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ABSTRACT 
Tumors are not static masses of cells but rather dynamic ecosystems where cancer cells experience constant turnover and 
evolve fitness-enhancing phenotypes. Selection for different phenotypes may vary with 1) the tumor niche (edge or core), 2) 
cell turnover rates, 3) the nature of the tradeoff between traits (proliferation vs migration), and 4) whether deaths occur in 
response to demographic or environmental stochasticity. In an agent based, spatially-explicit model, we observe how two 
traits (proliferation rate and migration speed) evolve under different trade-off conditions with different turnover rates. 
Migration rate is favored over proliferation at the tumor’s edge and vice-versa for the interior. Increasing cell turnover rates 
only slightly slows the growth of the tumor, but accelerates the rate of evolution for both proliferation and migration. The 
absence of a tradeoff favors ever higher values for proliferation and migration. A convex tradeoff tends to favor proliferation 
over migration while often promoting the coexistence of a generalist and specialist phenotype. A concave tradeoff slows the 
rate of evolution, and favors migration at low death rates and proliferation at higher death rates. Mortality via demographic 
stochasticity favors proliferation at the expense of migration; and vice-versa for environmental stochasticity. All of these 
factors and their interactions contribute to the ecology of the tumor, tumor heterogeneity, trait evolution, and phenotypic 
variation.  While diverse, these effects may be predictable and empirically accessible.   
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I. INTRODUCTION 

Tumors are thought to consist of 3 major populations of cells: actively dividing, quiescent and necrotic. 
Under idealized environments, such as the experimental system of spheroids (1), a fast growing tumor 
becomes dense and quickly outgrows the supply of oxygen and nutrients. This gives rise to a layered 
tumor anatomy that consists of concentric regions encompassing the 3 populations (e.g. Fig. 1A). In real 
tumors, the geometry of these regions appears far more irregular and disordered (e.g. Fig. 1B), reflecting 
a the more complex and dynamic environment. Regardless, it is a tempting simplification to view the 
tumor edge as the place where tumor cells primarily divide rather than die, the interior as generally 
quiescent with few births and deaths, and 
the necrotic zone where tumor cells 
mostly die.  

Such a perspective has led to models of 
tumor growth and evolution where tumor 
cells expand to occupy space, either 
explicitly (2-7) or  implicitly (8,9), as 
different clonal lineages proliferate and 
expand at different rates. When these 
models include evolution, one can 
determine the properties of tumor cells 
that are favored by natural selection.  
Such is the case for models that examine 
the joint evolution of proliferation and 
 
 

 
Figure 1. Comparing structures of tumor models and patient tumors. A) 
Tumor spheroid model. Edge detection algorithm finds inner necrotic 
(green) and outer proliferating (blue) edges. B) Digital pathology uses 
pattern recognition on histological sample from actual tumor. The 
proliferating, hypoxic and necrotic regions have the same broad structure 
but are more intermixed. 
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migration (2,3,6). However, in the absence of cell turnover, such models can only show changes in the 
frequency of different clonal lineages while the replacement of less successful lineages by more 
successful ones is ignored.   

In reality, the turnover of tumor cells via proliferation and cell death occurs constantly throughout the 
entirety of the tumor. Turnover rates may be high, perhaps as high as every 10 days for the interior of 
breast cancer tumors. A tumor that looks static with an unchanging volume might actually be very 
dynamic as proliferation and apoptosis occur in parallel throughout a tumor. High but balanced 
proliferation and death rates have been measured in some cancers (10-13). Furthermore, stimulatory 
factors from dying cells can cause compensatory proliferation of surviving cells (14), and an increased 
proliferation along with an increased death rate may suggest a more aggressive disease (12,13). 
 High turnover rates facilitate evolution by natural selection (15). This “struggle for existence” is seen 
in all organisms, and in cancer the cells have the capacity to produce more offspring than can possibly 
survive. Competition for space and resources limits cancer cell densities and population sizes. Limits to 
growth and cell turnover should select for genes and traits associated with proliferation rates and 
movement. All else equal, the cancer cell lineage with a higher proliferation rate will outcompete and 
replace one with a slower proliferation rate. However, higher proliferation rates will cause local 
crowding, limitations on resources, and other unfavorable conditions. Movement and migration away 
from such crowding should be favored. Even random migration can be favored by natural selection as a 
means of avoiding over-crowding (16). Such migration can be particularly favorable at the edge of the 
tumor, but even in the interior of a tumor, migration may move cells from more to less dense locales. 

