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Abstract 20 

Background: With the advent of the age of big data in bioinformatics, large volumes of data 21 

and high performance computing power enable researchers to perform re-analyses of 22 

publicly available datasets at an unprecedented scale. Ever more studies imply the 23 

microbiome in both normal human physiology and a wide range of diseases. RNA 24 

sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene 25 

expression patterns under defined conditions, including human disease-related contexts, but 26 

its generic nature also enables the detection of microbial and viral transcripts. 27 

Findings: We developed a bioinformatic pipeline to screen existing human RNA-seq datasets 28 

for the presence of microbial and viral reads by re-inspecting the non-human-mapping read 29 

fraction. We validated this approach by recapitulating outcomes from 6 independent 30 

controlled infection experiments of cell line models and comparison with an alternative 31 

metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes 32 

of publicly available raw RNA-seq data from >17,000 samples from >400 studies relevant to 33 

human disease using state-of-the-art high performance computing systems. The resulting 34 

data of this large-scale re-analysis are made available in the presented MetaMap resource.  35 

Conclusions: Our results demonstrate that common human RNA-seq data, including those 36 

archived in public repositories, might contain valuable information to correlate microbial and 37 

viral detection patterns with diverse diseases. The presented MetaMap database thus 38 

provides a rich resource for hypothesis generation towards the role of the microbiome in 39 

human disease. 40 

 41 
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Data Description 48 

Context 49 

Recent studies have demonstrated the paramount importance of the microbiome for 50 

human health and disease [1]. For example, imbalance of the human gut microbiome was 51 

linked to non-communicable diseases such as obesity [2,3], diabetes [4], cardiovascular 52 

disease [5], chronic obstructive pulmonary disease [6], or colorectal carcinoma [7,8], to name 53 

just a few.  54 

The advent of high-throughput sequencing technologies has revolutionized the life 55 

sciences. RNA-seq technology produces one of the most frequent next generation 56 

sequencing data types and has been applied to study a large number of biological samples 57 

relevant to human disease. The majority of the underlying raw data is freely accessible from 58 

data repositories such as the Gene Expression Omnibus (GEO) (>1,700 human RNA-seq 59 

data sets as of january 2018) or the Sequence Read Archive (SRA) [9].  60 

However, these data are typically exclusively used for single species (i.e. human) 61 

transcriptomics such as differential gene expression or alternative splicing analysis [9,10]. 62 

Reads that do not map onto the human genome are considered noise or contamination and 63 

therefore generally ignored [11,12] (collectively about 9% of total reads, Fig. 1). Five years 64 

ago, it was postulated that interspecies interactions might be studied by simultaneous 65 

detection and quantification of RNA transcripts from a given host and a microbe via ‘dual’ 66 

RNA-seq [13]. Meanwhile this approach has been successfully applied to the interaction of 67 

mammalian cells with diverse bacterial [14] and viral pathogens [15–19]. 68 

Inspired by dual RNA-seq, in this study we hypothesize that reads in archived RNA-69 

seq datasets derived from human primary cells or tissue samples that fail to map against the 70 

human reference genome may contain valuable information about the presence of certain 71 

microbes in the respective body niches and/or under defined disease conditions. To enable 72 

metatranscriptomic study of these data, we combined existing read alignment and 73 

metagenomic classification software into a two-step ‘omni’ RNA-seq pipeline to 74 
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comprehensively quantify archaeal, bacterial and viral reads in human RNA-seq data (Fig. 75 

1). 76 

In the first step of this so called ‘Metamap’ pipeline, all reads are aligned against the 77 

human genome using the ultra-fast RNA-seq aligner STAR [20] and subsequently only the 78 

fraction of unmapped reads is subjected to metatranscriptomic classification using CLARK-S 79 

[21] (see Methods for details). The combination between scalability and accuracy was the 80 

main motivation behind choosing these two software packages over competing methods 81 

[22,23]. It is important to note that CLARK-S uses a set of uniquely discriminative short 82 

sequences at the species level to classify reads. Therefore, reads containing non-83 

discriminative sequences that fail to be uniquely assigned to a single species, e.g. reads 84 

originating from the bacterial ribosomal 16S rRNA gene, will be considered ‘unclassified’ 85 

(altogether 8.6% in Fig. 1).  86 

The output of CLARK-S is an operational taxonomic units (OTU) count matrix, where 87 

rows correspond to viral, bacterial and archeal species and columns to (human) samples. 88 

