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Abstract 19 

Background: Below-ground linkage between plant and fungal communities is one of the 20 

major drivers of terrestrial ecosystem dynamics. However, we still have limited knowledge of 21 

how such plant–fungus associations vary in their community-scale properties depending on 22 

fungal functional groups and geographic locations.  23 

Methods: Based on high-throughput sequencing of root-associated fungi in forest ecosystems, 24 

we performed a comparative analysis of arbuscular mycorrhizal, ectomycorrhizal, and 25 

saprotrophic/endophytic associations across a latitudinal gradient from cool-temperate to 26 

subtropical regions. 27 

Results: In most of the plant–fungus networks analyzed, host–symbiont associations were 28 

significantly specialized but lacked “nested” architecture, which has been commonly reported 29 

in plant–pollinator and plant–seed disperser networks. Meanwhile, the structure of arbuscular 30 

mycorrhizal networks was differentiated from that of ectomycorrhizal and 31 

saprotrophic/endophytic networks, characterized by high connectance. Our data also 32 

suggested that geographic factors affected the organization of plant–fungus network structure. 33 

For example, the southernmost subtropical site analyzed in this study displayed lower 34 

network-level specificity of host–symbiont associations and higher (but still low) nestedness 35 

than northern localities. 36 

Conclusions: Our comparative analyses suggest that arbuscular mycorrhizal, ectomycorrhizal, 37 

and saprotrophic/endophytic plant–fungus associations often lack nested network architecture, 38 

while those associations can vary, to some extent, in their community-scale properties along a 39 

latitudinal gradient. Overall, this study provides a basis for future studies that will examine 40 

how different types of plant–fungus associations collectively structure terrestrial ecosystems.  41 

Keywords: biodiversity; community ecology; competitive exclusion; host specificity or 42 

preference; latitudinal gradients; microbiomes; plant–fungus interactions; plant–soil feedback; 43 

species coexistence; mycorrhizal and endophytic symbiosis 44 
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Background 46 

Fungi in the below-ground biosphere are key drivers of terrestrial ecosystem processes [1-4]. 47 

Mycorrhizal fungi are considered to support land plants not only by provisioning soil nitrogen 48 

and phosphorous [5, 6] but also by increasing plants’ resistance to biotic/abiotic stress [7, 8]. 49 

Pathogenic fungi in the soil affect the survival/mortality of young plants in a major way, 50 

possibly determining spatial distributions of plant species within forest/grassland ecosystems 51 

[9, 10]. Moreover, recent mycological studies have begun to examine the poorly explored 52 

diversity of endophytic fungi, which can enhance the nutritional conditions and pathogen 53 

resistance of mycorrhizal and non-mycorrhizal plant species [11-14]. Thus, terrestrial biomes 54 

consist of multiple layers of below-ground plant–fungus interactions [15]. Nonetheless, we 55 

still have limited knowledge of the structure of such complex webs of interactions, leaving 56 

major processes in below-ground ecosystems poorly explored.  57 

In enhancing our understanding of community- or ecosystem-level processes of 58 

below-ground plant–fungus interactions, analyses on community-scale properties of such 59 

host–symbiont associations provide essential insights. For example, if a pathogenic fungal 60 

community consists mainly of species with narrow host ranges, it as a whole is expected to 61 

restrict the emergence of dominant plant species through “negative plant–soil feedback”, 62 

contributing to the maintenance of plant species diversity within an ecosystem [16-18]. In 63 

contrast, with a high proportion of mycorrhizal fungi with narrow host ranges, their specific 64 

host species, such as Pinaceae plants hosting Suillaceae ectomycorrhizal fungi [19], will 65 

dominate the plant community through positive plant–soil feedback [18, 20]. Meanwhile, 66 

endophytic and arbuscular mycorrhizal fungi with broad host ranges [21-23] may diminish 67 

such negative and positive feedback by interlinking otherwise compartmentalized ecological 68 

dynamics (but see [24]). Therefore, concomitant analyses of community-scale properties of 69 

those multiple plant–fungus associations are of particular importance in understanding how 70 

plant–soil feedbacks organize terrestrial ecological processes.   71 

Since the application of network science to ecology and mycology, researchers have 72 

evaluated the architecture of networks that represent linkage between plant and fungal 73 
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communities [25]. Those studies have shown that arbuscular mycorrhizal [26-28], 74 

ectomycorrhizal [29], and ericaceous [30] plant–fungus networks exhibit moderate or low 75 

levels of host–symbiont specificity, while they are structured to avoid overlap of host plant 76 

ranges within fungal communities. In addition, many of those plant–fungus networks [15, 29, 77 