Many mutation models of cancer progression allow for unconstrained phenotypic improvement (2,3,5) 
or infer increased fitness through the number of passenger/driver mutations (17,18). Indeed, if both 
proliferation and migration enhance the fitness of cancer cells, then natural selection should favor higher 
rates for both. Such selection will continue to improve proliferation and migration rates simultaneously 
until a point is reached where there are tradeoffs (19-21). To improve proliferation rates further 
necessarily means sacrificing migration and vice-versa (22-24). In his seminal book on evolution of 
changing environments, Levins (1967) proposed that the shape of the tradeoff curve should influence the 
evolutionary outcome (25). A convex curve may favor a single population with a generalist phenotype 
whereas a concave curve may favor the coexistence of two specialist populations. Additionally, the 
specific shape of the trade-off curve can significantly affect the evolutionary trajectory towards this 
curve (26).  

The pattern of cancer cell mortality across a tumor may represent just demographic stochasticity or it 
may include environmental stochasticity (27). The former happens when cell death is random and 
exhibits little temporal or spatial autocorrelations. Such patterns of mortality open up numerous but 
small opportunities for cell replacement. Environmental stochasticity happens when the sudden absence 
of nutrients or the accumulation of toxins causes wholesale death of the cells in some region of the 
tumor. This pattern of cell mortality creates fewer but much larger spaces for cell replacement. When 
regions are subject to catastrophic death (e.g., large or small temporary regions of necrosis) the 
distinctiveness of edge versus interior regions of a tumor are obscured, and the evolution of different 
combinations of proliferation and migration rates may be favored. Strictly demographic stochasticity 
should favor proliferation over migration and vice-versa for environmental stochasticity within the 
tumor.   

In what follows, we develop a spatially explicit agent-based model of tumor growth that includes cell 
turnover at both the edge and the interior of the tumor. We use this model to explore the joint evolution 
of proliferation and migration rates by cancer cells in response to: 1) rates of cell turnover, 2) different 
shapes of the tradeoff curve, 3) and different mortality regimes. 

II. MATERIALS AND METHODS 
The agent-based computational model was created to investigate evolving phenotypes under different 

constraints. The phenotype is defined as a combination of two traits: the proliferation rate and the 
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migration speed of the cell. The 
simulation is initialized with one cell 
in the least aggressive state (lowest 
migration speed = 0 microns/h and 
slowest proliferation rate = 50h inter-
mitotic time) centered in a 4mm 
circular tissue and updated every 
minute. Given the proliferation rate, 
when it is time for the cell to divide, 
it will split into two daughter cells, 
each taking traits within a range of 
the mother cell's traits. The cells 
otherwise are allowed to move 
throughout a 2-dimensional space at 
a certain speed. Specifically, they follow a persistent random walk, designated from a normal 
distribution of persistence times (mean 80 min and standard deviation 40 minutes) and random turning 
angles. If the cells overlap in space or hit the boundary of the space (circle of diameter ~2.7mm), they 
change direction following a lossless collision. If the cells run out of space in their immediate 
neighborhood, they stop dividing and migrating.  

BOUNDING THE TRAIT SPACE 
We limit the possible trait combinations according to i) an infinite improvement model, ii) a convex 
curve, and iii) a concave curve (see Fig. 2A). When a cell divides, new traits are determined giving each 
option (improve, stay the same, or diminish) the same weight. If the current trait is already on the 
boundary of trait space, then only options that respect this bound are considered and weighted equally. 
For the convex case, the forbidden region is created by making a circular arc from the two extreme 
values where fitness is greatest for each trait but worst for the other (i.e. point A with 10 h IMT and 0 
microns/h and point B with 50 h IMT and 20 microns/h). The trait combinations with the fastest 
proliferation rates and fastest migration speeds are not allowed. For the concave case, the forbidden 
region cuts off this space as well, but goes even further. The circular arc is created with opposite 
concavity and through the points with one extreme value and the other a quarter along the range (i.e. 
point A with 10 h IMT and 5 microns/h and point B with 40 h IMT and 20 microns/h). 