Each entry corresponds to the number of non-human reads classified to the respective 89 

species. For convenience, in the following we refer to the set of microbial and viral species 90 

profiled using our approach as ‘metafeatures’. 91 

 By screening the study abstracts of the SRA for search terms prioritizing human 92 

clinical datasets derived from polyA-independent sequencing protocols (see Methods) we 93 

identified over 400 studies relevant to human disease comprising more than 17,000 cDNA 94 

libraries (close to 150 terabytes of raw sequencing data). Raw sequencing reads from these 95 

studies were downloaded and analyzed using the high performance computing system of the 96 

Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities 97 

which facilitated ultra-fast processing with median speeds of 25 and 21 million reads per hour 98 

per core per run for the STAR and CLARK-S steps, respectively. Overall, of the total over 99 

500 billion RNA-seq reads processed, around 91% could be mapped to the human genome. 100 

A fraction of 8.6% of all reads remained non-discriminative at the species level and defined 101 

as “unclassified”. 0.03%, 0.20% and 0.39% of all reads were assigned to archaeal, bacterial 102 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/269092doi: bioRxiv preprint 

https://doi.org/10.1101/269092
http://creativecommons.org/licenses/by-nc-nd/4.0/


or viral metafeatures, respectively. Despite these relatively low percentages, the absolute 103 

numbers of reads classified were in the hundred millions to billions, enabling statistical 104 

analyses.  105 

Methods 106 

High performance computing environment. Project computations including download, 107 

alignment of reads onto the human genome and metafeature quantification were made on 108 

the high performance Linux Cluster at the LRZ (www.lrz.de/services/compute/linux-cluster). 109 

RNA-seq data retrieval. Raw next generation sequencing data were downloaded from the 110 

SRA. The R package SRAdb was downloaded on 23 May 2017 and used to query of the 111 

SRA database. To identify SRA projects that contain transcriptomic analyses of human RNA-112 

seq data, the SRA attributes ‘taxon_id’, ‘library_source’, ‘library_strategy’, ‘platform’ were 113 

searched for the terms ‘9606’, ‘TRANSCRIPT’, ‘RNA-seq’, ‘ILLUMINA’, respectively. To 114 

remove potential bias derived from different sequencing technologies we also restricted the 115 

query to SRA runs annotated with ‘ILLUMINA’ in SRA attribute ‘platform’. To exclude studies 116 

with insufficient sample size for statistical analysis the query was restricted to SRA projects 117 

containing more than five runs. To avoid concentrating the analysis on a small number of large 118 

projects the query was restricted to SRA projects with less than 500 runs. To identify studies 119 

focusing on phenotypes relevant to human disease, we restricted the query to runs 120 

containing at least one or more of the terms ‘disease’, ‘patient’, ‘primary’ and ‘clinical’ in the 121 

SRA attribute ‘study_abstract’. To exclude in vitro (cell-culture) experiments, but focus on 122 

primary (clinical) samples, SRA runs containing the terms "mutant" or "cell-line" were 123 

removed from our selection. Furthermore, SRA runs containing the terms "single cell" and 124 

"GTEx" were removed. Finally, samples with less than 1 million total reads or read lengths 125 

<50 base pairs were excluded. The described query resulted in 484 Short Read Projects 126 

(SRPs) containing a total of 21,659 RNA-seq runs. Due to technical problems (i.e. missing 127 

URLs, restricted access) we were unable to download a fraction of 4,078 samples. 128 

Human alignment. Alignment of reads against the human reference genome (hg38) and 129 

simultaneous human gene expression quantification was conducted with STAR (version 130 
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2.5.2). To increase mapping speed of a large number of samples, we used the --131 

genomeLoad LoadAndKeep function to load the STAR index once and keep it in memory for 132 

subsequent alignments. The parameter --quantmode GeneCounts was used to generate the 133 

human gene expression count tables. Unmapped reads were saved with the --134 

outReadsUnmapped Fastx parameter. To further increase mapping speed, multiple threads 135 

were used as implemented with the parameter --runThreadN 28. Runs with less than 30 136 

percent reads mapping to the human genome were excluded from downstream analysis. All 137 

human alignments were conducted on the LRZ “CoolMUC2” Linux-Cluster. This cluster 138 

contains 384 nodes with 64 GB RAM memory and 28 cores each. 139 

Metafeature quantification. Metafeature quantification was conducted with CLARK-S (version 140 

1.2.3). CLARK-S is a software method for fast and accurate sequence classification of 141 

metagenomic next-generation sequencing data, including RNA-seq data. One major issue 142 

during the classification of metagenomic data is the rising number of targets to align against. 143 

CLARK-S solves this issue by building a large index file consisting of discriminative k-mers. 144 

