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ABSTRACT

Background: With the explosion of high-throughput data available in biology, the bottleneck is shifted

to effective data interpretation. By taking advantage of the available data, it is possible to identify the

biomarkers and signatures to distinguish subtypes of a specific cancer in the context of clinical trials.

This requires sophisticated methods to retrieve the information out of the data, and various algorithms

have been recently devised.

Results: Here, we applied the prize-collecting Steiner tree (PCST) approach to obtain a gene expression

signature for the classification of diffuse large B-cell lymphoma (DLBCL). The PCST is a network-based

approach to capture new insights about genomic data by incorporating an interaction network landscape.

Moreover, we adopted the ElasticNet incorporating PCA as a classification method. We used seven public

gene expression profiling datasets (three for training, and four for testing) available in the literature,

and obtained 10 genes as signature. We tested these genes by employing ElasticNet, and compared

the performance with the DAC algorithm as current golden standard. The performance of the PCST

signature with ElasticNet outperformed the DAC in distinguishing the subtypes. In addition, the gene

expression signature was able to accurately stratify DLBCL patients on survival data.

Conclusions: We developed a network-based optimization technique that performs unbiased signature

selection by integrating genomic data with biological networks. Our classifier trained with the obtained

signature outperformed the state-of-the-art method in subtype distinction and survival data stratification

in DLBCL. The proposed method is a general approach that can be applied on other classification

problems.

Key words: DLBCL, PCST, signature, high-throughput data

BACKGROUND

Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Based on

gene expression profiling studies, it has been proposed that this clinically heterogeneous disease can

be divided in at least two main classes, the germinal center B-cell (GCB) and the activated B-cell like

(ABC), subtypes, depending on their phenotypic homologies with their supposed cell of origin (COO)

[36, 12]. These subgroups have shown differences in clinical course and response to standard therapies,

therefore, they should allow the development of tailored therapies [36, 12]. The definition of the COO is

now recommended in the clinical practice [33] although it still a matter of research on the identification

of the best markers to be used and on the choice of the best technology to measure them [36, 21, 15].
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Recent advances in genome sequencing instruments have now provided researchers with a huge amount

of data from which it is possible to extract useful gene expression signatures to discriminate ABC and

GCB subtypes of DLBCL. Nevertheless, the analysis of gene expression patterns is characterized by

a large number of covariates, a large number of genes compared to a small number of observations,

and a limited number of patients with known ABC or GCB subtypes. Therefore, data mining must be

accomplished with careful statistical techniques to identify a signature that contains only the elements

most useful for the subtype prediction.

Figure 1: A Venn diagram demonstrating the gene overlap from the published signatures including

(DAC [9], Blenk [7], Masque-Soler [26], and Nanostring [30]). Numbers in the figure indicate the amount

of overlapping genes between the signatures. There is a considerable discordance in the gene lists. The

diagram is made using the online tool (source: www.bioinformatics.psb.ugent.be).

There are several signature sets proposed in the literature to identify the subtypes of lymphoma [9, 16, 7,

31, 26, 28, 10], but the lists of genes in these sets are very discordant. We demonstrate the gene overlap

between four signatures in Fig. 1, where the numbers in the figure indicate the amount of overlapping

genes. These signatures are strongly dependent on the specific study and sometimes determine the

discordant COO definition of the same sample. One main reason for this heterogeneity could be the

preliminary filtering process of genes when a subset of all genes analyzed is selected to reduce the

degrees of freedom that allows further statistical analysis. We propose a PCST-based method capable of

extracting important genes by searching the complete gene space from the expression or transcriptomics

datasets, thereby removing the initial arbitrary gene filtering step. Basically, the PCST approach enables

the analysis of genomics data at a network level, which leads to the identification of subnetworks that

may possibly act as a gene expression signature to distinguish the DLBCL subtypes. We construct gene

interaction networks using gene co-expression data without applying any gene filtering as a whole, and

score them using the differential expression [13]. Afterwards, the PCST is applied to find a neighborhood

of genes in the network that are differently expressed and connected to each other through the highly

mutual informative (⇠reliable) edges. The set of differently expressed genes that are collected with high

mutual information among themselves would potentially stratify the DLBCL patients.

