
 1 

Circular RNA expression and regulatory network prediction in posterior cingulate astrocytes in elderly 1 

subjects 2 

Shobana Sekar
1, 2, 3

, Lori Cuyugan
1, 2

, Jonathan Adkins
1, 2

, Philipp Geiger
1, 2

, Winnie S. Liang
1, 2, 3

 3 

 4 

Affiliations: 5 

1 
Neurogenomics division,

 
Translational Genomics Research Institute, Phoenix, AZ, 85004, USA 6 

2 
Arizona Alzheimer’s Consortium, Phoenix, AZ, 85014, USA 7 

3 
Department of Biomedical Informatics,

 
Arizona State University, Tempe, AZ, 85287, USA 8 

 9 

Author email addresses (ordered as listed above): 10 

ssekar@tgen.org, lcuyugan@tgen.org, jadkins@tgen.org, pgeiger@tgen.org, wliang@tgen.org 11 

 12 

Corresponding author: 13 

Winnie S. Liang, PhD 14 

Assistant professor, Neurogenomics Division 15 

Director, Collaborative Sequencing Center 16 

Director, Scientific Operations 17 

Translational Genomics Research Institute 18 

445 N. Fifth Street 19 

Phoenix, AZ 85004 20 

USA 21 

Phone (602) 343-8731 22 

Fax (602) 343-8844 23 

wliang@tgen.org 24 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/268888doi: bioRxiv preprint 

https://doi.org/10.1101/268888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 25 

Background: Circular RNAs (circRNAs) are a novel class of endogenous, non-coding RNAs that form 26 

covalently closed continuous loops and are both highly conserved and abundant in the mammalian 27 

brain. A role for circRNAs in sponging microRNAs (miRNAs) has been proposed, but the circRNA-miRNA-28 

mRNA interaction networks in human brain cells have not been defined. Therefore, we identified 29 

circRNAs in RNA sequencing data previously generated from astrocytes microdissected from the 30 

posterior cingulate (PC) of Alzheimer’s disease (AD) patients (N=10) and healthy elderly controls (N=10) 31 

using four circRNA prediction algorithms - CIRI, CIRCexplorer, find_circ and KNIFE.  32 

Results: Overall, utilizing these four tools, we identified a union of 4,438 unique circRNAs across all 33 

samples, of which 70.3% were derived from exonic regions. Notably, the widely reported CDR1as 34 

circRNA was detected in all samples across both groups by find_circ. Given the putative miRNA 35 

regulatory function of circRNAs, we identified potential miRNA targets of circRNAs, and further, 36 

delineated circRNA-miRNA-mRNA networks using in silico methods. Pathway analysis of the genes 37 

regulated by these miRNAs identified significantly enriched immune response pathways, which is 38 

consistent with the known function of astrocytes as immune sensors in the brain.  39 

Conclusions: In this study, we performed circRNA detection on cell-specific transcriptomic data and 40 

identified potential circRNA-miRNA-mRNA regulatory networks in PC astrocytes. Given the known 41 

function of astrocytes in cerebral innate immunity and our identification of significantly enriched 42 

immune response pathways, the circRNAs we identified may be associated with such key functions. 43 

While we did not detect recurrent differentially expressed circRNAs in the context of healthy controls or 44 

Alzheimer’s, we report for the first time circRNAs and their potential regulatory impact in a cell-specific 45 

and region-specific manner in aged subjects.  These predicted regulatory network and pathway analyses 46 

may help provide new insights into transcriptional regulation in the brain. 47 

Keywords: Circular RNAs, astrocytes, posterior cingulate, aging, regulatory network 48 
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1. Background 49 

CircRNAs are a class of endogenous, non-coding RNAs that form covalently closed continuous loops and 50 

are pervasively expressed in eukaryotes [1-3]. Though RNA circularization events were reported in the 51 

1970s and 1990s [4-6], they were disregarded as molecular artifacts arising from aberrant splicing. 52 

