells in the mammary 

glands (29, 30). The basal-like tumors associated basal cytokeratins (KRT5, KRT6, KRT14, KRT15, 

KRT16, KRT17) are highly expressed in basal specific-pattern B, demonstrating its specificity. Particularly, 

KRT5 serves as an important biomarker distinguishing basal subtype and other subtypes of breast cancer. 

Moreover, the patients in basal-specific pattern has worse survival performance within the first five years 

relative to the remaining basal tumors and those in other patterns (Fig. 4C). PGK1 is a downstream 

effector of her2 signaling, which contributes to the tumor aggressiveness of breast cancer. It is highly 

expressed in her2-specific module, confirming the functional specificity of this pattern (31). 
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Fig. 4. Biological functions and survival analysis of lum-, basal- and her2-specific modules (L, B, H). (A) 

The selected enriched pathways of each specific module. (B) Networks of genes (filled circles) in the 

three specific patterns visualized by Cytoscape marked with red, purple and green colors, respectively. (C) 

The survival curve about patients in basal-specific pattern. It is compared with that of all patients of basal 

subtype (left) and patients in lum- and her2-specific patterns (right), respectively. 
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Application IV. Identify common and stage-specific subpopulations along the differentiation of 

human pluripotent cells. With the development of single cell sequencing technology, it makes possible 

for us to study the underlying cellular heterogeneity during human embryonic differentiation (32). We 

applied CSMF to scRNA-seq time-course data of six matrices consisting 8968 genes (rows) and 92, 102, 

66, 172, 138, 188 cells (columns) at six time points (0h, 12h, 24h, 36h, 72h, 96h), respectively. We 

identified one common pattern (a cell subpopulation and its highly expressed genes) and 1, 2, 1, 1, 1, 2 

stage-specific patterns at each time point (SI Appendix). The highly expressed genes of the common 

subpopulation is enriched in the biological processes including cell cycle, biosynthetic process, regulation 

of catabolic process, RNA processing and so on, suggesting that a cell population occurs across all time 

points with common functions associated with embryonic differentiation (SI Appendix, Table S14). On the 

other hand, the expression of marker genes (POU5F1, T, CXCR4 and SOX17) of embryonic 

differentiation have nearly the same value in each subpopulation (Fig. 5A), implying each stage-specific 

cell subpopulation determined by CSMF is very homogenous. Moreover, heterogeneity during embryonic 

stem cell differentiation is always a problem for discriminating distinct phenotypic cell types. We obtained 

two stage-specific cell subpopulations at 12h and 96h, respectively (Fig. 5A). POU5F1 and T show very 

diverse expression in the two subpopulations at 96h and 12h, respectively. It might suggest that one 

subpopulation differentiates more slowly than another one (Fig. 5A). 

CSMF can reveal subpopulation-related genes which include known differentiation-associated gene 

markers (Fig. 5B). For example, NANOG and POU5F1 are highly expressed at 0h of differentiation. They 

indeed play an important role in the maintenance of pluripotency of human embryonic stem cells. While 

NODAL, EOMES and ID1 are highly expressed at 12h of differentiation. More distinctly, T is highly 

expressed at 24h of differentiation. It is well known that T is the key marker of mesendoderm in embryonic 

stem cell studies, and it is firstly expressed in the primitive streak (33, 34). Moreover, the two definitive 

endoderm-specific genes CER1 and GATA6 are highly expressed at 36h of differentiation. Actually, CER1 

is the top important genes at 36h, 72h and 96h of differentiation (Fig. 5B). These key stage-specific gene 

markers revealed by CSMF are very consistent with a previous study based on a differential expression 

analysis tool SCPattern (32), which cannot reveal common and stage-specific cell subpopulations.  

The subpopulation-related genes indeed point to key differentiation process such as the birth of 

definitive endoderm. To our knowledge, the hypoxic treatment experiments suggests that the birth of 

nascent definitive endoderm cells is a well-timed event (32). We combined the top 30 genes in 24h- and 

36h-specific patterns together and obtain 45 genes after removing the ERCC family genes. This gene set 

is enriched in the Wnt signaling pathway, which is crucial for the development of endoderm (35, 36). 