METHODS

Datasets

We used seven publicly available datasets downloaded from the Gene Expression Omnibus

1

(GEO)

repository that are reported in Table 1. The first three columns of the table contain the names, the

generated platforms and the number of samples in the datasets. The datasets have been generated in

different experiments where the source is provided in the last column of the table. As reported in the

fourth column, the first three datasets are used to obtain the PCST signature and to train the regression-

based model, ElasticNet [47], to perform the classification. The rest of the datasets are used to compare
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Table 1: Publicly available datasets. The first three columns of the table contain the names, generated

platforms and number of samples in the datasets. The datasets have been generated in different

experiments where the source is provided in the last column of the table. We also specify under the

fourth column which dataset are used to identify the PCST signature and to train the ElasticNet regression

model [47], and later on to test the performance of the ElasticNet trained with the PCST signature.

Dataset Platform Samples Use Author

GSE22470 Hgu133A 176 Train [29]

GSE19246 Hgu133Plus2 144 Train [43]

GSE31312 Hgu133Plus2 451 Train [14]

GSE4475 Hgu133A 96 Test [17]

GSE10172 Hgu133A 10 Test [20]

GSE23501 Hgu133Plus2 57 Test [32]

GSE10846 Hgu133Plus2 350 Test [22]

the performance of the ElasticNet model trained with the PCST signature against the golden-standard

approaches from the literature. For detailed information about the datasets used to obtain the signature

and to train the regression model, see Table 2.

To prepare the data sets for subsequent analysis, we transformed the probe names into hugo gene

symbols [27]. The probe is a complementary sequence that targets the certain location of a genome

while hugo gene symbols contain a unique naming of the specific locations of a genome [27]. If more

than one probe is associated to the same gene, only the probe with the highest standard deviation is

retained. To utilize the genes with some missing values, we imputed missing values for the genes lacking

measurement in less than 50% of the samples using a nearest neighbor average method [38]. Other genes

with more than 50% missing values across the samples are removed from the computations, because

imputing missing values for these genes could introduce a considerable amount of artifacts.

Table 2: The datasets that are used to obtain the PCST signature and train the ElasticNet [47]. The total

number of samples in each data set includingthe number of ABC and GCB subtype samples is provided

in the table.

Dataset Total samples ABC samples GCB samples

GSE19246 144 63 81

GSE22470 215 71 144

GSE31312 451 214 237

Networks

To obtain the PCST signature, we generated two interaction networks for each of the three training

datasets using the multiplicative model of the ARACNE [25] algorithm. A total of six interaction

networks are generated with up to 21’049 nodes and 1’423’267 edges as reported in Table 3. ARACNE

[25] is a powerful tool for the reconstruction of gene interaction networks. It applies the data processing

inequality to all triplets of nodes in the network to remove the least significant edge in each triplet using

the threshold parameter t. For each triplet of nodes i, j and k, the weakest edge eij, is removed from

the network if its weight is smaller than eik · t and ejk · t. Since we wanted to analyze the generated

networks in a broader context, we selected a less stringent threshold for t. We generated two interaction

networks for each training data with parameters t = 0.01 and t = 0.05. In these networks, each edge

represents the interaction between two genes and ARACNE provides a score for each edge based on

the mutual information of corresponding gene expression values. The node prizes are labeled with the

differential expression for each gene as pv = |EABC � EGCB|, where EABC and EGCB are equivalent to the

mean of gene expressions for ABC and GCB cancer patients, respectively. The edge costs are set to cij = 1-

mij/mmax, where mij represents the mutual information between the expression values of gene pairs i
and j, and mmax is the maximum mutual information within the datasets.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 19, 2018. ; https://doi.org/10.1101/272294doi: bioRxiv preprint 

https://doi.org/10.1101/272294
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: The sizes of network instances generated by the training datasets. The networks are generated

by the multiplicative model of ARACNE algorithm [25] using the parameters values of t = 0.01 and

t = 0.05.