However, with the advent of next-generation sequencing technology, coupled with the development of 53 

computational algorithms to specifically detect these back-splicing events, numerous circRNAs have 54 

been reported since 2012. CircRNAs exhibit cell type-, tissue- and developmental stage-specific 55 

expression [3, 7], and show evolutionary conservation between mouse and human [2, 3]. Furthermore, 56 

circRNAs are highly abundant in the mammalian brain compared to other tissues such as lungs, heart, 57 

kidney, testis and spleen in humans as well as in mouse neuronal cell lines [8], and are derived 58 

preferentially from neural genes [9].  59 

 60 

The abundance and evolutionary conservation of circRNAs suggests that they could play important roles 61 

in cellular processes. A few possible functions have been reported, including microRNA (miRNA) sponges 62 

[3, 6, 10, 11], mediation of protein-protein interactions [12] and regulation of parental gene 63 

transcription [13]. Furthermore, a few circRNAs have been found to originate from disease-associated 64 

genomic loci, suggesting that circRNAs may regulate pathological processes [14-18]. Given these data, it 65 

is likely that circRNAs regulate RNA and protein networks, especially in the brain, but the regulatory 66 

pathways are still unknown. 67 

 68 

In the present study, we characterized the expression and abundance of circRNAs in next generation 69 

RNA-sequencing (RNAseq) data of human brain astrocytes. Astrocytes, the most abundant glial cells, 70 

play several essential roles in the central nervous system, including homeostasis [19], immunity [20] and 71 

energy storage and metabolism [21, 22]. We previously evaluated these astrocytes, which were derived 72 
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from the posterior cingulate (PC) of Alzheimer’s disease (AD) and healthy elderly control brains (age > 73 

65), and identified AD-associated gene expression changes [23]. For this study, we used four circRNA 74 

prediction algorithms to identify circRNAs in these AD and control samples. Given the potential miRNA 75 

regulatory function of circRNAs, we then performed in silico identification of miRNA binding sites on the 76 

detected circRNAs, and further delineated putative circRNA-miRNA-mRNA networks in astrocytes. We 77 

describe here the first astrocyte-specific characterization of circRNAs and their interaction networks in 78 

elderly individuals. 79 

 80 

2. Results 81 

2.1 CircRNA detection in PC astrocytes 82 

The RNAseq data generated from our previous study was used for analysis [23]. This data set was 83 

generated from 20 human PC astrocyte pools: 10 from late-onset AD (LOAD) brains and 10 from no 84 

disease (ND) healthy elderly control brains. Over 85,000,000 reads were sequenced for each sample, 85 

with an average mapping percentage of 70.8. On the FASTQ files generated from sequencing, we ran 86 

four circRNA prediction algorithms - CIRCexplorer [24], CIRI [25], find_circ [3], and KNIFE [26], and 87 

detected a total of 4,438 unique circRNAs with at least two supporting junction reads (Additional file 1: 88 

Table S1). Among the detected circRNA candidates, a total of 2,331 circRNAs were identified in the AD 89 

samples and 2,425 in the ND samples by at least one of the algorithms (Figure 1a). While 80% of the 90 

detected circRNAs had less than ten supporting reads (Figure 1b), 43 circRNAs had over 20 junction 91 

reads and were detected in more than one sample, and 31 circRNA candidates were detected in at least 92 

five samples with five or more supporting reads. Notably, the widely reported CDR1as circRNA was 93 

detected with a median read count of 52, by find_circ in all 20 samples and by CIRI in one of the 94 

samples. CircRNA 2:40655612-40657444 (chromosome:start-end) was detected in 12 of the 20 samples 95 

by two, three or all four algorithms in each sample (Additional file 1: Table S1). Furthermore, 548 96 
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circRNAs detected in our dataset were also reported in the four studies deposited in circBase [27] 97 

(Additional file 1: Table S1); various cell lines and tissue types were evaluated in these studies, including 98 

cerebellum, diencephalon, SH-SY5Y cells, Hs68 cells , HeLa cells and HEK293 cells.  99 

 100 

Among all identified circRNAs, 416 were on chromosome 1 (length = 249,250,621 base pairs), while only 101 

eight were detected on chromosome Y (length = 59,373,566 base pairs), consistent with previous 102 

findings that the number of circRNAs detected is proportional to the length of the chromosome [28]. 103 