CELL DEATH 
Cell death either occurs randomly distributed or regionally clustered (catastrophic). The probability of 
death is split between these two types of death with either all random, all catastrophic, or 1:1 mix of 
random and catastrophic. Random death occurs with a given probability for every cell at every frame.  
When there are catastrophic death events, all cells within a confined circular region 500 μm in diameter, 
which is randomly placed, will die. The cells don’t automatically die but wait a randomly chosen period 
between 6-15 hours before being removed from the system. This is an estimate for how long it takes to 
go through apoptosis (28,29). 

The probability of death for a single cell is once per week for the high death rate and once every two 
weeks for the low death rate. The actual death rate is variable because it depends on the number of cells 
at any time, but when the space is completely full (approximately 13,000 cells), around 2,000 cells are 
dying per day for the high death rate and 1,000 cells per day for the low death rate.  

For the catastrophes, we need to ensure that the number of cells deaths on average is similar to the 
random death rate, because they happen at a population level at certain time points rather than to 
individuals. We define the probability of a catastrophic event pcat based on the probability of death pdeath  
and the time intervals Tcat between catastrophic events:  

 
Figure 2. Model setup. A) Imposing trade-offs by bounding the phenotype space. 
When the whole space is open (thin solid line), all phenotypes are allowed. The 
convex (thick solid line) and concave (dashed line) bound the space as shown. The 
set of evolutionarily feasible traits lies within (fitness set) and on the tradeoff line 
(active edge). The trait value of a daughter cell can mutate up to one unit in any 
direction as long as it stays within the bounded region. B) A single cell with the 
smallest proliferation and migration rates centered in a 4-mm radial boundary 
initializes the simulation. Cell diameter is 20 μm. 
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𝑝cat =
𝑓𝑝death
𝑁deaths/𝑁

𝑇cat	. 

Here f is the fraction of deaths that are catastrophic, Ndeaths is the number of cells that die from each 
catastrophic event, and N is the total number of cells. Setting the probability of a catastrophic event pcat 
to 1, we can solve for Tcat to get the appropriate time between catastrophes: 

𝑇cat =
𝑁deaths/𝑁
𝑓𝑝death

		. 

However, because the catastrophic death region will be spaced randomly there is a possibility that a new 
catastrophe will overlap with an old one before filling back in or will lie on an edge, so in general, there 
won't be the same number of cells that die each time a catastrophe occurs. This can be accounted for if 
the time between events is changed each time based on the number of deaths from the previous event. If 
the number died previously is less than what would be given by fpdeath, then the numerator gets smaller, 
making a smaller time interval between events, and if the number that died is larger, then the next time 
interval will be larger. By adjusting after each event, we can compensate for this variation.  

III. RESULTS 

Using an off-lattice agent-based model, we investigated how traits will evolve in response to space 
limitation and the continual turnover of cells. Figure 2A shows the trait space with respect to 
proliferation and migration, and Fig. 2B shows the 4mm diameter circular space available to the tumor. 

Initially, we start with a single cell with the least aggressive phenotype: a long cell cycle time and a 
slow migration speed. Upon division, each daughter cell's trait may change in one of three ways: it can 
inherit the same trait as the original cell, or via mutation its trait values for migration or proliferation rate 
can increase or decrease by a small value, so long as its trait values stay within the boundaries of what is 
evolutionarily feasible. Density-dependence and limits to population growth comes from local crowding.  
When a cell is completely surrounded by neighbors, we assume that it can neither move nor divide. 
More detail on how the carrying capacity is imposed in an off-lattice model can be found in Gallaher et 
al (3). 

