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ABSTRACT

Long noncoding RNA (lncRNA) plays important roles in morphological differentiation and 

development in eukaryotes. In filamentous fungi, however, little is known about lncRNAs and their roles 

in sexual development. Here we describe sexual stage-induced lncRNAs during the formation of 

perithecia, the sexual fruiting bodies of Fusarium graminearum. We have identified 547 lncRNAs whose 

expression was developmental stage-specific, with about 40% of which peaked during the development of

asci, the sac-like structures containing meiospores. A large fraction of the lncRNAs were found to be 

antisense to mRNAs, forming 300 sense–antisense pairs. Although small RNAs (sRNAs) were produced 

from these overlapping loci, most of the antisense lncRNAs appeared not to be involved in gene silencing

pathways. Genome-wide analysis of sRNA clusters identified many silenced loci at the meiotic stage. 

However, we found transcriptionally-active sRNA clusters, many of which were associated with 

lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were 

induced in parallel as the perithecia matured. To identify regulatory components for lncRNA expression, 

we analyzed mutants defective in the nonsense-mediated decay (NMD) pathway. A subset of the 

lncRNAs appeared to be targeted by the NMD before the perithecia formation, suggesting a suppressive 

role of the NMD in lncRNA expression during vegetative stage. This research provides fundamental 

genomic resources that will spur further investigations on developmental lncRNAs that may play 

important roles in shaping the fungal fruiting bodies.
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INTRODUCTION

Genomes of eukaryotes—from simple yeast to animals—are pervasively transcribed from 

noncoding intergenic regions and in antisense orientation from genic regions (Guttman et al. 2009; Xu et 

al. 2009). Long noncoding RNAs (lncRNAs) are loosely defined as noncoding transcripts longer than 200

nucleotides, which are mostly transcribed by RNA polymerase II and share common features with 

mRNAs other than protein-coding capacity (Kapranov et al. 2007). lncRNAs are versatile molecules that 

not only regulate gene expression, but also affect enzymatic activities and chromosome conformation 

(reviewed in Rinn and Chang 2012; Quinn and Chang 2015). Since the discovery of the XIST lncRNA 

required for X chromosome inactivation (Brockdorff et al. 1992), the roles of lncRNAs in developmental 

processes such as embryogenesis and tissue differentiation have been extensively studied in animals along

with the advent of RNA-seq technologies (Fatica and Bozzoni 2014; Flynn and Chang 2014). Yet the full 

scope of the developmental roles of lncRNAs is far from understood.

In the highly divergent yeasts Saccharomyces cerevisiae (budding yeast) and 

Schizosaccharomyces pombe (fission yeast), the onset of sexual sporulation and the following meiotic 

divisions are tightly regulated by elaborate mechanisms involving lncRNAs (reviewed in Hiriart and 

Verdel 2013). In budding yeast, a promoter-derived lncRNA suppresses the expression of IME1 (inducer 

of meiosis 1), the master regulator for the sexual sporulation, by inducing heterochromatin formation in 

the promoter region of IME1 during vegetative growth (van Werven et al. 2012). In addition, the 

transcription of another lncRNA antisense to IME4 gene inhibits the expression of IME4 by antagonizing 

the sense transcription (Hongay et al. 2006; Gelfand et al. 2011). Although there is no such conserved or 
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analogous regulatory mechanism in fission yeast, lncRNAs also play diverse roles in the sexual 

sporulation, for example, sequestering RNA elimination factors that repress meiotic gene expression 

(Harigaya et al. 2006; Hiriart et al. 2012; Yamashita et al. 2012), and contributing homologous 

chromosome pairing (Ding et al. 2012). Despite the growing evidence of the regulatory roles in yeasts, 

information on lncRNA expression and function during fruiting body formation in filamentous fungi is 

scarce.

RNA quality control mechanisms are crucial for the regulation of lncRNA expression in budding 

yeast. The nuclear exosome is engaged in RNA processing and degradation of transcripts including 

lncRNAs that are specifically expressed during sexual sporulation; the deletion of RRP6 encoding the 

exosome-associated exonuclease resulted in the accumulation of noncoding transcripts that otherwise 

remained silenced during vegetative growth (Davis and Ares 2006; Camblong et al. 2007; Lardenois et al.

2011). In human cells, promoter-derived transcripts were also ectopically expressed upon deletion of the 

exosome components including the homologous RRP6, suggesting the conserved role of the exosome for 

lncRNA expression in diverse eukaryotes (Preker et al. 2008). The nonsense-mediated decay (NMD) 

pathway is another quality control checkpoint for aberrant transcripts in the cytoplasm, and recently 

emerged as a key player for fine-tuning of both coding and noncoding gene expression (Smith and Baker 

2015). A genome-wide survey of human lncRNA sequences showed that most lncRNAs harbor short 

open reading frames (ORFs) that would lead to activation of the NMD pathway (Niazi and Valadkhan 

2012). In fact, subsets of lncRNAs found in budding yeast, the model plant Arabidopsis and animals are 

subject to degradation through the NMD pathway (Kurihara et al. 2009; Tani et al. 2013; Ruiz-Orera et al.

2014).
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The cytoplasmic exonuclease Xrn1 is the final enzyme responsible for the degradation of de-

capped and de-adenylated transcripts that have been recognized and processed by NMD components. The

deletion of XRN1 in budding yeast also leads to the accumulation of more than a thousand cryptic 

noncoding transcripts termed ‘XUTs’ (Xrn1-sensitive unstable transcripts), most of which are distinct 

from the noncoding transcripts that arise by exosome depletion (van Dijk et al. 2011). Many XUTs are 

antisense to annotated genes and seemed to have repressive roles in sense transcription by modulating 

chromatin status of the promoter regions (van Dijk et al. 2011).