31] are known to lack “nested” architecture (i.e., structure of networks wherein specialist 78 

species interact with subsets of partners of generalist species [32]), which has been commonly 79 

reported in above-ground networks of plant–pollinator and plant–seed-disperser interactions 80 

[32-34] (but see [35]). However, in those previous studies, data of different types of plant–81 

fungus networks have been collected from different geographic localities with different 82 

sampling strategy, precluding the chance of simultaneously evaluating the effects of 83 

interaction type and geographic factors. Although comparative studies of published data 84 

provide invaluable insights [25], compiled data often vary in the molecular markers used and 85 

they may differ in appropriate null model assumptions in statistically examining network 86 

topological properties. 87 

In this study, we compared community-scale properties of arbuscular-mycorrhizal, 88 

ectomycorrhizal, and endophytic associations across eight forest sites spanning from 89 

cool-temperate to subtropical regions in Japan. Based on high-throughput sequencing of 90 

root-associated fungi, we obtained network data depicting how multiple plant species are 91 

associated with respective functional groups of fungi in each of the eight forests. We then 92 

examined how structure varied depending on categories of plant–fungus associations and 93 

geographic locations. Overall, this study provides a first step for integrating insights into 94 

community-scale properties of multiple types of below-ground plant–fungus associations and 95 

their ecosystem-level consequences.  96 

 97 

Methods 98 

Terminology 99 

In analyzing metadata of community-scale properties of plant–fungus associations, we need 100 

to use consistent terminology that can be applied to a wide range of host–symbiont 101 
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associations. While plant–fungus network properties have been compared within a single 102 

functional group of fungi (e.g., arbuscular mycorrhizal or ectomycorrhizal fungi) in most 103 

studies, we herein target not only arbuscular mycorrhizal and ectomycorrhizal fungi but also 104 

pathogenic and saprotrophic/endophytic fungi. Given that those functional groups of fungi 105 

vary considerably in their microscopic structure within plant tissue [8], developing a general 106 

criterion for mutualistic/antagonistic interactions with host plants is impossible. Thus, we 107 

targeted all the fungi detected by high-throughput sequencing and the data described below 108 

could contain not only mutualistic/antagonistic fungi but also commensalistic fungi merely 109 

adhering to plant roots [36]. In this sense, our data represented symbiotic relationships in the 110 

broad sense, i.e., intimate physical connections between organisms [15, 37].  111 

 112 

Sampling 113 

We collected root samples at eight forest sites (four cool-temperate, one warm-temperate, and 114 

three subtropical forests) across the entire range of the Japanese Archipelago (45.042–24.407 115 

ºN; Fig. 1A; Additional file 1: Data S1). In each forest, 2-cm segment of terminal roots were 116 

collected from 3-cm below the soil surface at 1-m horizontal intervals. In each forest, 383 117 

terminal root samples were collected. Those roots were collected indiscriminately regarding 118 

root morphology or apparent mycorrhizal type so that the samples as a whole represented the 119 

relative frequency of plant–fungal associations in the horizon in each forest [38]. Therefore, 120 

while the sample sets consisted mainly of woody plants, they also included herbaceous plants 121 

(Additional file 2: Data S2). Each root sample was preserved in 70% ethanol and stored at -25 122 

ºC until DNA extraction.  123 

 124 

Molecular analysis 125 

Each root sample was placed in 70% ethanol with 1-mm zirconium balls and it was then 126 

shaken at 15 Hz for 2 min with a TissueLyser II (Qiagen) [21]. The washed roots were 127 

subsequently pulverized by shaking with 4-mm zirconium balls at 25 Hz for 3 min. DNA 128 
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extraction was then performed with a cetyltrimethylammonium bromide method [39].  129 

