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During chronic infection, HIV-1 engages in a rapid coevolutionary arms race with the host’s adaptive
immune system. While it is clear that HIV exerts strong selection on the adaptive immune system, the
modes of immune response are still unknown. Traditional population genetics methods fail to distinguish
a chronic immune response from natural repertoire evolution in healthy individuals. Here, we infer the
evolutionary modes of B-cell repertoire response and identify a complex dynamics where, instead of one
winning clone, there is a constant production of new better mutants that compete with each other. A
substantial fraction of mutations in pathogen-engaging CDRs of B-cell receptors are beneficial, in contrast
to the many deleterious changes in structurally relevant framework regions. The picture is of a dynamic
repertoire, where better clones may be outcompeted by new mutants before they fix, challenging current
vaccine design and therapy ideas.
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The HIV-1 virus evolves and proliferates quickly within
the human body [1–3], often recombining its genetic ma-
terial among different viral genomes and rapidly mutat-
ing. These factors make it very hard for the host im-
mune system to control an infection, leading to long-term
chronic infection. While it is clear that the virus exerts
strong selective pressure on the host immune system, the
adaptive immune response during chronic infections re-
mains unknown.

The immune system has a diverse set of B and T-cells
with specialized surface receptors that recognize foreign
antigens, such as virus epitopes, and protect the organ-
ism. We focus on the chronic phase of HIV infection,
where the immune response is dominated by antibody-
mediated mechanisms, following the strong response of
the cytotoxic T-lymphocytes (i.e., CD8+ killers T-cells),
around 50 days after infection [4]. During the chronic
phase, the symptoms are minor and the viral load is rel-
atively stable but its genetic composition undergoes rapid
turnover. After an infection, B-cells undergo a rapid so-
matic hypermutation in lymph node germinal centers,
with a rate that is approximately 4 − 5 orders of magni-
tude larger than an average germline mutation rate in hu-
mans [5]. Mutated B-cells compete for survival and pro-
liferation signals from helper T-cells, based on the B-cell
receptor’s binding to antigens. This process of affinity
maturation is Darwinian evolution within the host and
can increase binding affinities of B-cell receptors up to
10-100 fold [6]. It generates memory and plasma B-cells
with distinct receptors, forming lineages that trace the
evolutionary selection pressures inflicted by the virus [7]
(see schematic in Fig. 1A). A B-cell repertoire consists
of many such lineages forming a forest of co-existing ge-

nealogies.
Immune repertoire high-throughput sequencing has

been instrumental in quantifying the diversity of B-cell
repertoires [8, 9]. Statistical methods have been devel-
oped to characterize the processes involved in the genera-
tion of diversity in repertoires and to infer the underlying
heterogenous hypermutation preferences in B-cell recep-
tors (BCRs) [9–11]. Deviation of the observed mutations
in BCRs from the expected hypermutation patterns are
used to infer selection effects of mutations from repertoire
snapshots in order to identify functional changes that
contribute to the response against pathogens [10, 12].

Recently, longitudinal data, with repertoires sampled
over multiple time points from the same individuals, has
brought insight into the dynamics of affinity maturation
in response to antigens [13–16]. The dynamics of affin-
ity maturation and selection in response to HIV have
also been characterized for chosen monoclonal broadly
neutralising antibody lineages [3, 17]. Yet, the effect of
a chronic infection on the dynamics of the whole BCR
repertoire remains unknown.

Here, we compare the structure and dynamics of
BCR repertoires sampled over 2.5 years in HIV patients
(data from ref. [15] collected through the SPARTAC
study [18]) with the repertoire structure in healthy
individuals (data from ref. [19]). We reconstruct ge-
nealogical trees for B-cell receptor lineages inferred from
BCR repertoires in each individual (SI). B-cell lineages
of HIV patients, a few examples of which are shown in
Fig. 1B, can persist over months to years of infection,
which is much longer than the lifetime of a germinal
center (weeks), indicating the recruitment of memory
cells for further affinity maturation in response to the

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted February 24, 2018. ; https://doi.org/10.1101/271130doi: bioRxiv preprint 

https://doi.org/10.1101/271130
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

germline diversity:
gene rearrangement
junctional insertion / deletion 

affinity maturation:
hypermutation & seletion

IGHV4-59, IGHJ6 IGHV4-39, IGHJ5

0.05

IGHV1-18, IGHJ1

HIV patients

120 wk

12 wk
16 wk
24 wk
52 wk 
60 wk 

108 wk

4 wk

0.05

72 wk

IGHV2-70,IGHJ1

0.05

0.05

IGHV2-70D, IGHJ5

Healthy, productive

Healthy, unproductive

0.05

IGHV4-4, IGHJ6

0.05

(A)

(B)

(C)

FIG. 1: Affinity maturation forms B-cell lineages. (A) Schematic of B-cell affinity maturation and lineage formation. The naive
immune repertoire consists of a diverse set of B-cell receptors, generated by gene rearrangement (VDJ recombination) and junctional
sequence insertion and deletion (distinct colored cells in the box). Affinity maturation with somatic hypermutations and selection for
strong binding of BCRs to antigens forms lineages of BCRs stemmed from a germline progenitor, shown by three growing lineages in this
figure. (B) Examples of B-cell lineages reconstructed from the heavy chain sequences of BCR repertoires in HIV patients (see SI). The
distance between the nodes along the horizontal axis indicates their sequence hamming distance. The nodes are colored according to the
time they were sampled from a patient over the period of ∼ 2.5 yrs. (C) Examples of a productive (left) and unproductive (right) B-cell
lineage reconstructed from the heavy chain repertoire of a healthy individual sampled at a single time point (SI).