eps = 0.001 eps = 0.005

Dataset Nodes Edges Nodes Edges

GSE19246 20639 82282 20639 154469

GSE22470 12994 266085 12994 375097

GSE31312 20639 1055055 20639 1423267

PCST - the network optimization method

The PCST is a well-known problem in graph theory and there are different variants of the problem in the

literature [1, 2, 23]. Given an undirected graph G = (V, E), where the vertices are labeled with prizes

pv � 0 and the edges are labeled with cost ce > 0, the goal is to identify a subnetwork G0 = (V0
, E0) with

the tree structure. The target is to minimize the sum of the prizes of vertices out of V0
, and to minimize

the total cost of the edges in E0
. This is equivalent to the minimization of the following objective function

[19]:

f (G0) = minimize Â
e2E0

ce + Â
v 62V0

pv (1)

The PCST has a wide range of applications, mainly in the design of utility networks such as fiber optic

and district heating networks. Recently, some PCST applications in biological networks have been

published [4, 39, 40, 41]. The biological graphs such as genetic interaction networks can be scored by

using experimental data including gene expression profiling, mutation, or copy number data. In these

networks, every vertex is a gene, and every edge between two vertices represents the genetic or protein

interaction between the two vertices. Each vertex in the network is given a prize, which can be the

differential expression between two subtypes or number of mutation for that gene [13] . Also, each

edge in the network is given a cost, which corresponds to pairwise mutual information of expression

values between two genes. After having scored all vertices and edges in the network, the PCST is

employed to detect a relevant subnetwork (tree). Biologically, the subnetwork obtained by the PCST has

an important meaning [4] , in which it corresponds to a portion of interaction network where many genes

are closely related in terms of their functions, and potentially belong to the same biological pathways [13].

Furthermore, the resulting subnetwork contains many genes that are highly correlated and differently

expressed between the sub- types in the experimental data. Therefore, the set of genes included into

PCST solution tree can represent gene expression signatures to distinguish disease subtypes.

Figure 2: The Prize-collecting Steiner Tree problem instance and solution. A) An input graph instance.

The node sizes and arc widths are proportional to the prizes and mutual information, respectively. B)

The Prize-collecting Steiner Tree solution for input graph. The PCST collected set of genes that have

higher differential expression and connected through the least cost (⇠highly mutual informative) edges.

The illustration of the PCST on input graph and the resulting output tree are demonstrated in Fig. 2.

The vertex sizes and edge widths are proportional to prize of nodes and mutual information of edges,

respectively.
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In the application of PCST in genomics, it is possible to have very large networks to analyze. Nev-

ertheless, PCST has NP-hard characteristics which makes it computationally challenging for existing

exact algorithms to find solutions in reasonable execution time. This yields a need for fast matheuristic

algorithms to compute the PCST solution tree in large networks for inferring biologically relevant sub-

networks. Considering challenges, previously we have developed a matheuristic approach [1, 2] which

efficiently scales up on large biological instances. The matheuristic was composed of the preprocessing

procedures, a heuristic clustering algorithm and an exact PCST solver from the literature [23]. Here, we

employ a prior approach developed in [1] to compute the PCST solution tree for biological networks.

Signature

The PCST method described in [1] is applied in six interaction networks to obtain solutions. Basically,

a PCST solution includes itself the group of genes that are differently expressed in ABC versus GCB

subtype, and have high mutual information among themselves at the same time. Therefore, these

genes are assumed to be a promising gene expression signature to stratify ABC and GCB subtypes.

Furthermore, we combine the PCST results of multiple datasets by selecting the intersecting genes in

order to get a more robust signature.

Training the classification methods

We use ElasticNet [47] as a classification method to distinguish the DLBCL subtypes. The classification

method is trained by using the signature obtained from the PCST as described in Section , and its

performance is examined on the test data to objectively evaluate it. We use the default parameter values

in ElasticNet.

Penalized linear regression and mixture of experts

The idea is to look for a simple linear classifier performing a logistic regression. The Steiner tree allowed

us to reduce the number of covariates from tens of thousands of genes to ten, however among them

there could still be correlated genes or genes not relevant for the classification, which can lead to a

sub-optimal estimation of the regression parameters. To select relevant genes several techniques of

variable selection and penalized linear regressions have been devised to identify the important covariates.