The internal transcribed spacer 1 (ITS1) region of root-associated fungi was amplified 130 

with the primers ITS1F_KYO1 and ITS2_KYO2, which target not only Ascomycota and 131 

Basidiomycota fungi but also diverse non-Dikarya (e.g., Glomeromycota) taxa [40]. We used 132 

the forward primer ITS1F-KYO1 fused with 3–6-mer Ns for improved Illumina sequencing 133 

quality [41] and the forward Illumina sequencing primer (5’- TCG TCG GCA GCG TCA 134 

GAT GTG TAT AAG AGA CAG- [3–6-mer Ns] – [ITS1-KYO2] -3’) and the reverse primer 135 

ITS2-KYO2 fused with 3–6-mer Ns and the reverse sequencing primer (5’- GTC TCG TGG 136 

GCT CGG AGA TGT GTA TAA GAG ACA G [3–6-mer Ns] - [ITS2_KYO2] -3’). The 137 

DNA polymerase system of KOD FX Neo (Toyobo) was used with a temperature profile of 138 

94 ºC for 2 min, followed by 35 cycles at 98 ºC for 10 s, 50 ºC for 30 s, 68 ºC for 50 s, and a 139 

final extension at 68 ºC for 5 min. The ramp rate was set to 1 ºC/sec to prevent the generation 140 

of chimeric sequences [42]. Illumina sequencing adaptors were then added to each sample in 141 

the subsequent PCR using the forward primers consisting of the P5 Illumina adaptor, 8-mer 142 

tags for sample identification [43], and a partial sequence of the sequencing primer (5’- AAT 143 

GAT ACG GCG ACC ACC GAG ATC TAC AC - [8-mer index] - TCG TCG GCA GCG TC 144 

-3’) and the reverse primers consisting of the P7 adaptor, 8-mer tags, and a partial sequence of 145 

the sequencing primer (5’- CAA GCA GAA GAC GGC ATA CGA GAT - [8-mer index] - 146 

GTC TCG TGG GCT CGG -3’). In the reaction, KOD FX Neo was used with a temperature 147 

profile of 94 ºC for 2 min, followed by 8 cycles at 98 ºC for 10 s, 55 ºC for 30 s, 68 ºC for 50 148 

s, and a final extension at 68 ºC for 5 min. The PCR amplicons of 384 samples in each forest 149 

(including one PCR negative control) were pooled with equal volume after a 150 

purification/equalization process with AMPureXP Kit (Beckman Coulter).  151 

For the identification of plants, another set of PCR was performed targeting chloroplast 152 

rbcL region with rbcL_F3 and rbcL_R4 primers [38]. The fusion primer design, DNA 153 

polymerase system, temperature profiles, and purification processes used in the rbcL analysis 154 

were the same as those of the fungal ITS analysis. The ITS and rbcL libraries were processed 155 

in two Illumina MiSeq runs, in each of which samples of four forest sites were combined (run 156 

center: KYOTO-HE) (2 × 250 cycles; 15% PhiX spike-in). 157 
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 158 

Bioinformatics 159 

In total, 17,724,456 and 17,228,848 reads were obtained for the first and second MiSeq runs. 160 

The raw sequencing data were converted into FASTQ files using the program bcl2fastq 1.8.4 161 

provided by Illumina. The FASTQ files were then demultiplexed using the program Claident 162 

v0.2.2016.07.05 [44, 45]. To avoid possible errors resulting from low-quality index sequences, 163 

the sequencing reads whose 8-mer index positions included nucleotides with low (< 30) 164 

quality scores were discarded in this process. As reverse sequences output by Illumina 165 

sequencers have lower quality values than forward sequences, we used only forward 166 

sequences after removing low-quality 3’-ends using Claident (sequencing data deposit: DDBJ 167 

DRA accession: DRA006339). Noisy reads were subsequently discarded and the reads that 168 

passed the filtering process were clustered using VSEARCH [46] as implemented in Claident. 169 

The threshold sequencing similarities in the clustering were set to 97% for fungal ITS and 170 

98% for rbcL, respectively. While sequence similarity values have been set to 97% in most 171 