evolving virus.
Reconstructed lineage trees show a skewed and asym-

metric structure, consistent with rapid evolution under
positive selection (see Fig. S1A) [20]. To quantify these
asymmetries, we estimated two indices of tree imbalance
and terminal branch length anomaly. In both HIV pa-
tients and healthy individuals, we observe a significant
branching imbalance at the root of the BCR lineage trees,
indicated by the U-shaped distribution of the sub-lineage
weight ratios (see SI), in contrast to the flat prediction
of neutral evolution, calculated from Kingman’s coales-
cent (Fig. 2A). Moreover, we observe elongated termi-
nal branches in BCR trees compared to their internal
branches, with the strongest effect seen in trees from
HIV patients, again in violation of neutrality (Fig. 2B,
Fig. S1). These asymmetric features of BCR trees are
clear signs of intra-lineage positive selection. However,
they only reflect the history of lineage replication and
give limited insight into the mechanisms and dynamics of
selection. For instance, tree asymmetry is also observed
in unproductive BCR lineages, which lack any immuno-
logical function but are carried along with the productive
version of the recombined gene expressed on the other
chromosome (Fig. 2A,B).

To characterize the selection effect of mutations in
more detail, we evaluate the spectrum of mutation fre-
quencies in a lineage, known as the site frequency spec-
trum (SFS). We evaluate the SFS separately for synony-

mous and nonsynonymous mutations in different regions
of BCRs (Fig. 2C, Fig. S2). We see a signifiant up-
turn of SFS polarized on non-synonymous mutations in
pathogen-engaging CDR3 regions, consistent with rapid
adaptive evolution [20], and in contrast to monotonically
decaying SFS in neutrality (SI). This signal of positive
selection is strongest in HIV patients with an order of
magnitude increase in the high end of the spectrum, sug-
gesting that the BCR population rapidly adapts in HIV
patients.

To understand the dynamics and fate of these adaptive
mutations, we use the longitudinal nature of the data
to analyse the temporal structure of the lineages. We
estimate the likelihood that a new mutation appearing
in a certain region of the BCR reaches frequency x
at some later time within the lineage (Fig. 3A), and
evaluate a measure of selection g(x) as the ratio of this
likelihood between non-synonymous and synonymous
mutations [21] (SI). At frequency x = 1 (i.e., substitu-
tion), this ratio is equivalent to the McDonald-Kreitman
test for selection [22]. Generalizing it to x < 1 makes
it a more flexible measure applicable to the majority of
mutations that only reach intermediate frequencies. A
major reason why many beneficial mutations never fix in
a lineage is clonal interference, whereby BCR mutants
within and across lineages compete with each other [7].
To quantify the prevalence of clonal interference, we also
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FIG. 2: Statistics of BCR lineage genealogies indicate pos-
itive selection. (A) The U-shaped distribution of sub-lineage
weight ratios at the root of lineage trees (SI) wD/wanc. and (B) the
distribution of elongated mean terminal branch lengths (in units of
divergence time) relative to the mean length of all branches in BCR
lineages indicate positive selection in HIV patients and in healthy
individuals (colors), in contrast to the neutral expectation (dotted
lines); see Fig. S1 for comparison of tree statistics under different
evolutionary scenarios. (C) The Site Frequency Spectrum (SFS)
f(ν) is shown for mutations in different regions of BCRs (distinct
colors) in HIV patients (left) and in healthy individuals (right);
see Fig. S2 for SFS of unproductive BCR lineages. The upturn of
SFS for non-synonymous mutations in CDR3 region is indicative
of rapid evolution under positive selection.

evaluate the nonsynonymous-to-synonymous ratio h(x)
of the likelihood for a mutation to reach frequency x and
later to go extinct (SI). In short, g(x) identifies “surges”
and h(x) “bumps” in frequency trajectories of clones.
These likelihood ratios have intuitive interpretations:
g(x) > 1 indicates evolution under positive selection,
with a fraction of at least α

benef.
= 1 − 1/g strongly

beneficial amino acid changes in a given region [23]. On
the other hand, the likelihood ratio g(x) smaller than 1
is indicative of negative selection, with a fraction of at
least α

del.
= 1−g strongly deleterious changes (see SI for

a derivation of these bounds). Likewise, κ
benef.

= 1−1/h
or κ

del.
= 1 − h define a lower bound on the fraction of

either beneficial or deleterious mutations that go extinct.

Fig. 3B shows the selection likelihood ratio g(x) in an
HIV patient (patient 4) for lineages belonging to a typical
V-gene class IGHV2-70D (SI); see Fig. S3 for statistics
in all individuals. In this gene family, we detect posi-
tive selection (g > 1) in the CDR3 region, with around
a two fold larger fraction of non-synonymous compared
to synonymous changes that reach frequencies x > 0.6,
indicating at least α

benef.
= 40% of CDR3 mutations

to be strongly beneficial. On the other hand, the like-
lihood ratio in FWR signals strong negative selection
(g < 1), where non-synonymous changes reaching fre-
quencies x > 0.6 are two times fewer than the synony-

mous changes, indicating at least α
del.

= 35% of these
mutations to be strongly deleterious. Similarly, the in-
terference likelihood ratio h(x) for a V-gene class IGHV5-
10-1 in an HIV patient with interrupted treatment (pa-
tient 5) indicates that about κ

benef.
= 47% of CDR3 mu-

tations in this gene family that go extinct due to clonal
competition are strongly beneficial (Fig. 3B). In short, we
observe a large fraction of adaptive mutations, and also a
substantial amount of clonal interference which prevents
some of the mutations from dominating within lineages.

