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25 Abstract 
 

26 Glioblastoma Multiforme is a cancer type with an important mitochondrial 
 

27 component. Here was used mitochondrial proteome Random Sampling in 2D gels from 
 

28 T98G (oxidative metabolism) and U87MG (glycolytic metabolism) cell lines to obtain and 
 

29 analyze  representative spots  (regardless of their intensity, size, or  difference in abundance 
 

30 between cell lines) by Principal Component Analysis for protein identification. Identified 
 

31 proteins were ordered into  specific  Protein-Protein  Interaction networks, to each cell line, 
 

32 showing mitochondrial processes related to metabolic change, invasion, and metastasis; and 
 

33 other  nonmitochondrial   processes   such  as   DNA  translation,  chaperone  response, and 
 

34 autophagy in gliomas. T98G and U87MG cell lines were used as glioblastoma transition 
 

35 model; representative proteomic signatures, with the most important biological processes in 
 

36 each cell line, were defined. This pipeline analysis describes the metabolic status of each 
 

37 line  and  defines  clear  mitochondria  performance  differences  for  distinct  glioblastoma 
 

38 stages,   introducing   a   new   useful   strategy   for   the   understanding   of   glioblastoma 
 

39 carcinogenesis formation. 

 
40 

 

41 Biological significance 
 

42 This study defines the mitochondria as an organelle that follows and senses the 
 

43 carcinogenesis process by an original proteomic approach, a random sampling in 2DE gels 
 

44 to obtain a representative spots sample and analyzing their relative abundance by Principal 
 

45 Components Analysis; to faithfully describe glioblastoma cells biology. 

 
46 

 

47 Introduction 
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48 Pediatric solid brain tumors are the most common Central Nervous System 
 

49 neoplasia in childhood and the second most common before 20 years old [1]. In particular, 
 

50 Glioblastoma Multiforme (GbM) or grade IV astrocytoma is the most common and lethal 
 

51 adult malignant brain tumor [2], while in pediatric population GbM occurred only in 8-12% 
 

52 of  the  population.  Nevertheless,  in  both  populations  gliomas  are  characterized by their 
 

53 aggressive medical behavior, a significant amount of morbidity and high mortality rate [3]. 
 

54 GbM  is  difficult  to  classify because  they diverge  considerably in  morphology, location, 
 

55 genetic alterations and low consensus among pathologists in their classification [4]. The 
 

56 characterization of gliomas tumors heterogeneity is a priority for the development of better 
 

57 and more precise diagnostic, prognostic and therapy biomarkers. 
 

58 Mitochondria, the “power house” of the cell, are abundant in brain tissue; its biogenesis, 
 

59 mitophagy, migration, and morphogenesis are crucial in brain development and synaptic 
 

60 pruning.  Mitochondria  also  affect  brain  susceptibility   to  injury,  play  a  part  in  innate 
 

61 immunity, inflammation in response to infection  and  acute  damage, also  in  antiviral  and 
 

62 antibacterial defense [5]. Due to mitochondria play a critical role in numerous bioenergetic, 
 

63 anabolic  and  cell  biochemical  pathways  [6,7],  genetic  and  metabolic  alterations  in 
 

64 mitochondria have been suggested to be the cause, or contributing factors, of pathogenesis 
 

65 in a broad  range of  human diseases, including  cancer  [8,9]. Several  common features  of 
 

66 tumor cells can result from mitochondrial deregulation. Furthermore, mitochondria biology 
 

67 support cell  transformation  during carcinogenesis  [10,11], suggesting that its proteome  is 
 

68 versatile and that sense the spatial and temporal dynamics of the cell biological processes, 
 

69 from  the  onset  to  the  end  of  cancer.  Although  these  advances,  the  specific  role  of 
 

70 mitochondria  in  cancer  has  not  been  completely  understood,  mainly  because  the huge 
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71 amount of information about mitochondrial processes in cancer has not been properly 
 

72 integrated. 
 