ITS analyses of Ascomycota and Basidiomycota fungi [47] (see also [48]), a recent study 172 

showed that Glomeromycota fungi generally had much higher intraspecific ITS-sequence 173 

variation than Dikarya fungi [49]. Therefore, we performed an additional clustering analysis 174 

with a 94% cutoff similarity for defining Glomeromycota OTUs. Note that changing cut-off 175 

similarities (81–97%) did not qualitatively change statistical properties of plant–fungus 176 

network structure in a previous study [15]. The taxonomic assignment of the OTUs 177 

(Additional files 3-4: Data S3-4) was conducted based on the combination of the 178 

query-centric auto-k-nearest neighbor (QCauto) method [44] and the lowest common ancestor 179 

(LCA) algorithm [50] as implemented in Claident. Note that taxonomic identification results 180 

based on the QCauto–LCA approach were comparable to, or sometimes more accurate than, 181 

those with the alternative approach combining the UCLUST algorithm [51] with the UNITE 182 

database [52] [see [30] and [53] for detailed comparison of the QCautoLCA and UCLUST–183 

UNITE approaches]. The functional group of each fungal OTU was inferred using the 184 

program FUNGuild 1.0 [54]. For 44.1 % (3560/8080) of fungal OTUs, functional group 185 

information was inferred (Additional file 1: Data S1). 186 
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The obtained information of rbcL OTUs was used to identify each root sample, although 187 

species-level taxonomic information was unavailable for some plant taxa in each forest due to 188 

the relatively low variability of the chloroplast region [55]. Thus, we also used the 189 

information of the ITS sequencing libraries, which included not only fungal but also host 190 

plant sequencing reads: there were plant taxa that could not be identified to species even with 191 

ITS information. Based on the rbcL and ITS information of plant sequences, possibly 192 

contaminated samples were removed from the dataset. 193 

For each of the eight forests, we then obtained a sample (row) × fungal OTU (column) 194 

data matrix, in which a cell entry depicted the number of sequencing reads of an OTU in a 195 

sample. The cell entries whose read counts represented less than 0.1% of the total read count 196 

of each sample were subsequently excluded because those rare entries could derive from 197 

contaminations from soil or PCR/sequencing errors [56]. The filtered matrices were then 198 

rarefied to 1,000 reads per sample using the “rrarefy” function of the vegan 2.4-3 package 199 

[57] of R 3.4.1 [58]. As the number of samples with 1,000 or more reads varied among the 200 

eight forests examined (240–288 samples), it was equalized by randomly sampling 240 201 

samples without duplication in each forest (“sample-level matrices”; Additional file 2: Data 202 

S2). 203 

Based on the sample-level matrices, we obtained another type of matrices, in which a cell 204 

indicated the number of samples representing associations between a plant species/taxa (row) 205 

and a fungal OTU (column) (“species-level matrices”; Additional file 5: Data S5). In addition 206 

to the matrix indicating associations between all fungal OTUs and their host plants (ALL), a 207 

series of partial network matrices representing respective fungal functional groups were 208 

obtained by selecting arbuscular mycorrhizal (AM), ectomycorrhizal (ECM), potentially 209 

pathogenic (PATHO), and saprotrophic/endophytic (SAPENDO) fungal OTUs in each forest 210 

(Additional file 6: Data S6). Due to the limited availability of information of fungal ecology, 211 

functional groups of many fungal OTUs could not be estimated and there were only 9–25 212 

fungal OTUs inferred to be plant pathogens in respective forests (Additional files 1 and 5: 213 

Data S1 and S5).   214 
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 215 

Data analysis 216 

Based on the sample-level matrices, relationship between the number of samples and that of 217 

observed fungal OTUs was analyzed for each forest using the “specaccum” function of the 218 

vegan package. The community-scale plant–fungus associations represented by the 219 

species-level matrices (“ALL” network matrices; Additional file 5: Data S5) were visualized 220 

using the program GePhi 0.9.1 [59] with “ForceAtlas2” layout algorithm [60]. We then 221 

analyzed the statistical properties of the ALL networks and partial networks (Additional file 222 

6: Data S6) in terms of the H2’ metric of network-level interaction specificity [61], which has 223 

been frequently used to measure the degree of interaction specificity in host–symbiont 224 

networks [62, 63]. The plant–fungus associations were evaluated also by the weighted NODF 225 

metric [64] of network nestedness [32], which measures the degree to which specialists 226 