To see how these observations generalize at the reper-
toire level, we quantify the region-specific fraction of ben-
eficial and deleterious mutations within BCR lineages
of distinct VJ-gene classes and also the fraction of se-
lected mutations that are impeded by clonal interference
(Fig. 3C and Table I). We infer a larger fraction of VJ-
gene classes with positively selected amino acid changes
in their CDR regions α

benef.
= 12%−30% and negatively

selected amino acid changes in FWRs α
del.

= 16%−20%.
Moreover, the positively selected beneficial mutations in
CDR3 and the pooled CDR1/CDR2 regions are strongly
impacted by clonal inference, in contrast to mutations
in FWR (Fig. 3C, Table I, Fig. S3). These observations
confirm the pervasiveness of clonal interference in the re-
gions of the BCR with the most important functional
role.

In patients with interrupted ART, we infer a twice
larger fraction of beneficial mutations to rise with strong
clonal interference in pathogen-engaging CDR3 regions
following the interruption of treatment, compared to the
ART-naive patients with a stable chronic infection— such
a shift is not present for mutations in CDR1, CDR2 and
FWR (Fig. 3 and Table I). This pattern is consistent
with the rate of HIV-1 evolution in patients with dif-
ferent states of therapy. Genome-wide analysis of HIV-1
has revealed that evolution of the virus within ART-naive
patients slows down during chronic infections with lim-
ited clonal interference in viral populations [24]. The
antibody response traces the evolution of the virus [1, 7]
and forms a quasi-equilibrium balance. On the other
hand, rapid expansion and evolution of HIV following
the interruption of ART drives a strong immune response
and affinity maturation in HIV-responsive B-cell lineages.
Evolution of HIV-1 population during viral expansion
introduces a time-dependent target for the adaptive im-
mune system and opens room for many beneficial changes
in the HIV-engaging CDR3 regions, as indicated in Fig. 3.

Somatic evolution during affinity maturation is com-
plex: there is no one winner of the race for the best
antibody. We show that rapid and strong affinity matu-
ration upon sudden pathogenic challenges, and a quasi-
stationary response during chronic infections are a fea-
ture of the B-cell response to infections. Somatic evo-
lution of BCRs is similar to rapid evolution in asexual
populations where many beneficial mutations rise to in-
termediate frequencies leading to complex clonal compe-
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FIG. 3: Inference of selection and clonal interference in BCR lineages. (A) Schematic shows time-dependent frequencies of
mutations that rise within a population (left). We denote the fraction of mutations that reach frequency x within a population (or lineage)
by G(x) (blue and green) and the subset that later goes extinct due to clonal interference by H(x) (green). The likelihood ratios between
non-synonymous and synonymous mutations (g(x), h(x)) quantify the strength of selection in each case. A schematic B-cell genealogy
(right) is shown for a lineage sampled at two time points (colors). Non-synonymous and synonymous mutations are shown by empty
and filled circles and their frequencies (xt1 , xt2 ), as observed in the sampled tree leaves, are indicated below each branch. (B) Selection
likelihood ratio g(x) in the V-gene class IGHV2-70D in patient 4 (top) and the interference likelihood ratio h(x) for the V-gene class
IGHV5-10-1 in patient 5 (bottom) are plotted against frequency x for mutations in different BCR regions (colors). The likelihood ratios
indicate positive selection and strong clonal interference in the CDR3 region, negative selection on the FWR region and positive selection
on mutations that rise to intermediate frequencies in the joint CDR1 / CDR2 regions. We do no observe interference in the FWR and the
joint CDR1 / CDR2 region. (C) Each panel shows the probability density across distinct VJ-gene classes in HIV patients with interrupted
treatment (left) and without treatment (right), for the fraction of beneficial and deleterious mutations ((αbenef. / αdel. ) on right x-axis
and left inverted x-axis) that reach frequency x = 80% (top), and similarly, for beneficial / deleterious mutation fractions (κbenef. / κdel. )
that reach frequency x = 60% within a lineage and later go extinct (bottom). The dotted grey line indicates the null distribution from
unproductive lineages of healthy individuals (Fig. S4). The Color code for distinct BCR regions in all panels is consistent with the legend.
See Figs. S3, S4.

tition and genetic hitchhiking. Such evolutionary dynam-
ics is prominent in microbial populations [25], in viruses
including HIV within a patient [24, 26] and global in-
fluenza [21, 27, 28]. In the immune system, clonal com-
petition in BCR repertoires is also observed on short time
scales (∼ weeks) in response to the influenza vaccine [16].

Clonal interference among beneficial mutations not
only makes selection slower and less efficient, but it also
makes the outcome of the evolutionary process less pre-
dictable [25]. This is of significant consequence for de-
signing targeted immune-based therapies. Currently, the

central challenge in HIV vaccine research is to devise a
means to stimulate a lineage producing highly potent
broadly neutralizing antibodies (BnAbs). A combination
of successive immunization and ART has been suggested
as an approach to elicit a stable and effective BnAb re-
sponse; see e.g. ref. [29]. An optimal treatment strat-
egy should account for clonal interference among BCRs
during a rapid immune response to antigen stimulation,
which could hamper the emergence of a desired BnAb
within the repertoire.
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HIV infected HIV infected Healthy / productive Healthy / unproductive

untreated interrupted treatment

αbenef. αdel. κbenef. κdel. αbenef. αdel. κbenef. κdel. αbenef. αdel. αbenef. αdel.