73 Despite the utility of proteomics research to get insights into biological processes of 
 

74 cancer disease and knowledge into neuro-oncology, few proteomic studies in gliomas have 
 

75 been performed  to  date;  the few of them  are characterized  by the elaboration  of  lists  of 
 

76 proteins found to be, either, up or down-regulated in tissue specimens compared to normal 
 

77 brain.  This  glut  of  proteomic  data  generated  has  been  without  a  unitary  approach  to 
 

78 establish the feasibility of the existence of   key proteins and/or specific signaling pathways 
 

79 regulating cancer development. So far, most of the data generated is lacking coherence, 
 

80 validity,  reproducibility  and  comparability.  The  problem  arises  mainly  because  of  the 
 

81 methodological  and  analytical  limitations,  and  statistical  approaches  deficiencies. Even 
 

82 more, a lot of the identified proteins in such studies are irrespective of the nature of the 
 

83 background disease [12–14]. Thus, there is the need for proteomic studies in GbM that 
 

84 generate  reliable  data  to  be  translated  into  clinical  biomarkers,  which  contribute  to 
 

85 improving patient diagnosis and therapies. 
 

86 To help the understanding of mitochondrial role in the carcinogenesis of GbM, a 
 

87 proteomic signature, related to the biological processes characterizing two stages of cancer 
 

88 disease,  was  performed  by  using  T98G  and  U87MG  glioblastoma  cell  lines;  which 
 

89 resemble  the  metabolic  transition  (Warburg  effect)  from  mitochondrial  OXPHOS  to 
 

90 glycolysis, as reported during tumorigenesis [15]. Furthermore, a pipeline for functional 
 

91 analysis of differentially expressed proteins in these cell lines was developed. Thus, a 
 

92 Random Sampling (RS) and Principal Component Analysis (PCA), on 2D IEF/SDS- PAGE 
 

93 mitochondrial  proteome  gels,  were  performed  to  evaluate  spots  abundance  and  get  a 
 

94 representative spots sample for protein identification by MALDI-TOF. Also, PPI networks 
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95 extension and GOs enrichment analysis were performed to get a metabolism systemic point 
 

96 of view for T98G and U87MG glioblastoma cells. Our results imply that mitochondria are a 
 

97 definitive and unique cancer sensing organelle for cancer development and the elaboration 
 

98 of therapeutic targets. 

 
99 

 

100 Material and Methods 
 

101 Cell culture 

 

102 T98G (ATCC
®
 CRL-1690

™
) and U87MG (ATCC

®
 HTB-14

™
) cell lines were 

 

103 maintained in 175 cm
2
 plastic flasks (37ºC, 5% CO2) in EMEM medium supplemented with 

 

104 10% fetal bovine serum (FBS). Cells were harvested with trypsin (80-90%) in confluence 
 

105 with trypsin. Washed twice in PBS and used for mitochondria extraction. 

 
106  

 

107 Mitochondria isolation 
 

108 The mitochondria were isolated by differential centrifugation. Cells were disrupted 
 

109 separately  in  250  mM  sucrose,  1  mM  EGTA,  10  mM  HEPES,  pH  7.4  at  4ºC  and 
 

110 centrifuged for 10 min at 1500 x g and 4ºC to recover the supernatant. This step was 
 

111 repeated three times. Subsequently, all supernatants were pooled and centrifuged for 10 min 
 

112 at 12000 x g and 4ºC to obtain a mitochondrial pellet. The pellets were used immediately or 
 

113 kept at -80ºC until use. 

 
114  

 

115 Mitochondrial proteome extraction 
 

116 T98G   and   U87MG   mitochondrial-associated   proteins   were   obtained   according   to 
 

117 Hurkman’s protocol modified as follows: Each mitochondrial pellet was resuspended with 

 

118 500 l of extraction buffer (0.7 M sucrose, 0.5 M Tris-Base, 0.1 M KCI, 0.03 M HCI, 0.05 
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119 M EDTA and 2% β-mercaptoethanol and saturated phenol (500 l) and incubated for 20 
 

120 min at −20ºC. Then, mitochondrial samples were centrifuged 10 min at 400 x g, 4ºC and 
 

121 the phenolic phase was recovered after (12 to 15h at −20ºC) 0.1 M ammonium acetate 
 

122 addition. Then, mitochondrial samples were washed twice with ammonium acetate 0.1 M 
 

123 and centrifuged (4000 x g, 10 min, 4°C). Pellets containing mitochondrial proteins were 
 

124 washed with 1 ml of 80% acetone and centrifuged (4000 x g,10 min, 4°C). Supernatants 
 