(species with narrow partner ranges) interact with partners of generalists (species with broad 227 

partner ranges) in the same guild or trophic level. We further examined how host plant ranges 228 

were differentiated within the fungal community of each forest based on checkerboard scores 229 

[65]: a high/low score of the checkerboard index indicates host differentiation/overlap within 230 

a guild or trophic level [63]. Although modularity is another important index frequently used 231 

in ecological network studies [33], its computation was too time-consuming to be applied to 232 

randomization analyses (see below) of our present datasets consisting of more than 1,000 233 

fungal OTUs and their host plants. Note that we previously found that below-ground plant–234 

fungal associations generally showed statistically significant but low network modularity [15, 235 

30, 63]. 236 

As estimates of network indices could vary depending on species compositions of 237 

examined communities, we standardized the indices as 238 

relative index value = [Iobserved – mean(Irandomized)] / SD(Irandomized) 239 

where Iobserved was the index estimate of the observed data matrix, and mean(Irandomized) and 240 

SD(Irandomized) were the mean and standardized deviation of the index values of randomized 241 

matrices [63]. Randomized matrices were obtained by shuffling host-plant labels in the 242 
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sample-level matrices and subsequently converting the randomized sample-level matrices into 243 

randomized species-level matrices. Although we used two additional methods [“r2dtable” 244 

[66] and “vaznull” [67] methods] of matrix randomization in our previous studies of plant–245 

fungus networks [15, 63], they were too time-consuming to be used in the present large 246 

datasets: note that the three randomization methods compared in those previous studies 247 

yielded qualitatively similar results [15, 63]. The number of randomizations was set to 1,000 248 

for H2’/nestedness analyses and 100 for checkerboard-score analyses, which required 249 

substantial computing time.  250 

Based on the network indices, we examined how the community-scale properties of the 251 

plant–fungus associations varied among local forests and fungal functional groups. For each 252 

of interaction specificity (relative H2’), nestedness (relative weighted NODF nestedness), and 253 

checkerboard index (relative checkerboard values), an ANOVA model was constructed by 254 

incorporating locality (forest sites), fungal functional group, number of plant species/taxa, 255 

number of fungal OTUs, and network connectance (the proportion of non-zero entries in 256 

community matrices) as explanatory variables. The variation in the plant–fungus network 257 

properties was visualized based on a principal component analysis based on a correlation 258 

matrix: the variables included were H2’ interaction specificity, NODF nestedness, 259 

checkerboard index, number of plant species/taxa, number of fungal OTUs, proportion of 260 

fungal OTUs to plant species/taxa, and connectance.   261 

 262 

Results 263 

Total fungal OTU richness was higher in warm-temperate and subtropical forests than in 264 

cool-temperate forests (Figs. 1b and 2). The OTU richness of AM fungi was higher in the 265 

three subtropical forests, while that of ECM fungi decreased in the southern forests (Fig. 3a). 266 

The ratio of the total number of fungal OTUs to the number of plant species/taxa varied 267 

among forests, although there was no systematic variation between cool-temperate and the 268 

other (warm temperate and subtropical) localities (Fig. 3b). Connectance varied among forests 269 

as well, while it was consistently higher in AM than in ALL, ECM, and SAPENDO 270 
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networks/partial networks in seven of the eight study forests (Fig. 3c). The connectance of 271 

PATHO partial networks varied considerably among forests presumably due to low OTU 272 

richness and the resultant uncertainty in index estimation.  273 

The relative H2’ metric of interaction specificity significantly varied among forests but 274 

not among fungal functional groups when the effects of plant diversity, fungal OTU richness, 275 

and connectance were controlled in an ANOVA model (Table 1; Fig. 3d). The relative 276 

nestedness of the ALL matrices of plant–fungus associations was lower than zero in most 277 

forests but not in the southern most subtropical forest (Fig. 3e; Additional file 7: Data S7). 278 

Overall, plant–fungus associations in ALL networks were more specialized (Fig. 3d) and less 279 

nested (Fig. 3e) than those of partial networks. In addition, fungal OTUs in ALL networks 280 

displayed stronger differentiation of host ranges than those in partial networks (Fig. 3f). 281 