We used ElasticNet regression [47] that combines a continuous variable selection, while keeping under

control the correlations among the covariates. The penalization introduced by ElasticNet can be seen in a

Bayesian framework as the introduction of a prior distribution on the values of the coefficients which

models our prior assumption that the value of the coefficients must be bounded (this keeps under control

any correlation among the regressors) and that the solution could be sparse (variable selection). This

penalization is an attempt to combine the well-known Lasso and Ridge methods, trying to overcome

their individual limitations.

Moreover, we adopted a meta-analytic approach in which each training dataset is used to build an

independent classifier. Each classifier performs a binary classification through a logistic regression and

for every sample it casts a vote between 0 and 1 that can be interpreted as the probability for the sample

to be of sub-type ABC. We tried two different ways to combine the votes of the single classifiers together.

Either we used the mean value or the median; we found that the mean leads to best results (see Results

and Supplementary Material).

Another question is how to present the training data to the classifiers. In fact, PCA might allow to reduce

the dimensionality of the datasets and improve the prediction power of the ElasticNet model. As it can

be seen in Fig. 3, if we consider the three training datasets restricted to the genes present in the signature

found, the first three components are enough to explain more than 60% of the total variance, so we chose

to consider only the first three components.

We tried to feed the classifier using either the real data or the first two principal components and we

found that the best results are obtained using both representations (See Results and Supplementary

Material for a more detailed discussion).
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Figure 3: The PCA of the three training datasets shows that the first three components are enough to

explain more than 60% of the total variance.

In the end the classification algorithm works as follows:

1. For each training dataset, train an ElasticNet classifier;

2. For each training dataset, train second ElasticNet classifier based on the first three principal

components;

3. Let each classifier cast a vote for each sample in the test dataset;

4. Merge the votes together using the mean value.

Comparison with previous studies

We compared our gene expression signature and classifier with previously proposed ones. The compar-

ison was on two phases: comparison of the classification accuracy and patient survival stratification

ability.

To test whether our signature and classification algorithm can improve the present classification system,

we tested it against the DLBCL Automatic Classifier (DAC) [9] one of the “state-of-the-art” classifiers for

the DLBCL classification.

Since ABC and GCB DLBCL groups have different clinical outcome we compared the stratification using

our classes and using the classes assigned by the original study, for two of the test datasets with available

survival information.

RESULTS and DISCUSSION

We compared the performance of our gene expression signature with previous methods in the literature.

The performance comparison was in twofold: i) comparing the classification accuracy of DLBCL patients

provided by the methods and ii) comparing the survival stratification ability of the methods. In the

first comparison, we provide accuracy results of the methods by benchmarking our method against

the DLBCL Automatic Classifier (DAC) [9]. Currently, the DAC is the “state-of-the-art method” in the

literature to classify DLBCL patents. Alternatively, in the second comparison, we report the patient

stratification power of our method based on survival data.
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Figure 4: Signatures including Wright [46], Six Genes [18], Blenk [7], Bret [8], IHC [16] and Nanostring

[30] are displayed in the figure based on the ordered fold changes according to the the hierarchical

clustering dendrogram.

Comparison to previous signatures

As discussed in the introduction, various signatures have been proposed to classify ABC and GCB

subtypes of DLBCL in the literature. These signatures barely overlap, however, we figured out that they

are highly correlated in terms of biological processes in which they are involved. With the R package

nclust [45, 44], we performed a hierarchical clustering [24] of genes for all datasets using the distance

metric 1 � cor, where cor indicates the Pearson’s correlation [6] between the genes. We then computed

the fold-changes for each gene, which is the mean difference in expression of ABC and GCB subtypes. We

ordered the fold-changes according to the dendrogram provided by the hierarchical clustering, resulting

in a signal exhibiting some peaks that were smoothed with a Gaussian kernel [3], which corresponds to

highly correlated and differentially expressed genes between the two subtypes. Using this ordered fold-

change signal as the backbone, we plotted the previous signature sets from the literature in Fig. 4, which

provides a unified overview of different signatures. In the figure, the signature genes are distributed

under the peaks of the ordered fold-changes. Although the signatures do not contain overlapping genes,

they have several genes belonging to the same peaks, i.e. very correlated. This supports the hypothesis

that even if the signatures are different, they contain genes belonging to the same functional group that

can represent the same biological function.