It has been argued that organismal complexity is correlated with expression dynamics of 

noncoding transcripts (Mattick et al. 2010; Liu et al. 2013; Gaiti et al. 2015; Quinn and Chang 2015). In 

the Kingdom Fungi, multicellular fruiting bodies have independently evolved at least twice in the 

diverging lineages (Knoll 2011; Nguyen et al. 2017). Given the key regulatory roles of lncRNAs in sexual

sporulation and morphological transition in yeasts (Bumgarner et al. 2009; Chacko et al. 2015), lncRNAs 

may have exerted their roles in evolution of multicellularity and sexual development in filamentous fungi.

Fusarium graminearum is a plant pathogenic fungus infecting our staple crops, such as wheat and corn, 

and thus has been a model for studying the developmental process of perithecia, the sexual fruiting bodies

of the fungus, as well as other interesting aspects of biology including host-pathogen interaction and 

mycotoxin production (Trail 2009; Ma et al. 2013). The fungus is probably the best organism for 

investigating the lncRNA catalog in fruiting body-forming fungi, as perithecia develop at sufficient 

synchronicity in culture media, enabling time-series transcriptome analyses with this microscopic 

organism (Hallen et al. 2007; Sikhakolli et al. 2012; Trail et al. 2017). Also, the genome sequence 

assembly is complete, featuring a total 4 chromosomes (Cuomo et al. 2007), and the genome has been 
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annotated and curated—although it still lacks lncRNA annotations (King et al. 2015, 2017). In addition, 

plentiful genetic resources have accumulated through large-scale functional studies of perithecia 

development (Son et al. 2011; Wang et al. 2011a; Yun et al. 2015; Kim et al. 2015b; Liu et al. 2016; Son 

et al. 2017; Trail et al. 2017).

The goal of the present study was to characterize lncRNAs that are specifically expressed in the 

fungal fruiting body undergoing sexual development and to investigate their developmental stage-specific

expression and their regulation. We identified lncRNAs with a pipeline that constructs de novo transcript 

annotations by combining RNA-seq data from vegetative and sexual developmental stages, and then 

removes those with detectable protein-coding potential or monotonous expression profile. Hundreds of 

lncRNAs that exhibit dynamic expression patterns were found, thereby expanding the universe of 

genomes known to have significant noncoding roles in development—specifically, here, the multicellular 

development of fungal fruiting bodies.

RESULTS

Transcriptional reprogramming during perithecia formation

To obtain time-course transcriptome data during the sexual development of F. graminearum, we 

sequenced samples from hyphae, strands of cells that make up vegetative stages of most of fungi (S0), 

and from five successive sexual stages (S1–S5; Fig. 1A) that capture key morphological transitions during

the perithecia development, defined at the formation of: S1—formation of perithecial initials (hyphae 

curls that give rise to the perithecial tissues), S2—perithecial walls, S3—paraphyses (sterile cells 
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supporting perithecia), S4—asci (sac-like structures in which ascospores develop), and S5—ascospore 

maturation (Trail and Common 2000). A total of 480 million RNA-seq reads were generated from 18 

samples (6 stages × 3 replicates), and there were average 25 million mapped reads per sample 

(Supplemental Fig. S1). We validated our sampling scheme by perithecial morphology for 3 biological 

replicates, using the BLIND program (Anavy et al. 2014) that determined the sequence of the 

developmental time-course data without prior information other than gene expression data (Supplemental 

Fig. S2).

Differentially-expressed (DE) genes between any two successive developmental stages (>4-fold 

at 5% false discovery rate [FDR]) were mostly unique when compared to other pairwise stage 

comparisons (Fig. 1B). Overrepresented GO terms for the stage-specific DE genes reflected key 

biological processes during the morphological transitions (Supplemental Table S1). For example, the GO 

term ‘lipid metabolism’ had the highest representation in the ‘S0 vs. S1’ comparison, although 

statistically non-significant (Fig. 1C). The accumulated lipids in hyphae and perithecial initials are vital 

for paraphyses and asci development (Guenther et al. 2009). Perithecia dramatically increased in size and 

became more rigid during S2 and S3, which is accompanied by GO terms related to carbohydrate 

metabolisms (Fig. 1C). Finally, when the asci develop from the fertile layer during S3 and S4, meiosis-

related genes were significantly enriched for GO terms including ‘meiotic cell cycle process’ and 

‘ascospore formation’ at 5% FDR (Fig. 1C). It is noteworthy that most of the DE genes were upregulated 

in the later developmental stages (Supplemental Fig. S3), indicating that gene activation is the most 

common means of gene regulation during the sexual development. 
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Figure 1. Transcriptome of the F. graminearum perithecia. (A) Emergence of new tissues at the defined 

developmental stages during the perithecia formation (S1–S5; not drawn to scale). (B) Venn diagram 

showing the number of differentially expressed (DE) genes between two successive developmental stages

(>4-fold; 5% FDR). Note that most of the DE genes were unique in each comparison. (C) Functional 

enrichment analyses for DE genes between two successive developmental stages. Fifty-three GO terms—

that can be broadly categorized into 7 biological processes—were assessed for degree of functional 

enrichment (Supplemental Table S1), and were projected to two-dimensional semantic spaces. Only GO 

terms with P < 0.05 were depicted in each panel.
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Identification of lncRNA in perithecia

To discover lncRNAs expressed during the perithecia development, we adopted an established 

protocol for novel transcripts identification, with some modifications (Weirick et al. 2016; Supplemental 

Fig. S4). First, we constructed de novo transcript annotations (28,872 transcripts expressed from 20,459 

genomic loci), and identified potentially novel transcripts that were absent in the reference annotations 