IMPOSING A GO-OR-GROW TRADE-OFF SELECTS FOR MIGRATION DURING GROWTH 
Evolutionarily, we placed limits on the set of feasible combinations of migration and proliferation.  The 
boundary of this set represents the tradeoff between the two traits. In our simulations, we considered 
three forms of the tradeoff:  open, convex, and concave boundary conditions (Fig. 2A). Under an open 
tradeoff, each trait can achieve a maximum value independent of the value of the other trait (no 
tradeoffs). Under a convex (or concave) tradeoff, the maximum feasible values for migration and 
proliferation occur along a curve that bows outwards (or inwards).  Regardless of the shape of the 
boundary, natural selection should favor cancer cells with ever greater migration and proliferation rates 
until reaching the boundary edge. However, the shape of the tradeoff may influence both the 
evolutionary trajectory of the cancer cells, their evolutionary endpoint, and the diversity or variance of 
trait values among the cancer cells. 

Ecologically, we first considered the case where there is no cell mortality. In this case, the population 
of cells will divide and migrate until the space is filled completely (see Fig. 3A for the spatial layout). In 
the absence of death, we see rings of cells with different phenotypes within the tumor. While natural 
selection favors cells with greater trait values, these trait values can only arise through successive cell 
divisions. The least aggressive cells, those with the lowest trait values, form the core (cyan color). 
Towards the outer edges, cells with more aggressive traits predominate at the periphery. Cells that 
mutate with higher proliferation rates can increase in frequency where space permits, and cells that 
mutate with higher migration rates can move into empty spaces where longer runs of proliferation are 
possible.  Even as the whole population evolves, each step in this evolution leaves tree ring like layers in 
the tumor.  With no cell death, the entire historical record in space and time is preserved. 
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  Once the space has filled, the 
distribution of cancer cell 
phenotypes can be seen in Fig. 3B 
in the form of a density map. Color 
intensities as seen in Fig. 2 
correspond to the relative frequency 
of phenotypes where white 
indicates an absence of cells with 
that phenotype. As expected, when 
the tradeoff boundary between 
migration and proliferation is open, 
the most frequent phenotypes 
exhibit both fast proliferation and 
fast migration. As the tradeoff 
boundary changes from open to 
convex to concave, we see natural 
selection favoring migration over 
proliferation. Contrary to 
expectation, the convex tradeoff 
boundary did not produce a 
generalist phenotype. Instead there 
is an apparent coexistence of two cell types: one with high migration but moderate proliferation, the 
other just the opposite. Also, contrary to expectations, a concave tradeoff boundary did not promote the 
coexistence of extreme phenotypes but instead, natural selection favored higher migration with little to 
no improvement in proliferation rates.   

The sequence of red dots in Fig. 3B show the evolutionary trajectory over time, of the average values, 
of proliferation and migration rates within the simulated tumor. Each point gives the average phenotype 
in increments of 5 days until the space is filled. From the spacing of the dots, we see that an open 
tradeoff boundary produces rapid evolution, rapid space filling, and the highest level of average 
proliferation rates. A concave tradeoff boundary results in the slowest evolution, slowest space filling, 
and the lowest average proliferation rate.  In going from open to convex to concave tradeoff boundaries, 
the phenotypes become less proliferative.  Thus, they divide, evolve, and fill space more slowly. 

AN INCREASED DEATH RATE SELECTS FOR INCREASED PROLIFERATION 
We examined the eco-evolutionary consequences of cell turnover by incorporating random cell death. 
Figure 4 shows the results when there is no death (top), and a low (middle) and high (bottom) random 
death rate. The spatial layout is shown in Fig. 4A, and a density map representing the frequency of trait 
combinations is shown in Fig. 4B for the 3-month time point. The evolutionary trajectory of the average 
trait values the population took for the first 3 months are overlaid on the density map, shown in red, 
while the black asterisk shows the average phenotype at 12 months.  

With non-zero death rates, the phenotypic evolution has two apparent phases: the first occurs while 
space is relatively sparsely occupied, and the second occurs through cell turnover after the space has 
filled. During the first phase, phenotypic evolution follows a similar trajectory as the case when there is 
no death. However, as space fills, selection favors faster proliferation rates.  