After taking into account plant and fungal diversity in an ANOVA model, neither locality 282 

nor fungal functional group explained the variation in relative nestedness (Table 1). The 283 

relative checkerboard scores varied among localities (Fig. 3f), although the effects of locality 284 

were non-significant in an ANOVA model (Table 1). The ANOVA model showed that the 285 

variation in relative checkerboard scores was explained, to some extent, by fungal functional 286 

groups.  287 

In the principal component analysis of network indices, ALL, PATHO and other 288 

networks/partial networks were separated by the first principal component, which represented 289 

high plant diversity, fungal OTU richness, relative H2’, and relative checkerboard scores as 290 

well as low relative nestedness (Fig. 4a). By incorporating the third principal component, 291 

which represented high fungal OTU richness and connectance, the cluster of AM partial 292 

networks and that of ECM and SAPENDO partial networks were grouped with some overlap 293 

(Fig. 4b).  294 

 295 

Discussion 296 

Our data, which included 17–55 plant species/taxa and more than 1000 fungal OTUs in each 297 
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of the eight forests, provided a novel opportunity to evaluate how different types of 298 

below-ground plant–fungus associations varied in their community-scale characteristics along 299 

a latitudinal gradient. We then found that network structural properties differed among 300 

different types of plant–fungus associations (Fig. 3), while geographic factors contributed to 301 

the variation found in network structure (Table 1). Specifically, arbuscular mycorrhizal 302 

networks differed in their architecture from ectomycorrhizal and saprotrophic/endophytic 303 

networks, characterized by high connectance (Fig. 4). We also found that networks consisting 304 

of all functional groups of fungi and their host plants had higher network-level interaction 305 

specificity, more differentiated host ranges between fungi, and lower network nestedness than 306 

the partial networks of arbuscular mycorrhizal, ectomycorrhizal, and saprotrophic/endophytic 307 

associations (Figs. 3 and 4). As in previous studies, our data included many fungal OTUs 308 

unassigned to functional groups due to the paucity of the information of fungal functions and 309 

guilds in databases [54]. However, by extending findings in previous plant–fungus network 310 

studies [28, 29, 63], in which sampling strategies, interaction type, or geographic factors were 311 

not controlled systematically, this study offers a basis for discussing how different types of 312 

below-ground plant–fungus associations collectively build plant–soil feedback in terrestrial 313 

ecosystems.  314 

Among the network indices examined in this study, nestedness showed an idiosyncratic 315 

tendency in light of other types of interaction networks examined in community ecology 316 

[32-34]. We found that below-ground plant–fungus networks often displayed “anti-nested” 317 

architecture, in which scores representing nested network structure were lower than those 318 

expected by chance (i.e., negative values of relative nestedness; Fig. 3e), as suggested also in 319 

previous studies [15, 29, 63]. Although factors organizing anti-nested network architecture 320 

remain to be investigated, competition for host plants among fungal species has been inferred 321 

to decrease nestedness of plant–fungus associations [63]. In addition, a previous comparative 322 

study suggested that plant–fungus network nestedness decreased with increasing annual mean 323 

temperature on a global scale [25].  324 

The prevalence of anti-nested or non-nested network structures is in sharp contrast to 325 

observations on other types of plant–partner networks, which commonly show statistically 326 
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significant nested architecture [32]. Specifically, plant–pollinator and plant–seed disperser 327 

interactions are generally characterized by nested network architecture in which overlap of 328 

partner ranges within the same guild are expected to mitigate competition between plant 329 

species [32-34]. Therefore, anti-nested structure of plant–fungus networks provides important 330 

insights in terms of community ecological theory linking network structure and species 331 

coexistence [34, 35, 68]. Given that below-ground fungi constitute one of the most 332 

species-rich components of the terrestrial biosphere [3], understanding community-scale 333 

properties of below-ground plant–fungus associations is a major step for disentangling 334 

relationship among network structure, species coexistence, and community stability.  335 