125 were discarded, and pellets were resuspended in IEF buffer (7 M urea, 2 M thiourea and 
 

126 0.06 M DTT, 2% ampholytes (3–10 pH) and 4% CHAPS), centrifuged (8000 x g, 30 min 
 

127 4ºC) [16].  Obtained supernatants  were  recovered  and  frozen  at  −80ºC  until  use for 2D 
 

128 electrophoresis.2-DE gels 

 

129 Each gel (3 T98G and 3 U87MG) was loaded with 500 g of protein, quantified by 
 

130 Bradford’s method. IEF was performed in acrylamide gel tubes as in [17], briefly gel tubes 
 

131 were prefocused (2500 v, 110uA, 1hr, and 250/hr, per gel), before IEF (125 V, 22 hr). The 
 

132 electrofocused  gels  were  run into a 2D-SDS  PAGE (12%) for  additional spot separation. 
 

133 2D gels were fixed and stained with colloidal Coomassie brilliant blue R-250 for image 
 

134 acquisition. 

 
135  

 

136 Image pre-processing 
 

137 Gels were scanned in a GS-800 densitometer (Bio-Rad, Hercules, CA) and six 
 

138 images were acquired, wrapped and overlapped with PdQuest 8.0.1 software (Bio-Rad). 
 

139 Next, with all six images mixed, a master gel was created by the default PdQuest algorithm 
 

140 from the sum of the intensity of all spots in gel images. 

 
141  
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142 Random sampling of spots in master gel 
 

143 To increase the protein capacity to represent and to describe the cellular processes 
 

144 that are carried out in T98G and U87MG cell lines, we randomly selected 400 spots (of 
 

145 1274  detected  by  PdQuest)  from  the  master  gel,  regardless  of  their  size,  intensity  or 
 

146 abundance difference between cell lines. With the R V3.4 [18] help, a list of 400 random 
 

147 numbers  between  1  and  1274  (the  number  of  spots  in  the  master  gel)  with  uniform 
 

148 distribution was generated, which was the number of spots in the master gel. This process 
 

149 ensures that every spot in master gel has an equal chance of being selected and allows to 
 

150 obtain  a  representative  mitochondrial  proteome  sample  [19].  This  spot  sample  was 
 

151 rematched in all gels image to get a more reliable abundance analysis [14]. 
 

152 Multivariate analysis of spots intensity 
 

153 To select the spots to be identified, a spreadsheet with the normalized intensity of 
 

154 the   400   spots   sampled   was   exported   from   PdQuest.   The   spots   abundance   was 
 

155 logarithmically transformed and missing values  imputed by Random  Forest  method  with 
 

156 the R package RandomForest [20] to perform the multivariate analysis. 
 

157 The abundance analysis was performed by principal components analysis (PCA) from the 
 

158 correlation matrix of spots intensity with the R package ade4 [21], to get a spot abundance 
 

159 pattern for the cell lines gels [14]. To know if any component could distinguish between the 
 

160 cell lines, the gels score for each component were plotted. Having found the component, 
 

161 with discriminatory capacity, we identified the significant spots in that component with the 
 

162 square  cosine  of  the  correlation  matrix  between  the  components  and  the  spots.  The 
 

163 abundance pattern was obtained by plotting the mean of the logarithm of the intensity of the 
 

164 significant spots between cell lines [22]. 

 
165  
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166 Mass spectrometry 
 

167 Each selected spot were cut from gel, alkylated, reduced, digested and automatically 
 

168 transferred  to  MALDI  analysis  target  by  a  Proteineer  SP  II  and  SP  robot  using  the 
 

169 SPcontrol 3.1.48.0 v software (Bruker Daltonics, Bremen, Germany), with the aid of a DP 
 

170 Chemicals  96  gel  digestion  kit  (Bruker  Daltonics)  and  processed  in  a  MALDI-TOF 
 

171 Autoflex  (Bruker  Daltonics)  to  obtain  the  peptide  mass  fingerprints.  One  hundred 
 

172 satisfactory shots in 20 short steps were performed, the peak resolution threshold was set at 
 

173 1,500, the signal/noise ratio of tolerance was  6,  and contaminants  were not  excluded. The 
 

174 spectrum was annotated by the flexAnalysis 1.2 v SD1 Patch 2 (Bruker Daltonics). The 
 

175 search engine MASCOT [23] was used to compare the fingerprints against the SwissProt 
 

176 [24] release 2016 database with the following parameters: Taxon-Human, mass tolerance of 
 

177 up to 200 ppm, one miss-cleavage allowed, and as the fixed modification Carbamidomethyl 
 

178 and oxidation of methionine as the variable modification. 
 