Based on RefSeq annotations, we observed that 70.3% of our candidates were derived from exonic 104 

regions (3,123/4,438), of which 94% (2,936/3,123) were in coding DNA sequences (CDS; excludes 105 

untranslated regions) (Additional file 1: Table S1). Among the exonic circRNAs, 56.4% spanned one to 15 106 

exons per circRNA, of which 20% were derived from single exons, while a small percentage of the exonic 107 

circRNAs (6.8%) spanned over 100 exons per circRNA.  108 

 109 

As previously reported [29], we observed that the overlap among the circRNAs detected by the different 110 

tools was low. Overall, 243 circRNAs were predicted by all four tools, while each tool also predicted 111 

unique circRNAs (KNIFE—1680, find_circ—1077, CIRI—488, CIRCexplorer—198; Figure 1c). Most of the 112 

candidates called by all the tools originated from CDS (242/243; 99.5%) as well as intronic regions 113 

(232/243; 95.5%), and 75% of the exonic candidates spanned two to six exons per circRNA. Further, the 114 

size distribution of all detected circRNAs, and the tool-wise and condition-wise distribution of the 115 

circRNAs, are summarized in Figures 1d, e and f.  116 

 117 

We next compared the relative abundance of circRNAs and corresponding linear RNAs using back-118 

spliced reads and linearly spliced reads with the same splice sites (Methods; Table S2; Figure S1). We 119 

observed that for 26 circRNAs, the circular-to-linear ratio was 10 or greater and the linear count was not 120 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 26, 2018. ; https://doi.org/10.1101/268888doi: bioRxiv preprint 

https://doi.org/10.1101/268888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

0, such as circRNA 17:48823196-48824063 from LUC7L3 (LUC7 like 3 pre-mRNA splicing factor; average 121 

back-spliced reads: 413, average linear reads: 16.32) and 1:67356836-67371058 from WDR78 (WD 122 

repeat domain 78; average back-spliced reads: 116.50, average linear reads: 9.50). Further, 44.6% 123 

(1,983/4,438) had no expression of linear RNA and 45.5% (2,018/4,438) had higher expression of the 124 

linear RNA.  125 

 126 

2.2 miRNA target prediction and delineation of circRNA-miRNA-mRNA regulatory networks 127 

Given the potential miRNA regulatory function of circRNAs, we next used the miRNA target prediction 128 

algorithms miRanda [30] and RNAHybrid [31] to predict the miRNA targets of the circRNAs detected in 129 

ten or more samples by at least one of the circRNA prediction algorithms (N = 10 circRNA candidates). 130 

Using a list of 2,588 published miRNAs from miRBase [32], we detected 14,296 unique interactions 131 

between circRNAs and miRNAs that were predicted by both the miRNA target prediction algorithms and 132 

having a miRanda match score >=150. These interactions represent binding sites for miRNAs on each 133 

circRNA candidate, predicted based on complementarity in the miRNA seed region (nucleotide positions 134 

2-7 in the miRNA 5’-end). 2,398 miRNAs in the reference set were predicted to have binding sites on our 135 

input list of circRNAs. Among these, a set of 612 circRNA-miRNA interaction pairs were predicted to 136 

contain over 100 putative interaction sites by the miRanda algorithm (Additional file 3: Table S3). These 137 

612 circRNA-miRNA interactions were predicted for six unique circRNAs and 448 unique miRNAs. Using 138 

Cytoscape [33], we visualized the circRNA-miRNA interaction network for these 612 interactions, 139 

wherein the edges between circRNAs and its target miRNAs are weighted by the number of predicted 140 

interaction sites for the circRNA-miRNA pair (Figure 2a). CDR1as was predicted to have binding sites for 141 

74 distinct miRNAs and 63 binding sites for miR-7 (Figure 2b). According to miRTarBase [34], miR-7 142 

interacts with 578 target genes, some of which include SNCA (synuclein alpha), EIF4E (eukaryotic 143 
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translation initiation factor 4E), KMT5A (lysine methyltransferase 5A), MAPKAP1 (mitogen-activated 144 

protein kinase associated protein 1), and MKNK1 (MAP kinase interacting serine/threonine kinase 1).  145 

 146 

We further employed the list of miRNA-mRNA target interactions common in both miRTarBase and 147 

TargetScan [35] databases, to determine the target genes of the above detected miRNAs. Overall, there 148 

were 2,530 target genes for our input list of 2,398 miRNAs, of which 255 were also differentially 149 

expressed between the AD and ND groups based on DESeq2 analysis [36] of the linear RNAs 150 