The immunohistochemical (IHC) [16] analysis is the golden standard for early diagnostic purposes of

DLBCL patients, while the DAC classifier [9] implements the Wright [46] signature genes to classify ABC

and GCB subtypes.

The PCST signature

For illustrative purposes, the union of PCST subnetworks for six interaction networks is displayed in

Fig. 5, resulting in a network of 174 genes and 240 edges. In order to obtain a robust signature set, we

selected intersecting genes in six PCST subnetworks, including ten genes, namely: MYBL1, PHF16,

SSBP2, SPINK2, RAB7L1, STAG3, C13ORF18, BATF, MME and LMO2.

Fig. 6 shows the overlap of our PCST signature genes with the two main peaks of the ordered fold-

changes signal, which is described in the previous section.

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 19, 2018. ; https://doi.org/10.1101/272294doi: bioRxiv preprint 

https://doi.org/10.1101/272294
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 5: The subnetworks obtained by the PCST are overlaid on top of one another. The node sizes and

edge widths are proportional to the differential expression of genes and mutual information between the

genes, respectively. Red genes are over-expressed in ABC, and blue genes are over-expressed in GCB

subtype. The square-shaped genes are selected as the PCST signature.
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Figure 6: Our signature genes coincide the two main peaks of the ordered fold-change signal. These

main peaks are also shared by the other signatures found in the literature (see also Fig. 4).

Furthermore, we compared the expression levels of genes belonging to the PCST signature between ABC

and GCB subtypes in Fig. 7. The signature genes were differentially expressed between the subtypes

throughout the training datasets, demonstrating the potential distinctive power of the signature in ABC

and GCB subtypes.
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Figure 7: The mean values of ABC (orange) versus GCB (turquoise) subtype expressions for the PCST

signature genes A) for the GSE19246 dataset, B) for the GSE22470 dataset and C) for the GSE31312

dataset.

Accuracy comparison with previous models

We used the ElasticNet regression model [47] trained with our signature to classify DLBCL patients

and compared its performance with the DAC [9] classifier. The accuracy is computed by dividing the

number of correctly predicted patients by the total number of patients. Other minor subtypes of DLBCL

than ABC and GCB are considered as the type-III subtype within the DAC classifier. To create a fair
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comparison platform, we disregarded the type-III subtype predictions of the DAC while computing

the accuracy, or reassigned the type-III subtype to the ABC or GCB based on the highest prediction

probability.

The comparison results for four test datasets are reported in Table 4. Both methods provided similar

accuracy results for the first two datasets in the table. However, our method significantly outperformed

the accuracy of the DAC classifier [9] for the last two datasets. We used the procedure described in

Methods, but in the Supplementary material section we showed the results of our classifier trained with

different settings.

Table 4: Survival analysis for two datasets. The top and bottom rows contain the results for GSE4475

and GSE10846 datasets, respectively. The left column shows the survival analysis using the classes

provided by [17] and [22] while the right column demonstrates the performance of our PCST signature

classification.

Dataset ABC GCB DAC* DAC** PCST+ENet

GSE4475 58 120 96.00 97.00 96.88

GSE10172 3 28 90.00 89.00 90.00
GSE10846 167 183 85.00 90.00 96.57
GSE23501 20 40 88.00 94.00 100.00
* type-III class prediction is disregarded

** type-III class prediction is reassigned to ABC or GCB that has the

highest prediction probability
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Figure 8: Survival analysis for two datasets. The top and bottom rows contain the results for GSE4475

and GSE10846 datasets, respectively. The left column shows the survival analysis using the classes

provided by [17] and [22] while the right column demonstrates the performance of our PCST signature

classification.
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Survival analysis with the PCST signature

To provide a stronger evidence of the PCST signature relevance in clinical trials, we tested the signature

in the analysis of survival data. The signature was used to stratify DLBCL patients using survival data.