179 The mass spectrometry proteomics data have been deposited to the 
 

180 ProteomeXchange Consortium via the PRIDE [25] partner repository with the dataset 
 

181 identifier PXD008540. 

 
182  

 

183 Mitochondrial proteins identification 
 

184 Identified protein gene was tested against MitoMiner database, which stores a 
 

185 collection of genes that encode proteins with strong mitochondrial localization evidence 
 

186 from 56 published large-scale GFP tagging and mass-spectrometry studies [26], to check 
 

187 mitochondrial membership. 

 
188  

 

189 Basic protein-protein interaction (PPI) net construction 
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190 Inicial PPI nets were built accords to STRING application [27]. A net was obtained 
 

191 for T98G and another for U87MG with overexpressed and specific proteins in each cell line 
 

192 as  bait  nodes  and  adding  edges  with  the  following  basic  settings:  Organism  > Homo 
 

193 sapiens; meaning of network edges > evidence; active interactions source > Experiments 
 

194 and Databases; minimum required interaction score > medium confidence (0.400); max 
 

195 number of interactions to show, 1st shell > none, 2nd shell none. 

 
196  

 

197 Significative biological process identification 
 

198 To know the more critical biochemical processes that are taking place in each cell 
 

199 line.  First,  the initial  PPIs  were amplified in  STRING,  with  the previous parameters but 
 

200 increasing three times the initial net in the first shell to add proteins and interactions that 
 

201 increase the representativeness of the cellular processes specific to each line. Next, we 
 

202 performed a comparative enrichment analysis based on Gene Ontology [28] of biological 
 

203 processes sets from extended PPI nets. Enrichment was done employing the Cytoscape [29] 
 

204 overrepresentation plugin, Biological Networks Gene Ontology (BiNGO) [30]. As input, 
 

205 we uploaded the UniProt protein identifiers of all the elements in the initial PPI net first and 
 

206 extended net later. The biological processes shown in this paper are exhaustive, that is, we 
 

207 tried to avoid nested processes within other more general. 

 
208  

 

209 Western blot analysis 
 

210 The results validation was done through OXPHOS proteins immunodetection (Wb) 
 

211 of  OXPHOS  proteins  and  bioenergetic  signature.  Mitochondrial  extracts  were obtained 
 

212 from 6 million T98G and U87MG cells. These were subjected to SDS-PAGE 12% system 
 

213 described in Laemelli (1970) [31]. Gels ran for 2h at 100V. Proteins separated by SDS- 
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214 PAGE were transferred to PVDF membrane, as described in Towbin (1979) [32], at 100V 

215 for 1h; an antibody against a subunit of each OXPHOS complex: NDUFA10, CI (1:2000); 

216 subunit 70 kDa, CII (1: 10000); core 2, CIII (1:4000); subunit IV, CIV (1:1000) and beta 

217 subunit ATP synthase or CV(1:1000) was tested. The reaction bands were detected by 

218 chemiluminescent (Millipore, WBKLS0500) and read on to C-Digit Blot Scanner (LI- 

219 COR). 

220 
 

221 Results 

222 Spot selection by Random Sampling and Principal Component Analysis. 
 

223 Three of the 400 spots selected across all gels surface, regardless size, intensity or 
 

224 difference in abundance between cell lines, did not pass the quality control; 161 spots were 
 

225 specific for T98G or U87MG. Therefore, the PCA was applied to 236 spots shared by both 
 

226 lines  (Supplementary Table  1).  According to  the PCA,  the  total  variation  in  the   spots 
 

227 abundance in all gels can be explained by five principal components (Fig. 1A). The first 
 

228 component (PC1) holds 63% of whole explained variance (Fig 1B) whiles the others four 
 

229 components together explain only the 37% of the variance remaining. PC1 also distinguish 
 

230 between T98G and U87MG gels (Fig. 1C). 165 spots from CP1 were selected according to 
 

231 its  relative  importance  between  components  (square  cosine  of  the  correlation  matrix 
 

232 between  the  components  and  the  spots  (Supplementary  Table  2))  to  MALDI-TOF 
 

233 identification,   114   of   them   show   a   positive   correlation   and   51   a   negative   one 
 

234 (Supplementary Table 3). The first set of spots showed more mean abundance in T98G and 
 

235 smaller in U87MG, different than the second set, which is more abundant in U87MG (Fig. 
 