(Table 1). For noncoding transcripts identification, coding potential of the novel transcripts was computed

by using the CPAT program (Wang et al. 2013). To maximize both sensitivity and specificity for 

noncoding transcript detection, the program was trained on the F. graminearum genome dataset and the 

threshold was set to a CPAT score of 0.540 (Supplemental Fig. S4) (cf. 0.364 for humans, 0.440 for mice;

Chakraborty et al. 2014). The transcripts with a low coding potential (CPAT score ≤ 0.540) were further 

scanned against Pfam and Rfam databases to filter out transcripts encoding protein domain(s) and 

harboring any known structural RNA motifs, respectively (E < 10−10; Table 1). Finally we only retained 

transcripts that were differentially expressed in at least one developmental stage (5% FDR), yielding a 

total 547 lncRNA candidates (Table 1; Supplemental Table S2).

The identified lncRNAs were distributed across the 4 chromosomes, and generally shorter with 

fewer exons, when compared to mRNAs (transcripts with CPAT score > 0.540) (Fig. 2A–C). Based on 

the relative position to mRNAs, lncRNAs can be classified as antisense lncRNA (ancRNA) or long 

intergenic ncRNA (lincRNA). There were 280 ancRNAs that overlapped more than 100 bp of an mRNA 

on the opposite strand, and 237 lincRNAs that were situated between annotated genes (Supplemental 

Table S2). The mean AU content of ancRNA and lincRNA sequences falls between the coding sequences 

of the mRNAs and the intergenic regions (Fig. 2D). These distinctive genomic features of the lncRNA 
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sequences are commonly observed in other eukaryotes (Nam and Bartel 2012; Pauli et al. 2012; Gaiti et 

al. 2015; Li et al. 2016; Nyberg and Machado 2016). However, we identified only 5 lncRNAs that 

showed similarity with lncRNAs in other eukaryotes (E < 10−10; Supplemental Table S3), suggesting 

either the poor status of lncRNA annotations in filamentous fungi or a high degree of sequence 

divergence in fungal lncRNAs.

Table 1. Identification of lncRNAs expressed during sexual development

Transcript class (code)a Novel

transcriptsb

 Noncoding

transcriptsc

Differentially

expressed transcriptsd

Splicing variants (‘J’) 5,185 92             17

Tandem transcripts (‘P’) 740 388            100

Intergenic transcripts (‘U’) 2,215 1,054            167

Antisense transcripts (‘X’) 2,892 1,040            263

Sum 11,032 2,574            547

a Transcript class codes were tagged by the gffcompare program (Pertea et al. 2016).

b Among total 11 transcript class codes, transcripts tagged with the class codes ‘J’, ‘P’, ‘U’, and ‘X’ were

considered as novel transcripts (see Supplemental Methods).

c Noncoding transcripts were identified by the coding potential assessment tool program (Wang et al.

2013), and further filtered by Pfam and Rfam database searches. 

c Differentially expressed noncoding transcripts at least one developmental stage were identified as F. 

graminearum lncRNAs.
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Figure 2. Genomic features of F. graminearum lncRNA. (A) Distribution of mRNA and lncRNA across 

the four chromosomes. (B) Distribution of exon numbers per transcript. (C) Transcript length distribution.

(D) A/U content of mRNA coding regions (CDS), 5' UTRs, 3' UTRs, intergenic regions, long intergenic 

lncRNA (lincRNA), and antisense lncRNA (ancRNA). Box and whisker plots indicate the median, 

interquartile range between 25th and 75th percentiles (box), and 1.5 interquartile range (whisker). (E) 

Distribution of developmental stages at which mRNA and lncRNA showed the highest expression level. 

(F) Cumulative distributions of ratios of maximum and mean expression values across the developmental 

stages. mRNA—blue boxes or line, and lncRNA—red boxes or line.
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Developmental expression of lncRNA

The sexual stage transcriptome data showed predominance of lncRNAs at the meiotic stage (S4) 

where the expression of many lncRNAs peaked (234 out of the 547 lncRNAs; Fig. 2E). We compared the

degree of differential expression of lncRNAs to that of mRNAs (9,457 transcripts differentially expressed

in at least one developmental stage at 5% FDR). The ratio of the maximum expression among six 

developmental stages to the mean expression over the remaining five stages was calculated for lncRNAs 

and the differentially expressed mRNAs. By this metric, lncRNA was prone to be more differentially 

expressed than mRNA (P = 2.2 × 10−16, KS-test statistic D = 0.39), with the third quartile value of the 

ratio measuring 2.93 for lncRNA and 1.88 for mRNA (Fig. 2F). Also, we identified seven co-expressed 

clusters of lncRNAs that showed developmental-specific expression patterns, suggesting distinct roles of 

lncRNAs in different stages of perithecia development (Fig. 3A). 

In addition to the sexual stage dataset, we obtained transcriptome data during spore germination 

to investigate the degree of lncRNA expression in vegetative stages. The dataset was comprised of four 

spore germination stages: G0—fresh spore, G1—polar growth, G2—doubling of long axis, and G3—

branching of hyphae (Supplemental Fig. S5). Overall expression of the lncRNA gradually increased over 

the course of perithecia development, peaking at S4, while most of the lncRNA remained unexpressed or 

had low expression in the germination stages, indicating that most of the lncRNA expression is sexual 

stage-specific (Fig. 3B).
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Figure 3. Sexual stage-induced lncRNA in F. 

graminearum. (A) Co-expressed clusters of 

lncRNAs. Trend plots of Z-score normalized 

expression values for lncRNAs (numbers in 

parenthesis) in a given cluster were presented. 