The metagenomic reference database was generated following the description of the CLARK 145 

website using the following two commands: 1) set_targets.sh bacteria virus --species and 2) 146 

buildSpacedDB.sh. This database contained a total of 16,551 genome sequences 147 

corresponding to 6,979 unique species (additional file 1). To allow uniform processing, 148 

paired-end sequencing experiments were analyzed independently. Each single unmapped 149 

reads file was used as input for CLARK-S with the following parameters: 150 

classify_metagenome.sh --spaced –O list of FASTQ files. To increase classification speed, 151 

the CLARK-S express mode was selected and multiple threads were used with parameters --152 

m 2 and --n 32, respectively. The output files of this step contain all input read identifiers with 153 

the corresponding metafeature classification. In the subsequent step, total counts are 154 

summarized for each feature with the estimate_abundance.sh command. To enable 155 

comparison across single-end and paired-end experiments, metafeature counts from paired-156 

end experiments were averaged and subsequently rounded to conserve count distribution. 157 

To account for varying sequencing depths, metafeature abundance was estimated as the 158 
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number of reads per million (RPM) total reads sequenced. Metafeature quantification was 159 

conducted on the LRZ “Teramem” Linux-Cluster. This cluster contains one node with 6,144 160 

GB RAM memory and 96 cores. 161 

BLAST based metafeature classification. To validate results generated by the MetaMap 162 

pipeline, the Basic Local Alignment Search Tool [24] was used as follows. A BLAST 163 

database was created from the same genome sequences used in the CLARK-S approach. 164 

Then, reads were aligned to this database using BLASTN with a threshold E-value of 1e-10. 165 

Produced counts from paired-end experiments were averaged. For each file, BLAST was 166 

done by running approximately 10 kilobase chunks (record separator ">") in parallel using 167 

GNU parallel (28 jobs), each with 8 threads using one node on the LRZ “CoolMUC3” Linux 168 

Cluster. This cluster contains 148 nodes with 96 GB RAM memory and 64 cores each. 169 

Output was parsed to exclusively keep reads that could be assigned at the species level. 170 

Differential metafeature abundance. Differential metafeature abundance analysis was 171 

performed using the R package DESeq2 [25]. For each of the four published bona fide dual 172 

RNA-seq studies we classified samples into two groups based on the provided annotations: 173 

1) Samples expected to contain the known pathogen, such as human papillomavirus positive 174 

head and neck tumors in the Zhang et al study, and 2) pathogen-free controls, such as 175 

mock-treated cells in the Westermann et al study. Using this binary outcome we performed 176 

differential expression analysis across all detected metafeatures. To account for sequencing 177 

depth, library size factors were estimated from the total number of sequenced reads. The 178 

dispersion for the negative binomial distribution was estimated using a local linear regression 179 

as implemented in the DESeq() function via the fitType parameter ‘local’. 180 

Data Validation and quality control 181 

We validated our approach by recovering the ground truth in bona fide dual RNA-seq 182 

experiments performed with human cell lines and samples from patients with well-known 183 

infection status. Of the four selected studies, one analyzed an infection model based on a 184 

bacterial (Salmonella enterica serovar Typhimurium) and three based on distinct viral 185 

pathogens (Human papillomavirus, Herpes simplex virus, Rhinovirus). As expected, 186 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 22, 2018. ; https://doi.org/10.1101/269092doi: bioRxiv preprint 

https://doi.org/10.1101/269092
http://creativecommons.org/licenses/by-nc-nd/4.0/


MetaMap detected the known pathogen at higher levels in the respective study compared to 187 

the other studies and pathogens (Table 1). Moreover, using the annotation provided in the 188 

respective study, we performed differential metafeature abundance analysis to identify those 189 

metafeatures that show the largest difference in abundance levels between the infected and 190 

control samples. The correct infection agent showed the most significant difference across all 191 

metafeatures between infected and control samples for each study (Fig. 2). For example, 192 

Westermann et al [26] generated dual RNA-seq data from HeLa cells infected with the 193 

enteric bacterial pathogen Salmonella enterica serovar Typhimurium and compared them to 194 

mock-treated control samples. Accordingly, we here observed Salmonella enterica as the 195 

most differentially abundant metafeature between the infected and the control samples 196 

(P<1e-75, Fig. 2A). Likewise we recovered Alphapapillomavirus 9, Human alphaherpesvirus 197 

1 (also known as herpes simplex virus 1) and Rhinovirus A as the most differentially 198 

abundant metafeatures in the data from Zhang et al [27], Rutkowski et al [28] and Bai et al 199 