236 1D). 20 specific spots in T98G and 20 in U87MG (randomly selected too) were added. 

 
237  
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238 T98G and U87MG landscapes 
 

239 As a result of Random Sampling and the PCA 89 identified spots (Supplementary 
 

240 Table 4) had a homogeneous distribution in T98G and U87MG gels (Figs. 2A and 2B), 
 

241 unrelated  to  size,  intensity or  difference in  abundance between  cell  lines,  assuring   the 
 

242 representativeness of whole mitochondrial proteome in these lines. 
 

243 Since  mitochondria  are  multifunctional  organelles,  proteins  with  different  origin  can 
 

244 colocalize  in  them.  The  identified  protein  dataset  was  compared  against  MitoMiner 
 

245 database   to   recognize   mitochondrial   proteins.   We   found   that   T98G   show   more 
 

246 mitochondrial  proteins  (72%,  24  proteins)  than  U87MG  (44%,15  proteins).  “Foreign” 
 

247 proteins were located in Cytoplasm, Plasmatic Membrane, Endoplasmic Reticulum, Golgi, 
 

248 and Nucleus according to GeneCards Suite [33] (Fig. 2C). 
 

249 The initial mitochondrial proteome PPI networks were built with 66 proteins 
 

250 represented  by  the  89   identified  entities.   In   T98G,  33   proteins   (29   proteins   more 
 

251 overexpressed and 4 specifics). U87MG initial PPI network groups 33 proteins (28 more 
 

252 abundant and 5 own) (circles in Figs. 3A and 3B). 
 

253 To get a better landscape of mitochondrial function in each cell line, initial PPI 
 

254 networks were extended (Squares in Figs. 3A and 3B) resulting in a T98G extended PPI 
 

255 network (Fig. 3A) where mitochondrial processes dominant showing functional 
 

256 mitochondria. One of the best-represented processes here is the “Generation of precursor 
 

257 metabolites and energy” process (p-value 2.4E-52, Fig. 3C) with OXPHOS (UCRI, QCR1, 
 

258 QCR2, NUDS1 and NUDS3) and ATPB y ATP5H proteins included, coupled with the 
 

259 “Oxygen  and reactive oxygen  species  metabolic  process”  (p-value 7.6E-03, Fig. 3C) and 
 

260 “Tricarboxylic Acid Cycle” (p-value 4.1E-06, Fig. 3C) represented by ACON, SDHA, 
 

261 DHE3, SERA and 3HIDH. Another of the process present in the T98G network is the 
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262 “Nitrogen compound metabolic process” (p-value 3.0E-05, Fig. 3C), which connects with 
 

263 OXPHOS trough “Transmembrane transport” process (p-value 7.4E-08, Fig. 3C) and CH60 
 

264 and HS71A proteins. This process is also chained with ”Negative regulation of apoptosis” 
 

265 (p-value 6.9E-02,  Fig. 3C) and “Protein folding”  (p-value 3.9E-13, Fig. 3C) proteins.  It is 
 

266 interesting  that  other  cellular  process  without  enough  statistical  representation  let   see 
 

267 different -oxidation, represented by ECI1 (Fig. 3C). 
 