(B) Expression distribution of mRNA (upper 

panel) and lncRNA (lower panel) for the sexual 

development transcriptome (grey boxes) and the 

vegetative growth transcriptome (white boxes). 

Box and whisker plots indicate the median, 

interquartile range between 25th and 75th 

percentiles (box), and 1.5 interquartile range 

(whisker).

Verification of lncRNA production

To validate lncRNA expression, we chose eight lncRNAs and performed 3' RACE-PCR and 

Sanger sequencing. All the selected lncRNAs were amplified from total RNA extracts and their 
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polyadenylation sites were determined (Supplemental Fig. S6). Also, to examine if there is an 

intraspecific conservation in the lncRNA content and expression, we utilized degradome-seq data of 

another F. graminearum wild-type strain sampled at meiotic stage (Son et al. 2017). Degradation of 

lncRNA transcripts expressed at S4 was evident, which in turn confirmed the consistent lncRNA 

production in the two strains (Fig. 4; also see below, Fig. 5B).

Fungal genomes are known for having shorter intergenic spaces, compared to other eukaryotic 

genomes. Therefore, fungal lncRNAs could be a transcriptional noise arising from neighboring genes. To 

test this, we examined global patterns of the expression correlation between lncRNA and neighboring 

genes, with close examination of some selected examples whose expression was confirmed by 3' RACE-

PCR. The lncRNAs antisense to ORC1, ORC2, and CENP-T each had an upstream gene in close 

proximity on the same strand (Fig. 4; Supplemental Fig. S6). However, the sexual stage expression 

between the lncRNAs and their respective upstream genes was not correlated (| r | < 0.50; Supplemental 

Table S4). Positive correlation was observed in expression levels between lncRNAs and their divergently 

transcribed genes as in the HIR1 and NSE4 loci (r > 0.8; Fig. 4; Supplemental Table S4), indicating 

prevalence of bidirectional promoters for lncRNA transcription (Neil et al. 2009; Xu et al. 2009; 

Pelechano et al. 2013). On the other hand, the expression of lncRNAs and their convergently transcribed 

genes tend not to be correlated, as in the CENP-T and RMD1 loci (| r | < 0.50; Fig. 4; Supplemental Table

S4). These patterns were globally observed in lncRNA-associated loci (Supplemental Fig. S6), suggesting

that the lncRNAs were not likely to be misannotated extensions of neighboring genes (Cabili et al. 2011; 

Ulitsky et al. 2011; Nam and Bartel 2012).
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Figure 4. Examples of lncRNA expression across the sexual development. Per-base coverage of 

transcripts was plotted for both DNA strands in a 5 kb window. For the perithecia transcriptome datasets 

(S0–S5), mapped reads of 3 biological replicates were pooled, then subsampled to 60 million reads for 

visual comparison of expression levels across the stages. For the degradome-seq datasets (DG), mapped 

reads of 2 replicates were pooled and displayed. The positions of lncRNAs (red arrows) and their 

neighboring genes (white arrows) are shown in the annotation track with genome coordinate at the bottom

of each panel. The genes overlapping lncRNAs on the opposite strand are labeled with abbreviated gene 

names in bold: CENP-T—c  en  tromere protein T (FGRRES_16954), HIR1—histone regulatory protein 1 

(FGRRES_05344), NSE4—non-structural maintenance of chromosome element 4 (FGRRES_17018), 

ORC1—origin recognition complex subunit 1 (FGRRES_01336), RMD1—required for meiotic division 1

(FGRRES_06759). In relation to lncRNA position, neighboring genes are also labeled as follows: div.—

divergently transcribed gene on the opposite strand, conv.—convergently transcribed gene on the 

opposite strand, up.—upstream gene in tandem on the same strand.
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Identification of sRNA-enriched loci associated with lncRNAs

We found 300 sense mRNA–ancRNA pairs with different orientations: 5’-to-5’ partial (70), 3’-

to-3’ partial (61), and full overlaps (169). One of the most common mechanisms involving antisense 

transcription is the RNAi pathway incorporating sRNAs generated from the double-stranded RNA 

regions. To investigate the degree and effect of sRNA production in the ancRNA loci, we analyzed the 

previously published sRNA-seq and degradome-seq data at meiotic stage (Son et al. 2017). As expected, 

sRNA reads were mapped at a higher frequency to ancRNAs than to mRNAs without overlapping 

antisense transcripts, the sense mRNAs or lincRNAs (Fig. 5A; P < 1.2 × 10−8, Kruskal-Wallis test statistic

H = 155), suggesting that the ancRNA loci may serve as a major source for endogenous sRNA 

production. However, the correlation of the degradome-seq and our RNA-seq data at S4 showed that 

sRNA-mediated endonucleolytic cleavage of ancRNAs and sense mRNAs was comparable to that of 

mRNAs without antisense transcripts (Fig. 5B), implying that the ancRNA loci were not preferentially 

targeted by RNAi machinery, post-transcriptionally.

It remains paradoxical that gene silencing induced by heterochromatin formation requires sRNA 

production via co-transcriptional processes, sometimes from lncRNAs (Motamedi et al. 2004; Bühler et 

al. 2006; Zhang et al. 2008; Bayne et al. 2010; Dang et al. 2016). To search for any lncRNAs associated 

with sRNA-enriched loci that could be indicative of transcriptional gene silencing events, we examined 

top 80 sRNA clusters ranked by the number of mapped reads, which accounted for 62% of mapped sRNA

reads (Supplemental Table S5). Production of sRNAs in the top 80 clusters was dependent on Dicers and 

Argonauts, indicating that the sRNAs were produced by RNAi machinery (Fig. 5C). Most of the sRNA 

clusters were found in genic regions, containing at least one annotated gene, to which a large portion of 
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sRNA reads were mapped (Fig. 5D). We observed that the coding genes closest to the centers of sRNA 

clusters exhibited overall low expression (RPKM < 0.5 in 22 out of the 80 clusters) (Fig. 5D). A 

significant portion of sRNAs were also derived from noncoding transcripts and genic regions overlapped 

with antisense transcripts, some of which were identified as lncRNAs (Fig. 5D; Supplemental Fig. S7). 