 
Figure 3. Joint evolution of migration and proliferation as influenced by three 
different tradeoff boundaries: open, convex, and concave. A) The spatial layout is 
shown and B) and the frequency of trait combinations is shown, where the red points 
and line mark the average trait values every 5 days. The background colors 
correspond to the density of cell traits after reaching capacity; Brightly colored areas 
correspond to high densities, and the completely white area contains no cells. 
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 When the cells have completely filled the space, the shape of the phenotypic tradeoff boundary (open, 
convex or concave) strongly influences the endpoint of evolution. Regardless of the death rate, the open 
boundary favors fast proliferation and high migration speeds. However, as space fills migration speeds 
matter much less than proliferation rates.  Mutational drift in the migration trait leads to a lower mean 
and higher phenotypic variance than seen in the proliferation trait.  Phenotypes with moderate to low 
proliferation rates become absent with time.  With a low death rate, the convex boundary favors the 
coexistence of a more generalist phenotype with a fast proliferation phenotype.  With a low death rate, 
the convex boundary sees the generalist phenotype outcompeted by fast proliferating cells with lower 
migration rates.  With a low death rate, the concave boundary, as predicted, favors the coexistence 
between cancer cells with fast proliferation (but low migration) and cells with fast migration (but low 
proliferation). With a high death rate, the concave boundary favors cancer cells with high proliferation 
rates at the expense of migration. Comparing the fitness landscapes for each trade-off for high death rate 
and no death shows peaks where each of these phenotypes are favored (Fig. 4C).  

SPATIALLY CLUSTERED DEATH CATASTROPHES SELECT FOR MIGRATION  
We introduced significant environmental stochasticity by having all individuals die within a randomly 
selected 500 µm diameter circular area. This regional catastrophe might represent a sudden (and 

 
Figure 4. The effects of the death rate (no death, low, and high) and tradeoff boundaries (open, convex and concave) on the evolution 
of migration and proliferation rates. The probability of death for a single cell is once per week (high death rate) and once every two 
weeks (low death rate). A) The spatial layout is shown and B) and the frequency of trait combinations is shown, where the red points 
and line mark the average trait values every 5 days for the first month. The black points show the continued evolutionary trajectory up 
until 3 months, and the asterisk, the final value at 12 months. The background colors correspond to the density of cell traits after 
reaching capacity; Brightly colored areas correspond to high densities, and the completely white area contains no cells. C) Increasing 
the death rate reduces the fitness (growth rate) of a tumor population. The tradeoff boundary affects which traits are most fit. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/270900doi: bioRxiv preprint 

https://doi.org/10.1101/270900
http://creativecommons.org/licenses/by/4.0/


  

temporary) loss of blood vasculature, immune cell intrusion, or pooling of toxic metabolites. While 
keeping the probability of death constant at one death per week per cell (high death rate) we compared 
three mortality regimes where we varied the fraction of deaths occurring by demographic stochasticity 
(random cell death) relative to environmental stochasticity (catastrophes). The three regimens had 0%, 
50% and 100% catastrophic death. The results are shown in Fig. 5. 

In all cases raising the percent of deaths by catastrophes increases selection for migration.  For the 
open tradeoff boundary, this results in a similarly high proliferation rate even as the migration rate 
increases with environmental stochasticity. For the convex tradeoff, there is more variance in phenotypic 
properties.  But, as environmental stochasticity increases, migration is favored over proliferation with a 
very generalist phenotype emerging when all deaths are catastrophic. For the concave tradeoff boundary, 
the average phenotype switches from high proliferation and low migration to low proliferation and high 
migration as environmental stochasticity goes from 0% to 100% of the cause of death.    
IV. DISCUSSION 
Rates of cell turnover matter.  As expected, in our model, increasing the death rate speeds the rate of 
evolution while having little impact on the endpoint of evolution or the equilibrium population size of 
cancer cells at the end of the simulation (12 months). Our off-lattice model places an upper bound on the 
space available for cells. While increasing the death rate opens up space, cells fill it quickly as 
neighboring cells now have the opportunity to successfully proliferate (at even the lowest proliferation 
rate cells divide once every 50 hours). Longer runs of cell proliferation permit the accumulation of 
mutations that can increase migration and/or proliferation rates. However, with no deaths, evolution 
eventually stops on the interior of the tumor and can only occur along the expanding boundary. One sees 
concentric rings of more highly adapted cells as we move from the center to the edge of the tumor. This 
is not the case when there is continual cell turnover. While slower in the interior than edge of the tumor, 
evolution proceeds with the replacement of less fit individuals by those with either higher combined 
rates of proliferation and migration, or individuals with more successful combinations of traits when the 
trait-tradeoff boundary has been reached.   