These genes have different expression pattern accompanying differentiation toward definitive endoderm 

and are involved in differentiation of stem cells and proliferation of mesenchymal cells (Figs. 5C and 5D). 

Previous study suggested that cells undergo mesenchymal transition when the embryonic stem cell 

differentiate towards definitive endoderm during gastrulation (37). All these observations demonstrate that 

the pattern discovery by CSMF reveal novel hidden characteristics among the biological data of 

interrelated scenarios. 
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Fig. 5. Cell subpopulations identified by CSMF from the time-course scRNA-seq data. (A) The normalized 

gene expression values of marker genes of cells in each specific pattern vary across time stage. Dots in 

specific patterns represented by different colors and dots represented by + with shallow red and rose red 

represent cells in 12h- and 96h-specific subpopulation II, respectively. (B) The order of significance of 

selected markers in each time-specific pattern (W). (C) The enriched function associated with embryonic 

development of genes, which are the intersection of genes on Wnt signaling pathway and genes 

differently expressed between 24h- and 36h-specific pattern. (D) The expression of genes described in (C) 

classify cells in 24h- and 36h-specific patterns. 
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CONCLUSION 

With the rapid development of high-throughput technologies (e.g., ChIP-seq, RNA-seq and scRNA-seq), 

a huge number of genomic data of different biological conditions have been profiled and collected, 

providing a grand opportunity to decipher the underlying commonality and specialty among diverse 

biological conditions through large-scale integrative and comparative analysis. However, traditional 

methods fail to tackle the data reduction and comparative analysis in a simultaneous manner. To this end, 

we propose a powerful and flexible mathematical framework CSMF, which is suitable for analyzing data 

generated by different techniques such as RNA-seq, ChIP-seq and scRNA-seq. This is the first report to 

propose the idea to identify common and specific patterns or patterns at the same time using NMF 

technique.  

  We have demonstrated the utility of CSMF as an effective computational tool to reveal hidden patterns 

among complex data across diverse conditions. It is different from differential expression analysis when 

applied on gene expression data of case and control groups, which only identify a list of genes with 

statistical significance. CSMF helps us understand the biological combinatorial patterns across distinct 

conditions.  

  Selecting a well-reasoned number of common and specific patterns for CSMF is a challenging issue, 

and we propose a heuristic method to address it (SI Appendix). As the CSMF is a non-convex problem, 

the algorithm can only get local minimum. In future studies, we will consider to design more elaborate 

mathematical penalties onto the factorization to enhance the pattern discovery. Besides the four 

applications we conducted here, CSMF can also been applied to many other kinds of data such as copy 

number variation, DNA methylation and miRNA expression of different conditions, which will help us to 

understand the data heterogeneity and underlying patterns.  

 

Materials and Methods 

ChIP-seq data of K562 and Huvec cell lines. We downloaded the normalized read count data for MYC 

analysis example from the website of dPCA of ChIP-seq (http://www.biostat.jhsph.edu/dpca/). The MYC 

motif analysis dataset includes 58997 loci, 18 datasets and 70 samples in K562 and Huvec cell lines. 

Each locus means the extensional MYC motif site that has significant signal(s) in at least one mark or TF 

in either cell line. We log-transformed the binding signal with a pseudo-count 1 (i.e., log2(1+count)), and 

averaged the value of multiple replicates of each mark for K562 and Huvec cell lines, respectively. Finally, 

we got the two data consisting of 58997 loci and 18 marks in this study.  

 

TCGA gene expression data of UCEC and BRCA. We downloaded the level 3 gene expression data 

(illuminahiseq _rnaseqv2 -RSEM_genes_normalized) of UCEC and BRCA on 2016-01-28 from 

http://gdac.broadinstitute.org/. We log-transformed the expression with a pseudo-count 1 and kept the 

differentially expressed genes with absolute log2 (fold change) > 2 and Benjamin-Hochberg (BH) adjusted 

p-value <0.01 between cancer and normal samples by limma (38) for UCEC and BRCA, respectively. 