Unexpectedly, the lncRNAs associated with sRNA clusters exhibited moderate expression (n = 19, 

median expression 5.2 in RPKM). In addition, the coding genes closest to the centers of the sRNA 

clusters showed higher expression levels (n = 19, median expression 4.0), compared to those without an 

associated lncRNA (n = 61, median expression 1.3; P = 0.029, Mann-Whitney test statistic U = 747). 
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Figure 5. lncRNA associated with small RNA-enriched loci. (A) sRNA reads mapped to mRNAs without 

antisense transcripts (10,928 loci), sense mRNAs for ancRNAs (295), ancRNAs (276), and lincRNA 

(235) were represented as RPKM. The number of sRNA reads aligned to ancRNA loci was more than the 

other classes of transcripts (Benjamini-Hochberg adjusted P < 0.0001, Dunn's pairwise multiple 

comparisons). (B) Correlation analysis between transcript abundance and degradome-tag count at meiotic 

stage. Lines depict regressions for different classes of transcripts. (C) sRNA reads mapped to top 80 

sRNA clusters in different genotypes were represented as counts-per-million (CPM). The number of 

sRNA reads mapped to the clusters were significantly reduced in ∆dicer1/2, the double-deletion mutants 

of Dicer genes (FGRRES_09025 and FGRRES_04408), and ∆ago1/2, the double-deletion mutants of 

Argonaute genes (FGRRES_16976 and FGRRES_00348) (Son et al., 2017). (D) Fractions of sRNA reads

mapped to intergenic regions (white), coding genes (blue), overlapped regions (purple), and noncoding 

genes (red) including lncRNAs marked with asterisks in top 80 sRNA clusters. Overlapped regions were 

defined if coding or noncoding genes in the region were present on the both sides of DNA in the de novo 

annotations. Expression values (RPKM) for the closest coding gene (mRNA) to the center of each sRNA 

cluster are shown as heat maps, along with expression values for ncRNAs, if any, that were present in the 

same cluster.
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Co-expression of lncRNAs and their sense transcripts

We could not find strong evidence for sRNA-mediated transcriptional and posttranscriptional 

gene silencing in the ancRNA loci. Interestingly, we did observe gene expression correlation in many 

ancRNAs and sense mRNA pairs across the sexual stages (Fig. 6; 85 out of the 300 pairs with Pearson’s 

correlation | r | > 0.70; Fisher’s exact test, P < 0.05), most of which were positively correlated (76 out of 

the 85 pairs). We asked whether the ancRNAs are antisense to genes involved in a specific biological 

process. Notably, the positively correlated sense mRNAs were enriched for the GO term ‘DNA 

metabolism’ at 5% FDR (Supplemental Table S6). This observation might be a consequence of the 

underlying structure of the dataset, in which the GO term was also the most overrepresented GO term for 

all the sense mRNAs overlapping the 280 lncRNAs (although this observation was not statistically 

significant, applying a 5% FDR; P = 0.006). 

                                                                                                                                         Kim et al, 2018     Page 19

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 23, 2018. ; https://doi.org/10.1101/270298doi: bioRxiv preprint 

https://doi.org/10.1101/270298


Figure 6. Parallel induction of sense mRNA and antisense lncRNA pairs during sexual development. 

Expression data of sense mRNA and antisense lncRNA pairs in 18 samples for the perithecia 

transcriptome (S0–S5) were re-ordered by the BLIND program (Supplemental Fig. S2). The RPKM 

values of sense mRNA and antisense lncRNA pairs with absolute Pearson’s correlation greater than 0.7 

(P < 0.05; Fisher’s exact test) were clustered by Euclidean distance and heat maps of Z-score normalized 

RPKM values were presented.
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Regulation of sexual development and lncRNA expression by NMD

The exosome and NMD components regulate the expression of noncoding genes as well as 

coding genes for sexual sporulation in yeasts. To better understand how lncRNA expression was 

regulated during the perithecia development, we initially aimed to dissect the roles of two exonuclease 

genes (RRP6: FGRRES_06049 and XRN1: FGRRES_06799), and two RNA helicase genes functionally 

associated with both the exosome and NMD pathway (DBP2: FGRRES_16145 and MTR4: 

FGRRES_01656) (Cloutier et al. 2012; Wery et al. 2016). However, efforts to obtain deletion strains 

lacking either the DBP2, MTR4 or RRP6 were unsuccessful (Supplemental Fig. S8), presumably due to 

the synthetic lethality of the genes when deleted, as with Neurospora crassa (Cheng et al. 2005; Emerson 

et al. 2015). However, we were able to generate ∆xrn1 strain in F. graminearum and observed delayed 

perithecia development and deformed ascospores with variable sizes (Fig. 7A; Supplemental Fig. S8). 

Similarly, defects in ascospore formation were observed in heterokaryotic ∆dbp2 strain containing wild-

type nuclei (Fig. 7A), suggesting that maintaining RNA homeostasis by NMD pathway is crucial for 

meiotic divisions and ascospore formation.