268 U87MG  extended  PPI  network  (Fig.  3B)  shows  many  differences  with  that  of T98G. 
 

269 Although this net is more fractionated, it is possible to recognize some enriched biological 
 

270 process. One of the more remarkable, found in carcinogenesis, is the change on energetic 
 

271 metabolism,  represented  by  “Glycolysis”  (p-value  3.6E-13,  Fig.  3D)  proteins  ENOA, 
 

272 PGAM1 and TPIS, “Generation of precursor metabolites and energy” (p-value 1.2E-06, 
 

273 Fig. 3D)” and “Small molecule catabolic process“ (p-value 1.3E-06, Fig. 3D). 
 

274 “Cellular component movement” (p-value 2.3E-02, Fig. 3D) and Cellular response 
 

275 to oxidative stress” (p-value 8.1E-02, Fig. 3D) processes, related to cell proliferation and 
 

276 invasive  cell   capacity,   were  found  in   U87MG.   Also,   it   were  found  “Translational 
 

277 elongation”  process  (p-value  1.0E-51,  Fig.  3D),  that  groups  EF2  y EF1G  proteins and 
 

278 “Protein folding”, (p-value 4.1E-11, Fig. 3D), which are related to an increased protein 
 

279 translation for augment biomass since many of them are molecular chaperones (HSP7C, 
 

280 TCPB, TPCQ). This U87MG landscape shows mitochondria with modified cellular and 
 

281 metabolic functions  and  many interactions with  ER and  Golgi  body (Figs. 2C  and   3B), 
 

282 suggesting  that  mitochondria  readjust  its  cellular  process  according  to  carcinogenesis 
 

283 needs. 
 

284 To know if any biological process is grouping the most abundant proteins, a k- 
 

285 means analysis was performed. The proteins were classified, in function of its relative 
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286 abundance, as little, regular or very abundant (small, medium and large circles  respectively 
 

287 in Figs. 3A  and  3B). We found  low, regular  and very abundant  proteins in all  biological 
 

288 processes in both cell lines; showing no correlation between the overrepresentation of some 
 

289 biological process and the abundance of the proteins that represent it. 

 
290  

 

291 Protein and biological process validation for mitochondrial proteomic signature 
 

292 Due to “Generation of precursor metabolites and energy process” was one of the 
 

293 best-represented processes in T98G (p-value 2.4E-52) and U87MG (p-value 1.2E-06), the 
 

294 OXPHOS protein expression (I-IV complexes plus ATP synthase) was verified on both cell 
 

295 lines by WB assays. A clear diminished OXPHOS system expression in U87MG cells was 
 

296 found (Fig. 4A). Also, as “Glycolysis”  was the  most enhanced  process  in U87MG (3.6E- 
 

297 13), the bioenergetic signature was assayed too (Fig. 4B). The results support OXPHOS 
 

298 expression finding since U87MG cells expressed more glycolytic proteins comparing to 
 

299 T98G, where OXPHOS system is dominating. This result confirmed PPI networks built on 
 

300 the basis to random sampling and PCA analysis. 

 
301  

 

302 Discussion 
 

303 Besides ATP synthesis mitochondrion is a multifunction organelle, which is 
 

304 involved in many cellular processes. Mitochondria proteome is versatile and reacts to 
 

305 different cellular conditions; many complex diseases including cancer show a 
 

306 mitochondrial roll.  The best-known mitochondrial change in cancer is Warburg effect: an 
 

307 energetic metabolism shift to glycolysis, as a mean energy source, instead of  mitochondrial 
 

308 OXPHOS.   It   used  to   be  believed  that  Cancer  cells   were   related   to   mitochondrial 
 

309 dysfunction. However, in some cancer types, exist enough evidence showing complete 
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310 functional  mitochondria,  able  to  follow  cellular  transformation[15].  Nowadays,  it  has 
 

311 believed  that  mitochondria  follow  cancer  development  sensing  and  regulating different 
 

312 molecular signals  [34–36].  Thus, there are many mitochondrial  proteins  or mitochondrial 
 

313 processes that could be clinical targets or biomarkers. 
 

314 Our results describe two well-differentiated states from mitochondrial proteome 
 

315 data.  Our  analysis  by  RS  on  2D  SDS  PAGE  and  spot  abundance  by  PCA,  allow the 
 

316 detection of mitochondrial and cellular pathways distinguished. The data are in resonance 
 

317 with biochemical and proteomic evidence [12,13]. Our approach renders a landscape close 
 

318 to molecular cancer dynamics according to published evidence on glioblastoma biology and 
 

319 systematics  [15,37–39], enabling  to  raise  a proteomic signature  for  T98G  and  U87MG 
 

320 glioblastoma  cells  with  the  best  representative  biological  process  according  to  each 
 

321 mitochondrial proteome. PCA raise five components, the first component explains 63 % of 
 

322 total variation in spot abundance data and have proteins that distinguish between T98G and 
 

323 U87MG cells. PC1 could be renamed as "Energy metabolism shift" since it represents 
 

324 many of the processes involved in the Warburg effect. 
 