CDR3 12% 16% 11% 18% 20% 9% 17% 12% 30% 3% 9% 21%

CDR1/2 23% 8% 22% 11% 26% 8% 23% 10% NA NA NA NA

FWR 8% 14% 9% 17% 6% 19% 8% 17% 7% 20% 11% 24%

TABLE I: Fraction of beneficial and deleterious mutations in BCRs. The average fraction of beneficial αbenef. and deleterious
αdel. mutations that reach frequency x = 80% (based on selection likelihood ratio g(0.8)) in different regions of BCRs among VJ-gene
classes are reported for HIV patients (with interrupted and without treatment) and for healthy individuals (productive and unproductive
lineages). Similarly, the fraction of beneficial κbenef. and deleterious κdel. mutations that reach frequency x = 60% followed by extinction
(based on interference likelihood ratio h(0.6)) are reported for HIV patients with interrupted and without treatment; we cannot estimate
the interference likelihood ratio in healthy individuals due to the lack of time-resolved data. The corresponding distributions are presented
in Fig. 3 and Fig. S4.

[1] Richman DD, Wrin T, Little SJ, Petropoulos CJ (2003) Rapid evolution of the neutralizing antibody response to HIV type 1 infection.
Proc Natl Acad Sci USA 100: 4144–4149.

[2] Moore PL, Ranchobe N, Lambson BE, Gray ES, Cave E, et al. (2009) Limited neutralizing antibody specificities drive neutralization
escape in early HIV-1 subtype C infection. PLoS Pathog 5: e1000598.

[3] Liao HX, Lynch R, Zhou T, Gao F, Alam SM, et al. (2013) Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.
Nature 496: 469–476.

[4] McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF (2010) The immune response during acute HIV-1 infection: clues
for vaccine development. Nature Rev Immunol 10: 11–23.

[5] Campbell CD, Eichler EE (2013) Properties and rates of germline mutations in humans. Trends Genet 29: 575–584.
[6] Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30: 429–457.
[7] Nourmohammad A, Otwinowski J, Plotkin JB (2016) Host-pathogen coevolution and the emergence of broadly neutralizing antibodies

in chronic infections. PLoS Genet 12: e1006171.
[8] Weinstein JA, Jiang N, White RA, Fisher DS, Quake SR (2009) High-throughput sequencing of the zebrafish antibody repertoire.

Science 324: 807–810.
[9] Elhanati Y, Sethna Z, Marcou Q, Callan CG, Mora T, et al. (2015) Inferring processes underlying B-cell repertoire diversity. Phil

Trans R Soc B 370.
[10] Yaari G, Vander Heiden JA, Uduman M, Gadala-Maria D, Gupta N, et al. (2013) Models of somatic hypermutation targeting and

substitution based on synonymous mutations from high-throughput immunoglobulin sequencing data. Front Immunol 4: 358.
[11] McCoy CO, Bedford T, Minin VN, Bradley P, Robins H, et al. (2015) Quantifying evolutionary constraints on B-cell affinity matu-

ration. Phil Trans R Soc B 370.
[12] Uduman M, Shlomchik MJ, Vigneault F, Church GM, Kleinstein SH (2014) Integrating B cell lineage information into statistical

tests for detecting selection in Ig sequences. J Immunol 192: 867–874.
[13] Vollmers C, Sit RV, Weinstein JA, Dekker CL, Quake SR (2013) Genetic measurement of memory B-cell recall using antibody

repertoire sequencing. Proc Natl Acad Sci USA 110: 13463–13468.
[14] Laserson U, Vigneault F, Gadala-Maria D, Yaari G, Uduman M, et al. (2014) High-resolution antibody dynamics of vaccine-induced

immune responses. Proc Natl Acad Sci USA 111: 4928–4933.
[15] Hoehn KB, Gall A, Bashford-Rogers R, Fidler SJ, Kaye S, et al. (2015) Dynamics of immunoglobulin sequence diversity in HIV-1

infected individuals. Phil Trans R Soc B 370.
[16] Horns F, Vollmers C, Dekker CL, Quake SR (2017) Signatures of selection in the human antibody repertoire: selective sweeps,

competing subclones, and neutral drift. bioRxiv doi.org/10.1101/145052.
[17] Vieira MC, Zinder D, Cobey S (2017) Selection and neutral mutations drive pervasive mutability losses in long-lived B cell lineages.

bioRxiv : 163741.
[18] SPARTAC Trial Investigators, Fidler S, Porter K, Ewings F, Frater J, et al. (2013) Short-course antiretroviral therapy in primary

HIV infection. N Engl J Med 368: 207–217.
[19] DeWitt WS, Lindau P, Snyder TM, Sherwood AM, Vignali M, et al. (2016) A Public Database of Memory and Naive B-Cell Receptor

Sequences. PLoS ONE 11: e0160853.
[20] Neher RA, Hallatschek O (2013) Genealogies of rapidly adapting populations. Proc Natl Acad Sci USA 110: 437–442.
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Supplementary Information

1 B-cell repertoire data

HIV patients. We analyze B-cell repertoire data from 6 HIV patients from ref. [1] with raw sequence reads
accessible from the European Nucleotide Archive under study accession numbers, ERP009671 and ERP000572.
We study the repertoire data in two untreated HIV patients with sample accession numbers, ERS664994 - 5001
(patient 1) and ERS139291- 9298 (patient 2) and in four patients with ART interruption at week 48, ERS664966
- 4974 (patient 3), ERS664975 - 4983 (patient 4), ERS664984 - 4992 (patient 5), ERS664976 - 5002 (patient 6).
The data covers ∼ 2.5 years of study with 6-8 sampled time points per patient; see Table S1 for details.