To identify lncRNA whose expression was controlled by NMD activity, we analyzed the 

transcriptome data from the wild-type (WT) and the ∆xrn1 strain at hyphae stage (S0) and meiotic stage 

(S4). The transcriptome data of the ∆xrn1 strain were distinct, but most similar, to that of WT at the 

corresponding stages, indicating drastic effects of XRN1 on gene expression levels as a major component 

for RNA turnover (Fig. 7B). After expression values were normalized with 124 ribosomal protein genes 

that were known to be relatively insensitive to NMD activity (van Dijk et al. 2011), we identified a total 

of 1,122 XUTs that were differentially expressed at S0 or S4 in ∆xrn1 (>3-fold increase at 5% FDR; Fig. 
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7C; Supplemental Table S7). After the normalization, the XUTs identified at S0 and S4 showed a median 

5.0- and 5.8-fold increase in ∆xrn1, respectively (Fig. 7D; Supplemental Table S7). Many XUTs were 

previously annotated transcripts or isoforms of them (70%; 781/1,122), and only 11% of XUTs 

(122/1,122) were predicted to be noncoding transcripts (CPAT score ≤ 0.540) (Supplemental Table S7). 

Among the noncoding XUTs, we identified 25 lncRNAs whose expression was elevated upon the Xrn1 

depletion at S0 and showed increasing patterns across the sexual stages (Fig. 7E; Supplemental Fig. S9). 

In addition, many of the coding XUTs identified at S0 were also induced as the sexual development 

progressed (Supplemental Fig. S10). Interestingly, we found that key components of RNA-induced 

silencing complex (RISC; Chen et al. 2015) were identified as XUTs, such as DICER2 

(FGRRES_04408), AGO1 (FGRRES_16976), N. crassa QIP homolog (FGRRES_06722), and RDRPs 

(RNA-dependent RNA polymerases: FGRRES_01582, 04619, and 09076) (Supplemental Table S7).
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Figure 7. Sexual stage-induced lncRNAs regulated by the NMD pathway. (A) Asci and ascospores of 

∆xrn1 (upper panels) at 11 days after sexual induction and heterokaryotic ∆dbp2 strain (lower panels) at 9

days after sexual induction. Arrows indicate uneven delimitation of the ascospore membrane in the asci, 

resulting in deformed ascospore production (right panels). Scale bar = 20 μm. (B) Principal components 

analysis on the perithecia transcriptome data of the wild-type (S0–S5, blue circles) and ∆xrn1 

transcriptome data (S0 and S4, yellow circles). (C) Venn diagram showing the overlap of Xrn1-sensitive 

unstable transcripts (XUTs) at S0 and S4. (D) 2D-plots of different classes of transcripts between the 

wild-type (abscissa) and ∆xrn1 (ordinate) expression data at S0 and S4 (diagonal—grey line; regression 

for the XUTs—yellow dashed line). (E) Expression distribution of 25 lncRNAs that were identified as 

XUTs at S0. Box and whisker plots indicate the median, interquartile range between 25th and 75th 

percentiles (box), and 1.5 interquartile range (whisker).
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DISCUSSION

Here we profiled transcriptomes of vegetative and sexual stages that span the entire life cycle of 

F. graminearum. lncRNAs are usually an order of magnitude less abundant than mRNAs (Mercer et al. 

2011; Cabili et al. 2015), so the unprecedented depth of the sequencing data we generated (total 938 

million mapped reads) enabled us to capture scantly expressed noncoding transcripts. This study has 

revealed global properties of lncRNAs during the perithecia development, characterized by dynamic and 

developmental stage-specific expression. In the last step of our lncRNA identification pipeline, we only 

included differentially expressed noncoding transcripts to discern lncRNAs of biological significance. 

This filtering step allowed us to identify low-abundance lncRNAs that alone could be argued to be 

transcriptional noise (ENCODE Project Consortium 2007; Bakel et al. 2010). For many antisense 

lncRNAs, we detected parallel induction with their respective sense transcripts across the sexual 

development and identified a subset of lncRNAs that are sensitive to nonsense-mediated decay activity 

before sexual induction.

Our lists of F. graminearum lncRNAs contain many confident lncRNA annotations, but are still 

far from complete. It is primarily due to difficulty in unequivocal determination of whether a transcript is 

coding or noncoding (Anderson et al. 2015). Although protein products from most of the bonafide 

lncRNAs with predicted ORFs have not been detected in cells (Bánfai et al. 2012; Gascoigne et al. 2012), 

many lncRNAs with one or more ORFs have been shown to be associated with ribosomes in budding 

yeast, Arabidopsis, and animals (Wilson and Masel 2011; Chew et al. 2013; Ingolia et al. 2014; 

Juntawong et al. 2014; Ji et al. 2015; Carlevaro-Fita et al. 2016). By scrutinizing the sRNA-enriched loci, 

we identified as lncRNAs several transcripts with short ORFs (ranging from 49 to 227 amino acids). 
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These novel transcripts were initially filtered out by the CPAT program, however another annotation tool,

CPC2 (Kang et al. 2017) classified them as lncRNAs, and the lncRNA annotations were also supported 

by the lack of cross-species conservation of the deduced polypeptides (E ≥ 10−10; Supplemental Table S8).

Another source of false-negatives in our dataset may have arisen from poly-A-based library 

preparation that excluded some lncRNAs lacking poly-A tail. This may account for the inclusion of fewer

noncoding transcripts in our XUT identification process. More precise identification of lncRNAs, 

especially for those undergoing deadenylation by the RNA quality control machineries, should be 

accompanied by cap-analysis gene expression (CAGE)-seq (Bogu et al. 2016; Wery et al. 2016; Liu et al. 

2017). However, most lncRNAs identified in this study were also detected in the degradome-seq (Son et 

al. 2017), another sequencing method (aka. parallel analysis of RNA ends; German et al. 2008), which 

further validates their authenticity.