Two out of four datasets within the training datasets contained the survival data in the GEO repository.

The survival analyses are displayed in Fig. 8 for these datasets, where our method provided better

p-values (1.14e-9 versus 2.56e-9 [22] for GSE10846 and 0.0000984 versus 0.00296 [17] for GSE4475) in the

stratification of DLBCL patients compared to previous approaches.

Conclusion

High-throughput genomics is a promising technology that enables personalized medicine. However, the

way to make it available for usual clinical practice is still far from being completed. One main challenge

in high-throughput data analysis is to identify signature genes that can stratify patients with relevant

clinical outcomes. Here, we proposed a method based on the well-known Steiner Tree algorithm. The

genes analyzed by the specific platform are mapped onto the vertices of a genetic network where the

vertex prize is given by the differential expression of the gene between the two subtypes of disease

(hence it is a measure of how good the gene is able to discriminate the two subtypes) and the edges

are given a cost corresponding to the mutual information between two genes connected by the vertex.

The aim of the PCST is to find a relevant subnetwork with minimal cost; this subnetwork is comprised

of genes with high discriminative power and mutual information. Since the problem is NP-hard, we

employed a metaheuristic previously developed in our group [1, 2].

We identified the gene expression signature for the DLBCL patients with our method and tested it against

the “state-of-the-art” approach in the literature. The classification accuracy of the proposed method

was equivalent or better than the “gold-standard” method. In addition, our method resulted in better

stratification of DLBCL patients using the survival data.

Finally, the proposed feature selection method is robust to noise in data due to the batch effects and other

environmental factors. It is very generic method that can be easily applied to other types of cancer data

for signature selection and subtype stratification.

Supplementary

Publicly available signatures

In the literature, various signatures have been proposed in order to classify the DLBCL. In Fig. 4 we

showed how the genes from these signatures overlap with the peaks of the hierarchical clustering. The

signatures used are

1. Wright: One of the first signatures [46].

2. Six Genes [18]: Minimal signature composed of only six genes

3. Blenk [7]: Signature of 18 genes

4. Nanostring [30]: Signature used to classify FFPE tissues using the Nanostring technology.

5. IHC [16]: Signature for IHC classification

6. Bret [8]: 12 genes signature

Using different parameters to train the classifier

In the main test we showed the classification accuracy using a mixture of experts composed on models

trained on the real data and on the first three principal components. The final vote is given by the mean

of the single experts.
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However, one can wonder if using both real data and the first three principal components is not

redundant, or if the median is better than the mean since it is less dependent on outliers. We present in

Table 5 the results using either the mean or the median on classifiers trained only with real data, only

with the three first principal components or both. As it can be seen, the mean values of classifiers trained

both on real data and on the principal components allows to achieve the best performance. We also

report the results obtained with the DAC [9] classifier.

Table 5: Comparison of the mixture of experts using ElasticNet. The different mixtures depend on how

the training data are feed into the classifiers and how the final vote is obtained as a combination of the

votes of the single classifiers.

DAC PCST + {ElasticNet + PCA}

[9] Mean Median

Dataset ABC GCB * ** Both PCA Real Both PCA Real

GSE4475 58 120 96.00 97.00 96.88 93.75 94.79 95.83 96.88 94.79

GSE10172 3 28 90.00 89.00 90.00 80.00 90.00 80.00 80.00 90.00
GSE10846 167 183 85.00 90.00 96.57 94.57 96.57 96.00 95.14 95.71

GSE23501 20 40 88.00 94.00 100.00 92.98 94.74 96.49 92.98 94.74

* type-III class prediction is disregarded

** type-III class prediction is reassigned to ABC or GCB that has the highest prediction probability

Abbreviations

PCST: Prize-collecting Steiner Tree; GEO: Gene Expression Omnibus; DLBCL: Diffuse large B-cell

lymphoma; ABC: Activated B-cell like; GCB: Germinal center B-cell; COO: Cell of origin; DAC: DLBCL

Automatic Classifier
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