325 Random spot selection and PCA from direct experimental data before identification 
 

326 point out a specific PPI network for T98G and U87MG cells, where the energetic metabolic 
 

327 shift to glycolysis as the mean ATP source occurs. U87MG cells represent an advanced, 
 

328 invasive and malignant cancer state vs T98G cells, which represent an earlier state with 
 

329 OXPHOS  metabolism.  According  to  our  PPIs,  T98G  cells  show  typical mitochondrial 
 

330 functions  (OXPHOS,  TCA, lipid metabolism,  etc.) but  also  another more  cancer-related 
 

331 process  (Apoptosis  evasion,  proliferation  with  SYF2,  HSPA8,  amino  acids metabolism 
 

332 with (GLUD1, 3HIDH); or chaperon response. On the other hand, U87MG cells show 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/270942doi: bioRxiv preprint 

https://doi.org/10.1101/270942
http://creativecommons.org/licenses/by/4.0/


16  

333 promiscuous interactions with ER and Nucleus, a maintained chaperone response and DNA 
 

334 translation to proteins, a very advanced state with invasion-related proteins. 
 

335 This characterization could define different cancer state or intervals and works for 
 

336 other cancer types too. On this way, T98G cells could represent an earlier cancer state with 
 

337 a molecular landscape similar to “oxidative tumors”, where ATP comes from OXPHOS 
 

338 system  fueled  by  lipid  (ECl1,  GPD2)  and  amino  acids  metabolisms,  like  glutamine 
 

339 (GLUD1), as it has been observed in some glioblastoma cases [15,40]. U87MG shows a 
 

340 very  different  state,  in  which  glycolysis  is  well  represented  (ENOA,  TPIS,  PGAM1), 
 

341 supposing an enhanced Warburg effect. Also, oxidative stress response as is has been 
 

342 reported [13,41] and many non-mitochondrial but close cancer-related proteins reported in 
 

343 advanced tumors [42]. U87MG mitochondria show mobility or migration proteins related 
 

344 to  the  cytoskeleton  (VIME,  ACTB,  MSN,  TPM3),  and  vesicle  formation  (RAB1B, 
 

345 RAB2B, LMAN2). Another less frequent processes were well represented such as DNA 
 

346 translation (EF2, EF1G) into proteins; this increase could be associated to biomass increase 
 

347 or metabolic  energy source, since many proteins  folding  chaperones  (TCPQ, TCPB) were 
 

348 observed. 
 

349 Our procedure for protein analysis enables us to determine various simultaneous cell 
 

350 processes besides metabolic shifting. A remarkable glioblastoma molecular feature is the 
 

351 chaperones response, where some biomarkers [43] or therapy targets [44] could be found. 
 

352 Here are presented TRAP1 (HSP90 homologous), GRP78, GRP75 and HSPB1 proteins 
 

353 able to regulate some mitochondrial metabolic pathways and stabilize cancer  cells  through 
 

354 apoptosis evasion [45]; or could be involved in drug surveillance [38]. 
 

355 The finding of non-mitochondrial proteins in our study is not a surprise. Basal 
 

356 mitochondria function includes the interaction with other cell organelles, mainly ER and 
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357 the  Nucleus.  Our data  show  some  nuclear  (SRY)  or  ER  (CALU,  CO6A1) proteins.  In 
 

358 U87MG cells there are more interactions between these proteins, suggesting a specificity of 
 

359 these  interactions  on  advanced  cancer.  This  landscape  resembles  autophagy,  a  central 
 

360 process in advanced states of cancer, which enable cancer cell surveillance because of the 
 

361 recycling of  metabolites  and nutrients  [46,47]. In addition,  there are proteins  for  amino- 
 

362 acids and purines metabolism making possible the phagosomes formation [48]. Autophagia 
 

363 renders biomass bricks or stress response molecules synthesis (i.e., amino acids generation 
 

364 by proteolysis, recycling and protein synthesis for fueling other pathways (TCA)), when 
 

365 basal or other metabolites are not available (Formation of metabolic precursors, RAB). 
 