To better understand how the expression of lncRNAs was controlled during perithecia 

development, we identified XUTs, as the NMD pathway has been shown to determine the fate of 

lncRNAs (Smith and Baker 2015; Wery et al. 2016). However, only 5% of the sexual stage-induced 

lncRNAs (25/547) were affected by Xrn1 activity, and the majority of the lncRNAs seemed to escape 

from the RNA surveillance system. The proportion of XUTs among the lncRNAs in F. graminearum is 

comparable to that in other eukaryotes, where approximately 4–14% of noncoding transcripts are known 

to undergo NMD (Ruiz-Orera et al. 2014). Interestingly, several sexually-induced RISC components were

highly upregulated in ∆xrn1, indicating a possible link between the gene silencing pathway and the NMD 

pathway. Further studies on lncRNAs and the RNAi machinery that were affected by NMD activity will 

provide novel insights into regulatory mechanisms via altered RNA metabolism during the sexual 
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development. 

We were unable to test the role of the exosome components in lncRNA expression, as the major 

exosome component (RRP6) and the functionally-related helicase genes (DBP2 and MTR4) all seemed to 

be essential in F. graminearum. In fission yeast, the nuclear exosome mediates gene silencing of coding 

and noncoding loci during vegetative growth, and the sexual sporulation is triggered by disassembly of 

heterochromatin on the silenced loci (Zofall et al. 2012). Therefore, it will be interesting to see if the 

regulation of lncRNA expression is achieved by modulation of chromatin status before and after the 

sexual induction in F. graminearum.

Antisense transcription can influence synthesis, expression kinetics, and stability of sense 

transcripts through a variety of mechanisms (Böhmdorfer and Wierzbicki 2015; Quinn and Chang 2015). 

Antagonism of lncRNAs against meiotic gene expression has been documented in yeasts (Hongay et al. 

2006; Ni et al. 2010; Rhind et al. 2011; Zhang et al. 2011; Chen et al. 2012; van Werven et al. 2012). 

Nevertheless, there has been growing evidence that lncRNAs activate repressed genes by modulating 

local chromatin structures, which can facilitate coordinated gene expression in budding yeast (Cloutier et 

al. 2013, 2016) and in other eukaryotes (Ørom et al. 2010; Wang et al. 2011b; Li et al. 2013; Boque-

Sastre et al. 2015). In favor of this regulatory phenomenon, we hypothesize that the F. graminearum 

lncRNAs, which showed parallel induction with sense transcripts across the sexual development, may 

play a role in regulation of DNA synthesis and degradation at later developmental stages, according to 

“guilt-by-association” (Guttman et al. 2009; Gaiti et al. 2015). However, lncRNAs often exhibited cell 

type-specific expression (Bitton et al. 2011; Bumgarner et al. 2012; Li et al. 2013), and even allele-

specific expression within the same nucleus (Rosa et al. 2016). Therefore, we cannot rule out the 
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possibility that the positively correlated pairs of lncRNA and sense transcript are in fact mutually 

exclusively expressed in different tissues or cell types in the perithecia, inhibiting each other.

Although genes found in sRNA-enriched loci are usually silenced by RNAi-dependent 

heterochromatin formation, some of the sRNA clusters involving lncRNAs, paradoxically, were 

transcriptionally active at the meiotic stage in F. graminearum. Since there are newly emerging tissues 

such as asci at the meiotic stage, it is conceivable that the silenced genes were derepressed by lncRNA 

expression in certain tissue types by yet-unknown mechanisms. A periodic gene activation and repression 

mechanism involving lncRNA and facultative heterochromatin formation has been documented in N. 

crassa. The expression of an lncRNA antisense to the circadian clock gene, frequency, promotes the sense

transcription by generating a more transcriptionally permissive chromatin that has been silenced by 

sRNA-mediated heterochromatin formation (Li et al. 2015).

This study presents genome-wide characterization of lncRNAs during the fruiting body 

development. The transcriptome landscape including lncRNAs during the life cycle of F. graminearum 

provides fundamental genomic resources to the fungal community. The detailed molecular study of newly

identified lncRNAs, with its established tools for rapid genetic analyses and ample genetic resources, will 

contribute to the understanding of how fungi utilize noncoding genomes for laying out their multicellular 

body plan.

METHODS

Data generation and processing

The F. graminearum genome assembly (Cuomo et al. 2007) and the Ensembl annotation version 
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32 (King et al. 2015) of a wild-type strain PH-1 (accessions: FGSC9075/NRRL31084) were used 

throughout this study. For total RNA extraction, synchronized fungal tissues were collected from carrot 

agar cultures at the previously defined developmental stages during perithecia formation (Trail and 

Common 2000; Hallen et al. 2007; Sikhakolli et al. 2012; Trail et al. 2017). For transcriptome data of 

spore germination stages, asexual spores (macroconidia) were spread on Bird agar medium (Metzenberg 

2004) overlaid with a cellophane membrane, and sampled at the indicated spore germination stages 

(Supplemental Fig. S5). Strand-specific cDNA libraries were constructed from poly-A captured RNAs, 

using the KAPA Stranded RNA-Seq Library Preparation Kit (Kapa Biosystems, Wilmington, MA), and 

sequenced on the Illumina HiSeq 2500 platform (Illumina Inc., San Diego, CA) at the Michigan State 

University's Research Technology Support Facility (https://rtsf.natsci.msu.edu/genomics). Following 

quality control for raw reads (Supplemental Methods), filtered reads were mapped to the repeat-masked 

genome using the HISAT2 program (v2.0.4; Kim et al. 2015a), and a genome-guided transcriptome 

assembly was performed using the StringTie program (v1.3.0) to generate de novo transcript annotations 

(Pertea et al. 2015).