 
Figure 5.  The percent of death that is random vs catastrophic is varied. The top row has 0% catastrophic and 100% random death, the 
middle row, 50% catastrophic and 50% random death, and the bottom row, 100% catastrophic and 0% random death. The death rate is 
once per week per cell (same as the high death rate from Fig. 4). A) The spatial layout is shown and B) and the frequency of trait 
combinations is shown, where the red points and line mark the average trait values every 5 days for the first month. The black points 
show the continued evolutionary trajectory up until 3 months, and the asterisk, the final value at 12 months. The background colors 
correspond to the density of cell traits after reaching capacity; Brightly colored areas correspond to high densities, and the completely 
white area contains no cells. 
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The results illustrate the direct impact of cell turnover, throughout the habitable regions, on tumor 
evolutionary dynamics. However, not all ecological and evolutionary models in the literature incorporate 
cell death and cell replacement. The distribution of phenotypes among cancer cells in a tumor represent 
a balance between mutation, drift and selection. With each cell division, mutations can occur that 
randomly alter proliferation and migration. Those generating higher fitness should increase in frequency, 
but a large amount of heritable variation is maintained within the tumor due to the stochastic nature of 
births, deaths and mutations; the lower the rate of cell turnover, the higher the phenotypic variability 
among cancer cells.  In reality, tumors exhibit large amounts of genetic variation – the extent to which 
this is maintained by mutation and drift and purged through selection remains an open and important 
question (17,30-32).  

Furthermore the edge of the tumor likely offers very different conditions in terms of substrates, normal 
cell architecture and exposure to the immune system (33,34). Hence, a number of agent-based models 
focus on tumor spatial heterogeneity in an environmental context, such as normal cells, stroma, and 
vasculature (4,5,35,36). Here, we considered a much simpler model where all space is equal without 
regard for the position of blood vessels, and the only factor creating heterogeneity is the number and 
dispersion of cancer cells. This means our model has two rather distinct phases.  During the first, natural 
selection favors migration over proliferation as the tumor expands into pristine space, the second favors 
proliferation over migration once the space has been filled by the cancer cells.  This accords with the 
observation that the edge of tumors may select for more “aggressive” cancer cells defined as those more 
likely to migrate, invade surrounding tissue, and perhaps initiate metastases (37,38). 