The B-cell repertoire sequences consist of 150bp non-overlapping paired-end reads (Illumina MiSeq), with one
read covering much of the V gene and the other read covering the area around the CDR3 region and the J gene.
For the initial processing of the raw reads we use pRESTO [2] (version 0.5.2) with the following steps: We filter
sequences for quality (> 32) and length (> 100). The paired end reads that overlap are assumed to be anomalous,
and are discarded from the analysis. We assemble the paired reads by aligning against the IMGT reference database
of V genes [3], such that an appropriate size gap is inserted between the non-overlapping paired reads. Duplicate
sequences are collapsed into unique sequences. The sequences contained a large number of singletons, that is se-
quences with no duplicates. With an R script, we calculate the minimum hamming distance of each singleton to
any non-singleton, H0. The distribution of H0 is bimodal, and singletons with H0 < 5 (the minimum between the
modes) are discarded, since sequences with few changes are more likely to have appeared due to sequencing errors.
Due to lack of barcoding for individual molecules, we only use the unique BCR sequences for analysis and do not
incorporate the information on the multiplicity of each sequence.

Healthy individuals. We analyze memory B-cell repertoire data of 3 individuals published in ref. [4]:
https://clients.adaptivebiotech.com/pub/robins-bcell-2016. The published data in healthy individuals is already pre-
processed for quality control and corrected for sequencing error.

BCR annotation. In both datasets, we annotate the BCR repertoire sequences of each individual (pooled time
points) by Partis [5]. Partis uses very large amounts of memory, so the initial (cache-parameters) stage is run on a
subset of 200,000 random sequences, and the annotation stage is run on the full set of sequences. We process the
output of Partis in R, which includes the estimated V gene/allele, J gene/allele, location of the CDR3 region, and
an inferred naive sequence (germline before hyper-mutation). Sequences which have indels outside of the CDR3
are discarded. We partition the sequences into two groups: productive BCRs, which are in-frame and have no
stop codons, and the unproductive BCRs. The sequences are further annotated by processing the inferred naive
sequences with MiXCR [6, 7], which gives the CDR1, CDR2 and framework regions.

Lineage reconstruction. To identify BCR lineages, we first group sequences by the assigned V gene, J gene and
CDR3 length, and then used single linkage clustering with a threshold of 90% hamming distance. A similar thresh-
old has been previously suggested by ref. [8] to identify BCR lineages. Clusters of small size (< 20) are discarded
from our analysis. For each cluster, there may be multiple inferred naive sequences, as this is an uncertain estimate,
and the most common naive sequence is chosen to be the outgroup for genealogy reconstruction. See Table S1 for
detailed statistics of BCR lineages in each individual.

Unproductive BCRs. Due to a larger sequencing depth in healthy individuals, we are able to reconstruct relatively
large unproductive BCR lineages. Unproductive sequences are BCRs that were generated but due to a frameshift or
insertion of stop codons were never expressed. These BCRs reside with productive (functional) BCRs in a nucleus
and undergo hypermutation during B-cell replication, and therefore, provide a suitable null expectation for somatic
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evolution during affinity maturation.

2 Inference of lineage phylogenies

Lineage genealogy reconstruction. For each lineage and its aligned sequences we reconstruct its underlying
genealogical tree. We use FastTree [9] to construct the initial tree by maximum parsimony. We use this tree as seed
for the maximum likelihood construction of the phylogeny with RAxML [10], using the GTRCAT substitution
model. In the last step of tree topology reconstruction, we use the GTRGAMMA substitution model to optimize
sequence divergence along the tree (i.e., branch lengths). We use a maximum likelihood approach to reconstruct
nucleotide sequences of internal nodes on the tree [11]. We do not include the positions with gaps in the multi-
sequence alignment in inference of tree topology and the nucleotide mutations along the tree.

We use the inferred naive sequence (germline) as the outgroup of the genealogy. The root of the tree may be
some mutations away from the last common ancestor of the sampled sequences. This may be due to a number
of initial rounds of hypermutation prior to secretion of the first selected B-cell, or alternatively, due to incorrect
assignment of the germline allele during annotation; a fraction of V, D and J alleles circulating in the human pop-
ulation are missing from the existing reference datasets like IMGT [3]. In order to minimize the effect of such
allele mis-assignments, we discard the mutations that separate the inferred germline sequence and the last common
ancestor (root) of the tree from our analysis (i.e., mutations common to all sequences).

Inference of branching time along a phylogeny. To characterize the branch length statistics of lineages in units of
divergence time (used in Fig. 2B and Fig. S1B), we use a maximum-likelihood approach and a probabilistic model
to annotate internal nodes of a tree with times of occurrence, given the topology of the tree and the mutations on
the branches. Internal nodes represent replication events, which may carry new mutations assigned to branches by
the ancestral sequence reconstruction procedure. The model can also correct observation times of external nodes
on the tree, given sufficient evidence. The model assumes a tree with n nodes, [o1, . . . , om, im+1, in], where ok are
the sampled sequences in the leafs of the tree, and ik are the internal nodes of the tree. The observed nodes are
annotated with their sampling times, T = [T1, . . . , Tm]. Branches of the tree are annotated with their mutational
distances, d = [d1, . . . , dn]. We only consider synonymous mutations for computation of mutational distances.
The model estimates mutation rate, µ and the times t = [t1, . . . , tn] of the nodes, by maximizing the likelihood:

P (d,T|t, µ) =
m∏

k=1

1

σ
√

2π
exp

[
−(tk − Tk)2

2ε

] n∏

j=m+1

(µτj)
d
j

dj !
exp[µτj ], (1)

where τj = tj − tA(j), the time difference between a node in the tree and its parent, is constrained to be positive.
The model assumes Gaussian measurement error with standard deviation σ of the sampling time for the observed
nodes, and the Poisson model for mutations on tree branches, with rate µ. To limit the search space of the opti-
mization algorithm we constrain the times t to be discrete; the units of time used in our data are weeks. Here we
set σ = 5. The optimization is solved by an iterative procedure in which times of nodes are changed by one unit in
the direction of score increase, until convergence.