[29], respectively. In the Westermann et al [26] and Rutkowski et al [28] studies, several 200 

additional metafeatures showed a strong differential abundance effect (Fig. 2A & C). These 201 

metafeatures were closely related to the true infection agent, i.e Salmonella bongori (P<1e-202 

67) and Panine alphaherpesvirus 3 (P<1e-9) for the Westermann et al [26] or Rutkowski et al 203 

[28] study, respectively. These findings confirm that our MetaMap pipeline recapitulates 204 

results from dedicated dual RNA-seq studies, i.e. studies based on known infectious agents. 205 

Therefore, MetaMap may be equally suited to detect previously unknown microbial and viral 206 

species in human primary samples. 207 

 208 

Study Infection 
agent 

Total 
reads 

Salmonell
a enterica 

Alphapapillomaviru
s 9 

H. 
alphaherpesviru
s 1 

Rhinoviru
s A 

Westerman
n et al 

Salmonella 
enterica 
serovar 
Typhimurium 

1.0e+0
7 

6.3e+03 1.2e-01 1.5e-01 1.2e-01 

Zhang et al Human 
papillomaviru
s  

4.6e+0
7 

3.0e-02 5.1e+01 2.2e-02 2.2e-02 

Rutkowski 
et al 

Herpes 
simplex virus 

3.5e+0
7 

1.1e+00 3.1e-02 3.1e+04 3.0e-02 
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Bai et al Rhinovirus 6.6e+0
6 

2.0e-01 1.5e-01 1.5e-01 4.4e+01 

Table 1. Overview of four dual RNA-seq studies used to validate the MetaMap pipeline. Total 209 

reads column depicts the average read depth per sample for each study. Average metafeature 210 

abundance for Alphapapillomavirus 9, Salmonella enterica, Human alphaherpesvirus 1 and Rhinovirus 211 

A are shown in RPM. The correct infection agent for the respective study is highlighted in bold font. 212 

 213 

As an additional control, we re-analysed two projects contained in our data collection 214 

that are derived from the B lymphoblast cell line, under non-infectious conditions. However, 215 

since Epstein-Barr virus is used for transfection and transformation of lymphocytes to 216 

lymphoblasts, we expected to detect reads from this virus in these projects [30], but no 217 

further viral or microbial reads [31]. Indeed the most abundant metafeatures in each project 218 

were dominated by reads classified to Gammaherpesvirus 4 (also known as Epstein-Barr 219 

virus, EBV) and Enterobacteria phage phiX174 sensu lato (phiX), commonly used as spike-in 220 

in Illumina sequencing runs [32] (Fig. 3A-B). On average 95% and 97% of all metafeature 221 

reads were classified as phiX or EBV for projects SRP041338 and SRP091453, respectively 222 

(Fig. 3C). Conversely, the abundance of reads mapping to bacterial species for these two 223 

projects corresponds to the bottom percentile as compared to all other projects in the 224 

MetaMap database, supporting sterility of this cell line (Fig. 3D). This demonstrates that 225 

MetaMap not only is capable of re-discovering known pathogenic species (true positives) in 226 

controlled infection experiments (Fig. 2), but it also minimizes the detection of false positives 227 

or at least, provides measures such as abundance and significance allowing the user to 228 

identify and counterselect those species. 229 

As a technical validation, we compared our approach to an alternative 230 

metatranscriptomic classification strategy for the Westermann et al [33] study. All non-human 231 

reads were aligned using BLASTN to a BLAST database consisting of the same genomic 232 

sequences used by CLARK-S (see Methods for details). The average metafeature 233 

abundances across all 42 samples derived from the BLAST based approach and CLARK-S 234 

correlated significantly (Spearman correlation, Rho: 0.16, P: 3.1e-10) (Fig. 4A). BLAST 235 

showed higher sensitivity and detected more metafeatures compared to CLARK-S (indicated 236 

by the accumulation of dots at value 0 on the X-axis in Fig. 4A). This is mostly observed for 237 

low abundance metafeatures which could represent low counts derived from sequencing 238 
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and/or mapping errors. However, most importantly the true pathogen metafeature 239 

‘Salmonella enterica’ showed very high correlation across samples between the BLAST and 240 