Differential expression and functional enrichment analyses

Read counts for gene loci were calculated using the htseq-count program (v0.6.1; Anders et al. 

2015). On average, 87% of mapped reads were overlapped to exons in the de novo annotations. Gene 

expression levels in counts-per-million (CPM) value were computed and normalized by effective library 

size estimated by trimmed mean of M values, using the edgeR R package (v3.14.0; Robinson et al. 2010).

Only genes with CPM greater than 1 in at least 3 samples were kept for further analyses (15,476 out of 
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20,459 gene loci). Then, differentially expressed (DE) genes showing greater than 4-fold difference at 

FDR 5% were identified between two successive developmental stages, using the limma R package 

(v3.28.21; Law et al. 2016). GO terms were assigned to the de novo annotations, using the Trinotate 

program (v3.0.1; Bryant et al. 2017). The list of GO terms was customized by adding several GO terms 

related to developmental processes to the GO Slim terms specific for fission yeast (Aslett and Wood 

2006; Supplemental Table S1). Functional enrichment analyses for DE genes were performed using the 

GOseq R package (v1.24.0), including only those genes annotated by one or more GO terms (Young et al.

2010). To assess enrichment of GO terms, the Wallenius approximation (an extension of the 

hypergeometric distribution) and Benjamini–Hochberg method were used to calculate the FDR-corrected 

P value (Supplemental Table S1).

Conserved lncRNA search

To search for conserved lncRNAs, the 547 lncRNAs were queried against the RNAcentral 

database version 5 (http://rnacentral.org), using the nhmmer program, which detects remote homologies, 

in the HMMER software (v3.1b2; Wheeler and Eddy 2013). Search hits with E < 10−10 were reported 

(Supplemental Table S3).

Coexpression network analysis

The weighted gene correlation network analysis (WGCNA) R package (v1.51; Langfelder and 

Horvath 2008) was used to cluster lncRNAs by averaged RPKM values for developmental stages. The 

‘pickSoftThreshold’ function was used to determine soft-thresholding power that measures the strength of 
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correlation based on not just the direct correlation value of pairs of genes, but also the weighted 

correlations of all of their shared neighbors in the network space (Zhang and Horvath 2005). The soft-

thresholding power 26 was selected, which is the lowest power for which the scale-free topology model 

fit index reaches 0.80. A range of treecut values were tested for cluster detection and the value was set to 

0.18 (corresponding to correlation of 0.82). All other WGCNA parameters remained at their default 

settings.

Identification of small RNA clusters

The sRNA-seq and degradome-seq data were obtained from NCBI GEO (GSE87835) and NCBI 

SRA (PRJNA348145), respectively (Son et al. 2017). In filamentous fungi, the size of a majority of 

sRNAs ranges from 17 to 27 nt with a strong 5'U preference (70–82%; Lee et al. 2010; Son et al. 2017). 

Thus, clusters of 17–27 nt-long 5'U-sRNA reads were detected across the genome, using the ShortStack 

program (v3.8.2; Shahid and Axtell 2014) with option arguments: ‘--pad 22’ and ‘--mincov 20’. 

Subsequently, the number of 5'U-sRNA reads aligned to different genomic features (e.g. coding regions) 

were counted for each sRNA cluster, using the htseq-count program (v0.8.0; Anders et al. 2015). The 

degradome-seq dataset was processed according to the previous study (Son et al. 2017).

Expression correlation analysis

The expression value matrix for the 18 RNA-seq data (6 stages × 3 replicates) were rearranged by

the BLIND program (Supplemental Fig. S2). Pearson’s correlation and the associated P value by Fisher’s 

exact test were calculated for the expression levels of the 300 sense mRNA-antisense lncRNA pairs, 
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using an R script (Gaiti et al. 2015). For sense mRNAs only, that showed positive correlation with 

antisense lncRNAs, we performed functional enrichment analyses, using the GOseq R package (v1.24.0; 

Young et al. 2010), as did for DE genes between two successive developmental stages (see above).

XUT identification

Generation and confirmation of gene-deletion mutants and RNA-seq methodology for ∆xrn1 

were described in Supplemental methods. For ∆xrn1 RNA-seq data, transcripts were independently 

assembled and merged to the de novo annotations, using the ‘merge’ function in the StringTie program 

(v1.3.0; Pertea et al. 2015), to incorporate novel transcripts that were only expressed in ∆xrn1 due to loss 

of NMD activity. Transcript abundance is globally affected by XRN1 deletion in budding yeast, however 

the expression of ribosomal protein genes shows only slight increases in ∆xrn1 and remains constant after

lithium treatment that inhibits 5'→3' exonuclease activities (Dichtl et al. 1997; van Dijk et al. 2011). 

Thus, before XUT identification, expression values were normalized in such a way that ribosomal protein 

genes are expressed at the same levels in WT and ∆xrn1 by multiplying 0.66 and 1.96 to RPKM values of

WT at S0 and S4, respectively (Supplemental Fig. S11). Differential expression analyses were performed,

using the ‘stattest’ function with an option argument: ‘libadjust=FALSE’, in the Ballgown R package 

(v2.8.4; Frazee et al. 2015). The DE transcripts showing 3-fold increase in ∆xrn1 were identified as XUTs

(5% FDR). We excluded transcripts with relatively low expression levels in ∆xrn1 (RPKM < 3.0) from 

the putative XUTs to reduce possible false positives.
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The RNA-seq data generated in the present work have been deposited in NCBI’s Gene 

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo), and are accessible through GEO series 

accession number GSE109095 that is composed of the two datasets, the sexual stage and ∆xrn1 dataset 

(GSE109094) and the spore germination stage dataset (GSE109088).
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