3 Inference of selection from lineage tree statistics

We compare genealogies of B-cell lineages in HIV patients with healthy individuals to characterize the evolution-
ary selection during affinity maturation in response to chronic infection. Structure of genealogies has been linked to
evolutionary modes in a population [12]. Rapid evolution under positive selection leads to skewed tree topologies
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and elongated terminal branches [11, 13–15], compared to neutral evolution [12, 16] (Fig. S1A).

Asymmetric tree branching. We characterize the asymmetry of trees by the branching imbalance of the last
common ancestor at the root of the tree - the last common ancestor may be a number of mutations away from the
germline progenitor. We define the weight of each node in a tree by the number of leaves (terminal nodes) within
its clade; see Fig. S1A [15]. The weight of the last common ancestor wanc.., i.e., the total number of leaves in a tree,
and its daughters, wD1 , wD2 , are indicated in the simulated trees of Fig. S1A. In rapid evolution under selection,
the first branching event produces highly imbalanced sub-clades, and hence, extreme values for the weight of the
first daughter nodes [15]. In contrast, neutral evolution predicts a uniform distribution of tree weights of ancestral
sub-clades. Fig. 2A shows a U-shaped distribution of relative weights of daughters to the ancestor wD/wanc. in
lineages reconstructed from BCRs in HIV patients and in healthy individuals, indicating intra-lineage selection
during affinity maturation.

Terminal branch statistics. In lineages under selection, the descendent sequences (leaves of a tree) are likely to
coalesce to an ancestor with high fitness, resulting in long terminal branches in a tree (Fig. S1A) [14,15] — branch
length statistics are estimated in units of divergence time, rather than sequence hamming distance; see Section 2 of
SI for inference of branching times along a phylogeny. In Fig. 2B we compare the ratio of mean terminal branch
length of a lineage to the averaged length of all the branches in a lineage. The distribution of this branch length
ratio in HIV patients show an excess of lineages with relatively long terminal branches, compared to the expected
distribution for simulated neutral lineages of the same size (Kingman’s coalescence); see Section 5 of SI. A similar
trend with a weaker signal is seen in healthy individuals (Fig. 2B). To make sure that the strong signal in HIV
patients is not only due to sampling of the repertoire over multiple time points, we repeat the same analysis on the
subset of lineages which are sampled in only one time point. Fig. S1B shows a comparable over-representation of
long terminal branches in this subset.

Site frequency spectrum (SFS). The SFS is the probability density f(ν) of observing a derived mutation (allele)
with a given frequency ν in a lineage. A mutation that occurs along the phylogeny of a lineage forms a clade and
is present in all the descendent nodes (leaves) of its clade (see Fig. S1A). Therefore, SFS carries information about
the shape of the phylogeny, including both the topology and the branch lengths. In neutrality, mutations rarely
reach high frequency, and hence, the SFS decays monotonically with allele frequency as, f(ν) ∼ ν−1 [16]. In
phylogenies with skewed branching, many mutations reside on the larger sub-clade following a branching event,
and hence, are present in the majority of the descendent leaves on the tree. The SFS of such lineages is often
non-monotonic with an upturn in the high frequency part of the spectrum and a steeper drop (∼ ν−β with β > 1)
in the low frequency part of the spectrum [14]. To identify the targets of selection, we classify mutations based on
the region they occur in. BCRs are made up of the three immunologically important complementarity-determining
regions (CDRs) [17], CDR1, CDR2 and CDR3 and the remaining part of the V and J genes referred to as the
framework region (FWR).

Fig. 2C shows SFS in lineages of HIV patients and in healthy individuals. We see a signifiant upturn of SFS
polarized on non-synonymous mutations in pathogen-engaging CDR3 regions; this signal of selection is strongest
in HIV patients with an order of magnitude increase in the high end of the spectrum (Fig. 2C). SFS polarized
on mutations in other regions show steeper drop in the low frequency side of the spectrum compared to neutral
expectation. Fig. S2 shows SFS of the unproductive BCR lineages in healthy individuals, with a comparable steep
drop in low frequencies. A similar pattern of SFS has recently been reported for lineages of B-cell repertoires
following influenza vaccination [18].

For analysis of lineage tree statistics, i.e., the weight imbalance, terminal branch statistics and SFS, we only
rely on the relatively large lineages with size (> 50) leaves.
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4 Selection and clonal interference likelihood ratios

Selection likelihood ratio. Hypermutations during affinity maturation create new clades within a lineage. The
frequency x of these clades change over time, as shown by the schematic in Fig. 3A. A mutation under positive
(or negative) selection should reach a higher (lower) frequency than a neutral mutation. Many population genetics
tests, such as the McDonnell-Kreitman test for positive selection [19], rely on a comparison between statistics of
substitutions (i.e., mutations that fix within a population) and the circulating polymorphisms within species. Unlike
phylogenies based on the species divergence, B-cell lineages form genealogies with many mutations that rise to
intermediate frequencies as polymorphisms but often do not fix within a lineage. Here, instead of relying on the
substitution statistics, we use the history of polymorphisms to quantify selection in B-cell lineages. In particular,
we estimate the frequency propagatorG(x) [20] as the likelihood that a new mutation (allele) appearing in a lineage
reaches frequency x at some later time within a lineage (see schematic in Fig. 3A).