There are direct parallels, of our results to ecological systems in which mortality can take the form of 
the stochastic death of an individual (demographic stochasticity) or the catastrophic death of a group of 
individuals (environmental stochasticity).  In forests, for instance, individual deaths of trees create small 
gaps in the canopy whereas the blowdown of a group of neighboring trees create large gaps.  The size 
and nature of gaps can result in the slower or faster regeneration of different tree species (39).  Our 
model considers the eco-evolutionary consequences of different size gaps in the tumor created by either 
demographic or environmental stochasticity (while holding overall mortality rates constant).  As seen in 
many natural systems, small gaps select for proliferation over dispersal and vice-versa for large gaps 
(40).  While understudied, temporal variability in local blood flow, immune intrusion, hypoxia, and Ph 
likely result in varying degrees of local and catastrophic mortality followed by opportunities for 
recolonization. Generally, histology from biopsies or radiographic imaging of tumors produce a static 
snapshot that cannot track the fates of individual cells within small regions of a tumor.  Our model 
provides a platform to study how death affects the competition of cells for space and their subsequent 
evolution.   
 In the absence of tradeoffs, natural selection should favor improvements in all traits that enhance 
fitness. Several lines of evidence empirically suggest tradeoffs between the traits proliferation versus 
migration or “go-or-grow” models (9,23,24).  As expected in our model, the lack of a tradeoff saw rapid 
increases in both proliferation and migration. Although with demographic stochasticity and filled space, 
migration is no longer under strong selection.  At this point, mutation and drift create a lower mean 
migration rate with large phenotypic variance.  Generally, a convex tradeoff selected for a generalist 
phenotype.  Under demographic stochasticity this resulted in high phenotypic variance and sometimes 
the dominance of high proliferation, low migration phenotypes.  Environmental stochasticity selected for 
the more generalist phenotype. A concave phenotypic tradeoff boundary always selected for low 
proliferation, high migration phenotypes during the tumor’s expansion phase.  These were then replaced 
by high proliferation, low migration phenotypes once the tumor achieved maximum size. The only 
exception occurred with environmental stochasticity where the high migration phenotype continues to be 
favored.  Just as with experiments that determine the cost of resistance in cancer cells (41-44), 
establishing the nature of tradeoffs between migration and proliferation may require cell culture 
experiments where the cancer cells are grown under conditions of strong nutrient limitation. Tradeoffs 
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between dispersal and survival or fecundity and dispersal are common in natural plant and animal 
species (45,46).  
 In our model, we assume death rates are independent of phenotype.  Thus, natural selection favors 
phenotypes that maximize the probability of cell division. This probability represents fitness f, and it is 
the product of the proliferation rate p and the probability of having space around the cell to proliferate s: 
f=sp. We can see the direct effect of increasing the proliferation rate on fitness by taking the derivative 
of fitness with respect to the proliferation rate (df/dp=s). Likewise, the effect on fitness of increasing the 
migration rate, m, can be found by taking its derivative with respect to the migration speed df/dm. This 
depends not only on the proliferation rate but also how much space is opened up by moving: 
df/dm=p*ds/dm.  Some of our observations can be understood through these relationships.  During the 
expansion phase of the tumor, s is relatively large and the space gained by increasing migration, ds/dm, 
is very large.  Selection will be strong for both proliferation and migration but relatively stronger for 
migration.  When the space in the tumor core is completely filled both s and ds/dm go to zero. Hence 
there is no longer positive selection for migration. By creating many small gaps, demographic 
stochasticity creates space and thus maintains selection for proliferation. Because the spaces are small, 
there are no benefits to migration. Environmental stochasticity creates the same amount of total space 
over time as demographic stochasticity but this space is more contiguous. Migration is favored as a 
means of exploiting empty regions. Thus, ds/dm will be larger and positive. There will be positive 
selection for both proliferative and migratory phenotypes, but a larger selection for migratory 
phenotypes. Some of these properties will be general to all organisms (e.g., cane toads (47), and house 
sparrows spreading in Kenya (48)), and others just to cancer because it is a densely packed, asexual, and 
single-celled organism. 
 Our model has similarities to other models and systems where selection balances two traits.  In natural 
systems this can take the form of seed dispersal versus dormancy in annual plants where the former 
transports the individual spatially and the latter temporally to less crowded and more favorable places 
(49,50). In dispersal-dormancy models, the traits may exhibit tradeoffs via seed size, seed coat 
thickness, and features that enhance dispersal such as burrs and samara (wings). In cancer, a number of 
agent-based models consider vector-valued traits. These include degree of glycolytic respiration 
(Warburg effect) and tolerance to acidic conditions. While not necessarily linked through tradeoffs, the 
two traits become co-adapted as increased glycolysis promotes acidic conditions necessitating the 
evolution of acid tolerance (5). Spatial models often see rings of different trait values extending from the 
interior to the tumor’s boundary (3,4,6). In these models, selection happens solely at the tumor edge 
where there is space to proliferate. In relation to these works our model invites spatially-explicit 
investigations into how traits evolve in response to population spread, death rates, and demographic 
versus environmental stochasticity. It emphasizes the critical need to estimate cell turnover via 
measurements of both death and proliferation rates. A variety of markers and metrics exist for measuring 
proliferation (e.g. Ki67, mitotic index) and death (e.g. caspases, TUNEL assay). However, these are 
often just surrogates, rarely measured simultaneously, and generally cannot be measured in vivo. 
Because of these challenges, most data simply describe net tumor growth (i.e. doubling times). We 
advocate deconstructing this net metric into distinct fractions of proliferating, quiescent, and dying. To 
study evolving traits such as proliferation-migration trade-offs, we see a need for non-destructive 
sensors/markers of cell processes that can be measured through both space and time.  
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