To overcome the inconsistency between theory and observations, we may need to take 336 

into account basic biology of below-ground plant–fungus associations. We here highlight two 337 

backgrounds that need more attention for deepening discussion on ecological networks and 338 

species coexistence. First, in contrast to plant–pollinator or plant–seed disperser networks, 339 

which are often assumed to consist only of mutualistic interactions, below-ground plant–340 

fungus networks can involve not only mutualistic but also antagonistic and commensalistic 341 

interactions. This diversity of interaction type can lead to high stability of below-ground 342 

fungal and their host plant communities. Specifically, while communities consisting 343 

exclusively of mutualistic interactions are inherently unstable [69], involvement of a small 344 

fraction of antagonistic interactions in those communities can dramatically enhance species 345 

coexistence [70]. Second, because fungi can disperse long distances as spores [71, 72] (but 346 

see [73]), their local species richness (alpha diversity) may be greatly impacted by 347 

metacommunity processes [74]. Interestingly, a recent theoretical study on food webs 348 

predicted that strong coupling of local communities within a metacommunity could result in 349 

positive relationship between species richness and community stability [75]. Such theoretical 350 

evaluation of metacommunity dynamics has been extended to systems involving mutualistic 351 

interactions [76], providing platforms for considering how dispersal abilities of constituent 352 

species determine local species richness/coexistence of different types of plant–partner 353 

networks.  354 

To apply a standardized criterion for plant–fungus associations, we did not perform any 355 
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data screening based on the “mycorrhizal types” of plant species. As a result, our data 356 

included plant–fungus combinations that could not be classified into well-recognized 357 

categories of mycorrhizal symbioses [8]. For example, ectomycorrhizal fungi were detected 358 

not only from plant species in “ectomycorrhizal” families (e.g., Fagaceae, Pinaceae, and 359 

Betulaceae) but also from other plant species (Fig. 2; Additional file 6: Data S6). In addition, 360 

the data included network links between arbuscular mycorrhizal fungi and ectomycorrhizal 361 

plant species (Additional file 6: Data S6) as reported previously [77]. Although such plant–362 

fungus associations that do not fall into classic categories of mycorrhizal symbioses seldom 363 

attract attention and they are often removed from high-throughput sequencing datasets, some 364 

of them may represent important ecological interactions. An ectomycorrhizal fungus in the 365 

truffle genus (Tuber melanosporum), for instance, is known to cause severe necrosis in root 366 

cortices of non-ectomycorrhizal herbaceous plants [78]. Thus, for the standardization of 367 

plant–fungus network analyses inferred with high-throughput sequencing, we need to take 368 

into account the possibility that network links can represent not only mutualistic but also 369 

neutral and antagonistic interactions [15]. Given also that even well-known combinations of 370 

plant–fungus mycorrhizal interactions can result in antagonistic interaction depending on soil 371 

environmental conditions and host plant nutrition [79, 80], potential diversity of ecological 372 

interactions within a network and its community-scale consequences [70] deserve intensive 373 

research.    374 

Our community-scale comparative analysis targeting a broad latitudinal range from 375 

cool-temperate to subtropical regions has some implications for geographic diversity patterns 376 

of plant-associated fungi, although careful interpretation is required given the small number 377 

of study sites. The number of detected ectomycorrhizal fungal OTUs was lower in subtropical 378 

than in temperate forests (Fig. 3a), presumably reflecting geographic variation in the relative 379 

abundance of Fagaceae, Pinaceae, and Betulaceae plants in plant communities as discussed in 380 

previous studies [81-84] (see also [85]). In contrast, the number of arbuscular mycorrhizal 381 

fungal OTUs increased towards south in our data, while a previous meta-analysis detected no 382 

latitudinal diversity gradient regarding the fungal functional group [86] (see also [87]). The 383 

total number of fungal OTUs was also higher in subtropical forests, peaked in the 384 
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southernmost site. Interestingly, unlike other study sites, the southernmost sampling site was 385 

characterized by low levels of network-scale interaction specificity and host plant 386 

differentiation as well as by the absence of anti-nested network architecture. Although some 387 

pioneering studies have investigated host preferences of tropical fungi [88-90], it remains a 388 

major challenge to examine whether the observed latitudinal gradient in plant–fungus network 389 

structure is extended to tropical regions.  390 

 391 

Conclusions 392 

Based on the large datasets of root-associated fungi, we herein showed how plant–fungus 393 

network architecture vary across a latitudinal gradient across the Japanese Archipelago. For 394 

further understanding the diversity of below-ground pant–fungus associations, more 395 

comparative studies of community-scale characteristics are required especially in the tropics. 396 