To estimate intra-lineage selection, we compare the likelihood of an amino acid changing non-synonymous
mutation reaching a given frequency x at any point in its time trace, G(x) to that likelihood for a synonymous
mutation in the same lineage, G0(x), and detemine the selection likelihood ratio (Fig. 3A) [20],

g(x) =
G(x)

G0(x)
. (2)

Due to heterogeneity and context dependence of mutation rates in different regions of BCRs, we evaluate the
likelihood ratio separately for each region, namely the CDR3, CDR1 & CDR2 (pooled together) and framework
regions (FWR). In the Fig. S5 we show the robustness of the region-specific selection likelihood ratio with respect
to such mutational biases.

Interference likelihood ratio (time-ordered selection). Clonal competition among beneficial mutations on dif-
ferent genetic backgrounds is a characteristic of evolution in asexual populations. In the absence of clonal interfer-
ence, beneficial mutations can readily fix in a population after they rise to intermediate frequencies, beyond which
stochastic effects would not impact their fate [21]. Clonal interference reduces the efficacy of selection, resulting
in a quasi-neutral regime of evolution [22].

To examine the amount of clonal competition among BCRs of a lineage, we consider time ordered selection
propagators (interference propagators) indicating the likelihood that a mutation reaches frequency x and later goes
extinct, H(x) = G(x) × G(0|x); here G(0|x) is the conditional probability that a mutation trajectory decays to
frequency 0 given that it starts from frequency x; see schematic in Fig. 3A. We estimate the interference likelihood
ratio by comparing the probability of a non-synonymous mutation to reach a frequency x and later go extinct H(x)
to the same scenario for synonymous mutations, H0(x) (Fig. 3A),

h(x) =
H(x)

H0(x)
≡ G(x)×G(0|x)

G0(x)×G0(0|x)
. (3)

Fraction of selected mutations based on the likelihood ratios. Following the well established tradition of popu-
lation genetics, we assume that synonymous mutations that do not change the amino acid provide a neutral gauge
for evolution. In the case of frequency x = 1 the propagator ratio g(x) becomes equal to the ratio of the fixation
probability (d/n)

/
(d0/n0) where d and d0 are respectively the number of fixed non-synonymous and synony-

mous polymorphisms and n and n0 are total number of polymorphisms is each class. In other words, g(x = 1) is
equivalent to the McDonald-Kreitman test for selection based on the observed polymorphisms [19].

Selection likelihood ratio g(x) = G(x)/G0(x) larger than 1 implies an over-representation of non-synonymous
compared to synonymous changes that reach frequency x and is indicative of beneficial amino acid changes in a
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given region. Assuming a total of N non-synonymous mutations, we expect NG0(x) of these mutations to reach
frequency x by neutral evolution, and at least a fraction α

benef.
(x) = (N(x)−NG0(x))/N(x) = (g(x)− 1)/g(x)

of these mutations to be beneficial [23]. On the other hand, a selection likelihood ratio smaller than 1 indicates neg-
atively selected amino acid changes in a given region. The deviation from the expected number of non-synonymous
mutations in neutrality, NG0(x)−N(x), is an estimate for the number of mutations that were suppressed due dele-
terious fitness effects, indicating that at least a fraction α

del.
(x) = 1 − g(x) of non-synonymous mutations to be

under negative selection [23]. Similarly, we can compute the fraction of beneficial and deleterious mutations that
are impacted by clonal interference, κbenef.(x) = (h(x) − 1)/h(x) for h(x) > 1, and κ

del.
(x) = 1 − h(x) for

h(x) < 1.

Robustness of selection inference. It should be noted that the heterogenous and context dependent somatic hyper-
mutation rates during affinity maturation [24–28] introduce BCR-specific biases that could influence inference
of selection. In order to verify the robustness of our method, we have simulated the process of affinity maturation
based on two distinct BCR-specific hyper-mutation models [24,26,28] along the inferred BCR lineage phylogenies;
see Section 5 of SI for details. Fig. S5 shows that the region-specific likelihood ratios g(x), h(x) are insensitive
to the heterogenous hyper-mutation statistics and such biases do not produce spurious evidence for selection and
clonal interference. In addition, the likelihood ratio is insensitive to the initial frequency of an allele within a lin-
eage [20] and provides a robust measure for inference of selection in evolving genealogies.

Inference of likelihood ratio statistics from data. The descendants of a given mutation α on a lineage tree
define the clade Cα. We evaluate the frequency of mutation α at time t, xα(t) as the fraction of the observed
sequences (leaves of the tree) from time point t that reside within the clade Cα. The fraction of non-synonymous
and synonymous mutations that reach frequency x during their history define the selection propagators G(x) and
G0(x), respectively. To infer statistically significant evidence for selection, we estimate propagators based on
the mutations pooled from lineages of common gene classes, e.g. lineages with common V gene (Fig. 3B) or
common V & J genes (Fig. 3C and Fig. S4). We evaluate the expected error of a propagator at frequency x, by
assuming binomial sampling from the total of N non-synonymous and N0 synonymous mutations (i.e., all the
mutations observed in a given gene class). This results in the sampling errors σ2(x) = G(x)(1 − G(x))/N for
non-synonymous and σ20(x) = G0(x)(1−G0(x))/N0 for synonymous mutations, and a corresponding propagated
error for the ratio, g(x) in eq. 2. We use a similar approach to estimate the error for the interference likelihood
ratio, h(x) in eq. 3.