(uncorrected p < 0.05, Additional file 4: Table S4). Using this information about miRNA target mRNAs, we 151 

delineated a putative low-stringency circRNA-miRNA-mRNA network consisting of ten circRNAs, 53 152 

miRNAs and 255 genes (Additional file 9: Figure S2). Further, we used the same list of circRNAs detected 153 

in ten or more samples by at least one of the circRNA prediction algorithms, and increased the filtering 154 

stringency criteria to include a miRanda match score >= 180. We also restricted the candidate miRNAs to 155 

those with mRNA targets showing differential gene expression (uncorrected p < 0.05) with a log2(fold 156 

change) > 2 or < -2 between the AD and ND groups. Using this strategy, we established a high-stringency 157 

circRNA-miRNA-mRNA interaction network with four circRNAs, 11 miRNAs and 49 genes (Figure 3, Table 158 

1). Our overall workflow is outlined in Additional file 10: Figure S3.  159 

 160 

2.3 Pathway analysis  161 

MetaCore pathway analysis on the 255 filtered differentially expressed target genes from the previous 162 

analysis revealed 112 perturbed pathways (corrected P < 0.01; Table 2, Additional file 5: Table S5). 23 of 163 

these were immune response-related, such as IL-4 and IL-6 signaling pathways. This identification of 164 

impacted immune response pathways is consistent with the known function of astrocytes as immune 165 

sensors in the brain and aligns with our previous RNAseq study, which showed that immune system 166 

response pathways are impacted in AD PC astrocytes compared to ND PC astrocytes [23]. Additionally, 167 
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signal transduction pathways that may be perturbed include post-translational modifications (PTMs) in 168 

BAFF-induced signaling, mTORC2 downstream signaling and protein kinase A (PKA) signaling. 169 

 170 

2.4 Lack of circRNA differential expression in AD PC astrocytes 171 

We analyzed our catalog of circRNA candidates to determine whether there were circRNAs uniquely 172 

expressed in either the AD or ND cohort. Though there were over 2,000 circRNAs unique to each group, 173 

we did not observe them to be recurrent in the samples within their respective group. The log2 (fold 174 

change) for all candidates calculated using DESeq2 are summarized in Additional file 1: Table S1. 93 175 

circRNAs were unique to AD and called in at least two samples by at least one of the tools, and 82 176 

circRNAs were unique to ND and called in at least two samples by at least one of the tools. These 177 

circRNA candidates were supported by at least two junction reads. To identify any differentially 178 

expressed candidates, we performed a Student’s t-test on those circRNAs commonly called across the 179 

two groups. Only two circRNAs trending towards significance (uncorrected p < 0.05) were identified and 180 

include 1:201452657-201736927 (uncorrected p = 0.015) and 16:1583657-2204141  (uncorrected p = 181 

0.046). 182 

 183 

3. Discussion 184 

CircRNAs, which are abundant in the mammalian brain, represent a recent addition to the class of non-185 

coding RNAs. In this study, we detected astrocytic circRNAs using whole transcriptome RNAseq data 186 

obtained from the PC of AD and ND subjects, and outlined circRNA-miRNA-mRNA regulatory networks. 187 

Based on the results from four different circRNA detection algorithms, we identified over 4000 unique 188 

circRNAs across all samples, the majority of which were derived from coding exons. Although we did not 189 

identify circRNAs that were differentially expressed and recurrent in AD or ND, we were able to 190 

delineate circRNA-miRNA-mRNA networks for the ten most recurrent circRNAs expressed across both 191 
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groups, and also incorporate our previous differential expression analysis data from the linear mRNA. 192 