Finally, we obtained the two gene expression data of 6621 genes across 370 UCEC and 1100 BRCA 

tumors, respectively. 

 

METRABRIC gene expression data of breast cancer. The METRABRIC dataset was accessed through 

Synapse (synapse.sagebase.org), which contained detailed clinical annotations such as PAM50 subtype 

information. We focused on the tumors of luminal A, luminal B, basal and her2 subtypes. We combined 

the genes which were differentially expressed between each of these subtypes and the normal-like 
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subtype by limma with Benijamini-Hochberg (BH) adjusted p-value <0.01 and the absolute of log2(fold 

change) >0.5. We also computed the median absolute deviation (mad) value of each gene across 

samples in each subtype and kept the gene with mad > 0.2 in at least one subtype. We treated luminal A 

and luminal B as one subtype, named as lum. Finally, we got the expression of 2031 genes across 1209 

lum, 328 basal and 238 her2 tumors in this study. 

 

scRNA-seq time-course gene expression data of human embryonic stem cells and differentiation 

cells. We obtained the scRNA-seq data of human embryonic stem cells and differentiation cells from 

NCBI's Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo) with the accession number 

GSE75748. There are 758 total cells including 92, 102, 66, 172, 138 and 188 cells at time points 0h, 12h, 

24h, 36h, 72h and 96h, respectively. The gene expression values were log-transformed with a 

pseudo-count of 1 and normalized by the media-by-ratio with SCPattern R package. We computed the 

variation measured by standard deviation for each gene across each time point and selected genes with 

z-score of the variation >1. We extracted the differently expressed genes across six time points obtained 

by SCPattern (32). In total, 8968 genes and their expression were used in this study (SI Appendix, Table 

S1). 

 

General CSMF. In this subsection, we introduce how to learn common and specific patterns among data 

from multiple biological conditions. Suppose there are K conditions and data Xi represents data matrix 

under the i-th condition. We need to determine the basis matrices Wc and Wsi, and coefficient matrices Hci 

and Hsi of each condition i for learning the common and specific patterns of each condition i. We can 

obtain these variables by solving the following problem: 

2

, , , 0, 1, ,

1

min . 



  c ci si si

K

W H W H i K i c ci si si F
i

F X W H W H                             (6) 

The problem (6) can be solved via a two-step procedure by solving a series of typical NMF sub-problems. 

In the first step, we fix Wsi, Hsi and let
~

max( ,0) i i si siX X W H . Then we can obtain Wc and Hci by solving 

the following models, 

2 2
~ ~ ~

, 0, 1, , 1 1

1

min [ , , ] [ , , ] . 



  c ci

K

W H i K i c ci K c c cK

i F F

X W H X X W H H                     (7) 

In the second step, we fix Wc and Hci and let 
^

max( ,0) i i c ciX X W H . Then we can obtain Wsi, Hsi by 

solving K typical NMF sub-problems and the i-th sub-problem is formulated as follows, 
2

^

, 0min
si siW H i si si

F

X W H 
                                            (8) 

Moreover, we adopted the solution of a naive model iNMF+ as the initial one to improve the solution (see 

SI Appendix). 

 

Rank selection for common and specific patterns. We chose common and specific ranks by a 

two-step procedure. In the first step, we took a stability-based method variant to choose rank Ki of each 

dataset and Ki (=nc+nsi) is the sum of ranks of the common pattern and the i-th specific pattern. In the 

second step, we detected ranks of common pattern and the i-th specific pattern (see SI Appendix).  
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Tuning ranks. See SI Appendix. 

 

Simulations. We adopt a similar simulation strategy as used in (39) (see SI Appendix). We applied 

CSMF to simulated data to demonstrate its performance and compared it with two naïve methods. 

 

Detailed results. More detailed analysis on the four examples were provided in SI Appendix. 
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