Moreover, further data of networks consisting of pathogenic fungi and their host plants are 397 

awaited to discuss community-scale properties of negative plant–soil feedbacks [91]. Given 398 

that the number of pathogenic fungi included in our present analysis was too few to evaluate 399 

statistical features of their networks, selective sampling of pathogen infected plant individuals 400 

may be necessary. Improving reference databases of fungal functions is also an important 401 

challenge towards better understanding of the roles of fungal communities. More 402 

macroecological studies of plant–fungus interactions [73, 92, 93], along with experimental 403 

studies testing functions of poorly characterized fungi [11, 13, 14], will reorganize our 404 

knowledge of terrestrial ecosystem processes.  405 
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Table 1 Potential factors contributing to variation in plant–fungus network structure. For each 690 
response variable representing network structure, an ANOVA model including the number of 691 
plant species/taxa, that of fungal OTUs, network connectance, sampling locality, and fungal 692 
functional groups (i.e., categories of plant–fungus networks) was constructed. P values 693 
significant after a Bonferroni correction are shown in bold for ANOVA model. 694 

 695 

Response variable Explanatory variable df F P 

Relative interaction specificity No. plant species/taxa 1 4.6  0.0426 

 

No. fungal OTUs 1 96.9  < 0.0001 

 

Connectance 1 10.1  0.0040 

 

Locality 7 4.0  0.0048 

 

Functional group 4 2.6  0.0572 

     Relative nestedness No. plant species/taxa 1 5.1  0.0322 

 

No. fungal OTUs 1 39.3  < 0.0001 

 

Connectance 1 2.4  0.1308 

 

Locality 7 1.5  0.2216 

 

Functional group 4 2.1  0.1179 

     Relative checkerboard score No. plant species/taxa 1 1.0  0.3182 

 

No. fungal OTUs 1 62.9  < 0.0001 

 

Connectance 1 5.6  0.0262 

 

Locality 7 1.3  0.2772 

 

Functional group 4 4.0  0.0121 

 696 
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 698 

 699 

Fig. 1 Study sites. a Map of study sites. In each forest site, a number in a parenthesis indicates 700 

the number of plant species/taxa observed in the 240 terminal root samples from which 701 

sequencing data were successfully obtained. b Relationship between the number of samples 702 

and that of plant species/taxa observed. A rarefaction curve obtained from 240 terminal-root 703 

samples is shown for each study site.  704 
  705 
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Fig. 2 Below-ground plant–fungus networks. The “ALL” network involving all the 708 

root-associated fungal OTUs detected and their host plant species/taxa is shown for each 709 

forest. The OTUs/species in the networks are arranged with the “ForceAtlas2” layout 710 

algorithm [60]. Size of circles represents betweenness centrality scores compared within 711 

plant/fungal community. 712 
  713 
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 714 

 715 

Fig. 3 Network properties. The index scores representing the architecture of plant fungus 716 

networks/partial networks are shown across the eight forests examined. a The number of 717 

fungal OTUs. The code numbers of forest sites correspond to those shown in Figure 1. b The 718 

ratio of the number of fungal OTUs to that of the plant species/taxa involved in each 719 

network/partial network. c Connectance (the proportion of non-zero entries in a species-level 720 

matrix). d Network-level interaction specificity (relative H2’). e Nestedness (relative weighted 721 

NODF nestedness). f Host range differentiation (relative checkerboard score). For relative 722 

interaction specificity, relative nestedness, and relative checkerboard score (d-f), scores 723 

higher/lower than 2 roughly indicate that observed network index values are higher/lower 724 

than expected by chance (see Additional file 7: Data S7 for detailed results of the 725 

randomization test). 726 
  727 
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 728 

 729 

Fig. 4 Principal component analysis of network properties. a Principal component 1 vs. 730 

principal component 2. Factor loadings of the examined variables are shown on the right. b 731 

Principal component 1 vs. principal component 3.  732 

   733 
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