We observe that the majority of identified circRNAs are unique in the AD or ND groups and are not 193 

recurrent across the respective groups. This could be due to their low abundance in those samples, 194 

which may be below detection levels, or could be due to biological differences between the two groups, 195 

which requires further investigation.  Pathway analysis on the differentially expressed miRNA target 196 

genes identified immune system related and signal transduction pathways. Notably, astrocytes are 197 

active players in cerebral innate immunity [37], and previous studies have reported that astrocytes 198 

respond to IL-4 signaling and potentially mediate between the immune effector cells and the nervous 199 

responders [38]. These predicted regulatory network and pathway analyses may help provide new 200 

insights into transcriptional regulation in the brain. 201 

 202 

The circRNA CDR1as (also known as CiRS-7, a circRNA sponge for miR-7) was detected in all 20 of our 203 

samples and is a widely reported circRNA with 63 conserved seed matches for miR-7, indicating possible 204 

miR-7 binding sites [3, 11]. Interestingly, overexpression of CDR1as in zebrafish decreased the midbrain 205 

size, suggesting a functional role for CDR1as in the brain, while a knock down of CDR1as downregulated 206 

miR-7 targets in HEK293 cells [3]. This regulation is relevant since miR-7 plays a role in Parkinson’s 207 

disease, stress handling and brain development [3, 39], and also has tumor-suppressive properties [39]. 208 

CDR1as also showed widespread expression in neuroblastoma and astrocytoma [40]. However, the 209 

expression of CDR1as was reduced in AD hippocampal samples about 0.18-fold compared to controls 210 

[15], which we did not observe in our PC astrocyte dataset. Apart from CDR1as, the tools also predicted 211 

circRNAs derived from genes such as SLC8A1 (solute carrier family 8 - sodium/calcium exchanger - 212 

member 1), which is under-expressed in hippocampal neurons from aged human brains [41], SYT1 213 

(synaptotagmin 1), whose increase was correlated to age-related spatial cognitive impairment in mice 214 
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[42], PSAP (prosaposin), which is increased in activated glia during normal aging in mouse brains [43], 215 

and FGF17 (fibroblast growth factor 17).  216 

 217 

Although our dataset provides insights into the existence and abundance of astrocytic circRNAs in 218 

elderly individuals, there are a few limitations. Primarily, the whole-transcriptome data we analyzed was 219 

not generated from samples that were depleted of linear RNAs using RNase R (ribonuclease R), an 220 

exoribonuclease that selectively digests linear RNA but leaves behind lariat or circRNA structures. Due to 221 

the presence of a larger pool of transcripts, which are mostly linear RNAs, RNAseq may not have 222 

comprehensively captured all the circRNAs in the samples. Notably, this enrichment step has been used 223 

by various groups to enrich for circRNAs for sequencing analyses [2, 3, 44].  224 

 225 

Another limitation of bioinformatics-based circRNA detection is the highly divergent results produced by 226 

different algorithms. We observed this in our analyses and it has also been reported by two recent 227 

circRNA benchmark studies [29, 45]. The algorithms utilize different aligners, heuristics and filtering 228 

criteria, thus introducing ‘blind spots’ (false negatives) when addressing biases introduced by each 229 

method [46]. For example, find_circ and CIRI rely on filtering for GT-AG splice signals and thus may not 230 

capture candidates with non-canonical splice signals. Further, most tools use a read count filter, which 231 

may not be ideal for circRNAs with low expression relative to their linear host [47]. Given the low 232 

reliability on read counts, statistical approaches improve detection and classification of splice junctions, 233 

including novel ones [48]. Among the circRNA detection algorithms, KNIFE implements a logistic 234 

generalized linear model to distinguish true circRNAs, and is therefore able to identify circRNAs derived 235 

from non-canonical splice sites. Notably, KNIFE achieves a more balanced performance, for precision 236 

and sensitivity, compared to other circRNA detection algorithms, as described in one of the 237 

benchmarking studies [45]. We observed in out dataset that KNIFE detected more circRNAs compared to 238 
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find_circ, CIRI and CIRCexplorer. Nonetheless, sequencing errors and technical artifacts introduced 239 

during RNAseq can still lead to false positive circRNAs, and hence statistical tests to estimate false 240 

discovery rates in circRNA detection need to be developed.   241 

While circRNAs have continued to gain attention as an abundant non-coding RNA species with potential 242 

regulatory functions, our understanding of their expression in various cell and tissue types remains 243 

limited. To address this challenge, we describe an analysis of astrocytic circRNAs in RNAseq data from 244 

elderly individuals, and we delineate potential circRNA-miRNA-mRNA regulatory networks. Given the 245 

role of astrocytes in signaling and synaptic modulation, and as immune sensors in the brain, the 246 

circRNAs we identified may be associated with such key functions. Further characterization using 247 

circRNA-enriched datasets will help us understand the atlas of circRNA expression in the context of 248 

specific cell types and conditions, including aging and AD. In addition, downstream functional studies are 249 

needed to clarify how and whether circRNAs act as hubs for influencing protein expression and cellular 250 

processes. As we continue to piece together the factors involved in transcriptional regulation, we will 251 

both better understand basic cellular mechanisms and set the stage for developing improved 252 

therapeutic strategies for AD and other diseases. 253 

 254 

4. Conclusions 255 

In summary, we utilized astrocyte specific RNAseq data to identify astrocytic circRNAs in aged subjects 256 