366 With  this  information,  a  proteomic  signature  for  T98G  and  another  for  U87MG  was 
 

367 proposed, defining concrete cell processes and temporality. Unlike other protein signatures 
 

368 which look  for more straight  aims,  like biomarkers search using other  biological  models 
 

369 (plasma or cerebrospinal liquid proteins) where proteins surpassing significant abundance 
 

370 changes and overseeing some cellular process, resulting in inadequate descriptions [49,50]. 

 
371  

 

372 Conclusions 
 

373 The random sampling of spots and their abundance PCA before protein 
 

374 identification are tools that allow us to see a fine landscape of the most relevant biological 
 

375 process or functions in each cell type or glioma carcinogenesis state; with this information 
 

376 we are able to  build a representative mitochondrial  proteomic signature specific for  T98G 
 

377 and  U87MG  glioblastoma  cell  lines,  where  overrepresented  biological  processes  are 
 

378 highlighted  with  whole  mitochondrial  proteins  identified.  This  signature  shows  a clear 
 

379 difference  between  two  glioblastoma  stages,  one  with  mitochondrial  type   (OXPHOS) 
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380 metabolism and, the other, a glycolytic, more aggressive, invasive and metastatic cancer 
 

381 type. 
 

382 Our data match with the notion of mitochondria as a dynamic organelle following 
 

383 and sensing the molecular events taking place during carcinogenesis. Through this close 
 

384 relationship is possible to take a temporal picture of cancer stages or types. It also shows 
 

385 that a well-selected spot sample and a correct data analysis of mitochondrial proteome can 
 

386 define the biological events succeeding in cellular transformation. Thus, the notion that 
 

387 T98G could  represent  an  earlier  glioblastoma state  bring the  opportunity to  focus  in an 
 

388 earlier cancer-related events, such as  apoptosis evasion, and target the chaperone system as 
 

389 a therapeutic diana to avoid cancer development. 

 
390  
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572 Figure Legends. 

 
573 

 

574 Fig. 1- PCA analysis was done on spot abundance to get 5 PCs explaining the total 
 

575 variation in the data (A). As PC1 explains 63% of whole variance and is located to the left 
 

576 of inflection point in the Scree plot line (B). Thus, PC1 scores for al gels (C) distinguishes 
 

577 between experimental groups. Finally, average abundance profile plot (D) shows the 
 

578 behavior of significant spots in PC1, with positive correlation between spots and PC1 (dot 
 

579 line), others with negative one (solid line); suggesting a molecular transition. 

 
580  

 

581 Fig. 2 – Mitochondrial proteome distribution in T98G (A) and U87MG (B) gels of 
 

582 identified proteins, and their cell localization (C) as result of random sampling and PCA. 
 

583 Circles in blue, blue light, red and orange are specific and overexpressed proteins in T98G 
 

584 and specific and overexpressed proteins in U87MG respectively. Cell localization was 
 

585 obtained according MitoMiner database and GeneCard Suite. Cytoskeleton (Ce), 
 

586 Cytoplasm (Cp), Endoplasmic Reticulum (ER), Endosome (Es), Exosome(Exs), Golgi 
 

587 Apparatus (G), Lysosome (Ls), Melanosome (Ms), Membrane (M), Mitochondria (Mt) and 
 

588 Nucleus (N). 

 
589  

 

590 Fig. 3 – The biological processes of each glioblastoma cell line is shown by colors. The 
 

591 processes were obtained by protein aggregation (squares) from T98G (A) and U87MG (B) 
 

592 initial PPI networks (circles). The size of the circles (small, medium and large) represents 
 

593 the relative abundance (low, regular and high, respectively) of proteins. 

 
594  
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595 Fig. 4 – OXPHOS validation (A) and bioenergetic signature (B). To the left in figure the 
 

596 expression bands obtained by western blot are observed. To the right is plotted the average 
 

597 and 95% average confidence interval of density bands, calculated by triplicate for each 

 

598 complex, -ATPase and GAPDH. 

 
599  

 

600 Fig. 5 – Proteomic signature generated with the mean abundance profile of the three 
 

601 replicates of T98G (solid line) and U87MG (dot line). Colors locate the proteins in the main 
 

602 biological processes identified for each cell line. 
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Figure 5. 
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