CLARK-based abundance estimates (Fig. 4B). Noteworthy, the MetaMap pipeline processed 241 

reads more than three orders of magnitude faster than BLAST, demonstrating a significant 242 

speed advantage while generating comparable results (Fig. 4C). 243 

Re-use potential 244 

Microbial and viral contamination in next-generation sequencing data was observed 245 

before. It can be caused by incorrect mapping due to sequence similarity between different 246 

species [34,35]. To minimize such effects, we encourage focussing on studies including 247 

intra-project comparisons, such as exemplified in the differential metafeature abundance 248 

analysis. Contaminating agents should affect all runs within a project to the same extent and 249 

therefore not show a condition-specific effect. Alternatively, these “contaminations” might 250 

actually reflect true biological factors. For example, in the Westermann et al study [33] we 251 

detected substantial levels of phiX in both conditions (infected samples and mock-treated 252 

controls), but only the ‘Salmonella’ metafeature showed a condition-specific effect.  253 

All the raw data described in the present study were publicly available before, yet 254 

have been very cumbersome to extract individually. The presented MetaMap database now 255 

makes these data easily accessible for a very broad community, thereby allowing for global 256 

comparisons over hundreds of individual studies and thousands of sampled conditions. While 257 

we attempted to minimize the risk of detecting false positives (Fig. 3), it should be noted that 258 

not all metafeatures classified by MetaMap will necessarily refer to true biological factors. 259 

Rather our pipeline provides the user with a scientific starting ground to validate the 260 

presence/absence of defined microbial and viral species under defined conditions and 261 

explore the underlying biology and significance in greater detail. As a potential use case of 262 

these data, users can test for associations of microbial or viral metafeatures with a plethora 263 

of human diseases, or between themselves. In addition, users with interest in a specific 264 

bacterial or viral species can easily identify studies, and consequently disease contexts, in 265 

which reads from this organism were detected. This could give an important first hint to 266 
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assess whether the respective species might be implicated in a given human disease 267 

etiology. Furthermore, this resource provides the opportunity to validate findings derived from 268 

standard microbiome profiling technologies, such as 16S rRNA gene based or shotgun 269 

metagenomics [36]. Finally, metafeature detection in human clinical RNA-seq samples may 270 

provide a critical advantage when studying microbes or viruses which are challenging to 271 

isolate.  272 

All generated metafeature OTU count tables from 17,278 cDNA libraries from 436 SRA 273 

projects including annotation are provided for download. The MetaMap pipeline can be 274 

accessed via the protocols.io website with digital object identifier 275 

dx.doi.org/10.17504/protocols.io.msec6be.276 
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Figures 277 

278 
Figure 1. Schematic illustrates the MetaMap pipeline. Over 400 projects from studies relevant to 279 

human disease were identified in the SRA database. Over 500 billion RNA-seq reads were 280 

downloaded and first filtered by mapping them onto the human genome and subsequently the 281 

remaining reads underwent metafeature classification. 90.7% of all reads mapped to the human 282 

genome. 0.03%, 0.20% and 0.39% of all reads were assigned to archaeal, bacterial or viral 283 

metafeatures, respectively. 8.6% of all reads remain non-discriminative at the species level 284 

(‘unclassified’).  285 

286 
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 287 
Figure 2. Differential metafeature abundance analysis of controlled infection experiments recovers 288 

ground truth. Panels A-D depict “volcano” plots showing fold change and inverted p-value on the X 289 

and Y axes, respectively. Each dot represents a metafeature. The most significant metafeature is 290 

colored in red. Insets display boxplots of the abundance levels in RPM of the top hit metafeature 291 

across conditions for each study. For all boxplots, the box represents the interquartile range, the 292 

horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range. 293 

294 
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295 

Figure 3. Analysis of lymphoblast cell line experiments further supports the MetaMap pipeline. Panels 296 

A and B depict mean abundance levels across all samples of the top five metafeatures for projects 297 

SRP041338 and SRP091453, respectively. Panel C shows relative proportion of reads mapping to 298 

EBV, phiX and all other metafeatures across RNA-seq samples. Panel D depicts the cumulative 299 

distribution plot of the average proportion of bacterial metafeature reads across all projects. Purple 300 

and pink vertical lines highlight projects SRP041338 and SRP091453, respectively. 301 

302 
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 303 

Figure 4. Alternative BLAST-based classification method validates metafeature abundance estimates 304 

by MetaMap. Panel A depicts average metafeature RPM levels derived using the CLARK-S software, 305 

as implemented in the MetaMap pipeline, and a BLAST-based alternative approach on the X- and Y-306 

axes, respectively. Panel B shows the correlation in Salmonella enterica abundance levels between 307 

the two classification approaches. Panel C shows the difference in classification speed between the 308 

BLAST and CLARK-S metatranscriptomic classification. Y axis shows the number of reads processed 309 

per hour per thread in log10 space.  310 
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