5 Simulations

Simulated trees. In Fig. 2B, we compare the branch length characteristics of the BCR genealogies with the neutral
expectation from 2000 simulated trees with Kingman’s coalescence, generated by the beta coalescent algorithm
with parameter α = 1 [29]. The sizes of the simulated trees in the neutral ensemble are drawn from the BCR
lineage size distribution in HIV patients. The schematic trees in Fig. S1A are also generated similarly by the beta
coalescent algorithm [29] with parameters α = 1 for neutral evolution and α = 2 for rapid adaptation.

Null model for context-dependent affinity maturation. We simulate mutations along BCR lineage trees accord-
ing to two context-dependent models of hyper-mutation, (i) IGoR statistics [28] and (ii) S5F [24]. For a given
branch on a lineage tree, we draw a number of mutations equal to the branch length from a multinomial distribu-
tion with position-specific weights determined by the hypermutation models. Due to the changes in the sequence,
we update the position weights at each internal node of the tree to account for context-dependent hyper-mutation
rates. This procedure reshuffles the identify of mutations along BCRs according to the neutral hyper-mutation
models, while preserving the shape of tree. Fig. S5 shows that the propagator statistics do not recover evidence for
region-specific selection in BCRs in the simulated lineages. Therefore, the original selection signal in Fig. 3 is not
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reflecting any spurious effect due to heterogenous mutation rates.
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Figure S1: Impact of selection on lineage tree statistics. (A) Simulated phylogenies for neutral evolution (left) and rapid adaptation with
positive selection (right), generated by the coalescence package [29] and plotted with FastTree [9]. The weights of the ancestral node wanc.

and its daughters wD1 , wD2 (i.e., their clone size) are indicated in each phylogeny. (B) Branch length statistics for lineages sampled in only
one time point from HIV patients. The distribution of mean terminal branch length (in units of divergence time) relative to the mean length
of all branches is comparable between BCR lineages of HIV patients that are present in only a single time point (blue) and lineages sampled
over multiple time points (orange). The corresponding distribution for the simulated neutral trees (similar to Fig. 2B) is shown by a dotted
line. The elongated terminal branches in BCR lineages is indicative of positive selection.
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Figure S3: Selection and interference likelihood ratios in all individulas. Panels show selection and interference likelihood ratios g(x),
h(x) in HIV patients (untreated and with interrupted ART) and the selection likelihood ratio g(x) in productive and unproductive lineages
of healthy individuals, estimated from all lineages in each individual. We consistently see strong evidence for negative selection in FWR
regions of productive lineages and positive selection in both or either of CDR regions. We do not see such distinction in unproductive
lineages. Note that the repertoire level averaged likelihood ratios are highly coarse grained statistics and miss the gene-specific evidence for
selection and clonal interference, as shown in Fig. 3.
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Figure S4: Fraction of selected BCR mutations in healthy individuals. The probability density across distinct VJ-gene classes for
the (minimum) fraction of beneficial (right) αbenef. and deleterious (left; inverted x-axis) αdel. amino acid changes that reach frequency
x = 80% within a lineage is shown for different regions of BCRs in (A) productive and (B) unproductive lineages of healthy individuals.
Similar to HIV patients (Fig. 3), the CDR3 mutations in productive lineages of healthy individuals are under positive selection, whereas the
FWR mutations are under negative selection. We do not infer any significant differences between selection patterns in CDR3 and in FWR
region of unproductive lineages. The probability density for mutations pooled from both regions of unproductive lineages is shown as the
null expectation (dotted gray line), similar to Fig. 3.
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Figure S5: Robustness of selection inference to BCR hypermutation biases. The figure shows the statistics of selected mutations for
simulated neutral hypermutation processes along the inferred B-cell lineages, as described in Section 5 of SI. We use two hypermutation
models, IGoR statistics [28] (top row) and the S5F model [24] (bottom row). Similar to Fig. 3, each panel shows the probability density
across distinct VJ-gene classes for (A) the minimum fraction of beneficial / deleterious mutations (αbenef. /αdel.) that reach frequency
x = 80%, and (B) for beneficial / deleterious mutation fractions (κbenef. / κdel.) that reach frequency x = 60% and later go extinct. These
statistics are estimated for mutations in different regions of BCRs (colors) in healthy individuals, HIV patients with interrupted ART and in
untreated HIV patients. The region-specific pattern of selection seen in Fig. 3 is simulated lineages with context-dependent hypermutation
models.
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HIV infected HIV infected Healthy
(untreated ) (interrupted ART at week 48)

patient 1 patient 2 patient 3 patient 4 patient 5 patient 6 ind 1 ind 2 ind 3
size

# productive lineages
> 20 3,335 3,702 3,164 2,125 4,342 4,155 21,486 15,755 15,782

> 50 785 773 613 485 1,246 1,205 5,242 3,978 3,390

# unproductive lineages
> 20 0 0 0 0 0 0 897 1041 962

> 50 0 0 0 0 0 0 177 198 155
0, 4, 16, 0, 4, 12, 4, 12, 16, 4, 12, 16, 4, 12, 16, 0, 4, 16,

time samples (weeks) 24, 52, 16, 24, 52 24, 52, 24, 52, 24, 52, 24, 52, 0 0 0
72, 120 60, 108 60, 108 60, 108 60, 108 60, 108

Table S1: Statistics of reconstructed BCR lineages with size (> 20) and (> 50) and the sampled time points after the start of the study in
HIV infected patients and in healthy individuals.
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