(N=20). Utilizing four circRNA prediction algorithms, we identified a total of 4,438 unique circRNAs 257 

across samples, majority of which were derived from exonic regions. The widely reported CDR1as 258 

circRNA was detected in all 20 samples with a median of 52 supporting reads. Given the putative miRNA 259 

regulatory function of circRNAs, we further performed an in silico prediction of putative miRNA binding 260 

sites on the ten most recurrent circRNAs, and further delineated a low- and high-stringency circRNA-261 

miRNA-mRNA regulatory network. Pathway analysis on the genes from our low-stringency network 262 
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revealed significantly impacted immune response pathways, which aligns with the known function of 263 

astrocytes as immune sensors in the brain. While we did not detect circRNAs recurrently expressed in 264 

the context of healthy controls or Alzheimer’s, we are the first to report circRNAs and their potential 265 

regulatory impact in a cell-specific and region-specific manner in aged subjects. Continued analyses such 266 

as these sets the foundation for circRNA characterization and understanding their expression and 267 

regulatory networks in specific cell types and regions in the brain. 268 

 269 

5. Methods 270 

5.1 Sample acquisition, library preparation and paired-end sequencing 271 

Detailed methods for sample acquisition, immunohistochemistry using an aldehyde dehydrogenase 1 272 

family, member L1 (ALDH1L1) antibody, microdissection, RNAseq library preparation and sequencing of 273 

astrocytes are described in our previous publication [23]. Briefly, postmortem human brain samples 274 

were collected at the Banner Sun Health Research Institute’s (BSHRI) Brain and Body Donation Program 275 

(BBDP) from 10 clinically classified LOAD subjects (4 males and 6 females; 5 APOEε3/4 subjects and 5 276 

APOEε3/3 subjects) and 10 ND controls (6 males and 4 females; 5 APOEε3/4 subjects and 5 APOEε3/3 277 

subjects). All subjects were enrolled in the BSHRI BBDP in Sun City, Arizona, and written informed 278 

consent for all aspects of the program, including tissue sharing, was obtained either from the subjects 279 

themselves prior to death or from their legally-appointed representative.  The protocol and consent for 280 

the BBDP was approved by the Western Institutional Review Board (Puyallap, Washington). Clinical and 281 

pathological donor demographics are summarized in Additional file 6: Table S6. Approximately 300 282 

astrocytes were laser capture microdissected from PC brain sections and total RNA was isolated from 283 

the cell lysates, followed by cDNA creation and library generation. Equimolar pools of libraries were 284 

sequenced by synthesis on the Illumina HiSeq2000 for paired 83 base pair reads. 285 

 286 
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5.2 Data analysis 287 

The data analysis workflow is summarized in Additional file 10: Figure S3. Raw sequencing data, in the 288 

form of basecall files (BCLs), were converted to FASTQ format using Illumina’s bcl2fastq conversion 289 

software and quality checked using FastQC [49]. To eliminate variance in circRNA detection that could 290 

arise due to differences in the number of sequencing reads, all FASTQ files were down-sampled to 291 

85,547,262 reads using seqtk [50]. The down-sampled FASTQ files were then run through four different 292 

circRNA prediction algorithms—CIRCexplorer (v1.1.10), CIRI (v2), find_circ (v1), and KNIFE (v1.4), using 293 

the parameter settings described in Additional file 7: Table S7. CircRNAs from each sample with at least 294 

two supporting reads were used for further downstream processing and analyses. CIRI produces 1-based 295 

circRNA coordinates, and was therefore converted to 0-based coordinates to be consistent with the 296 

other three algorithms. We then annotated our catalog of circRNA candidates using the UCSC RefSeq 297 

annotations [51] and BEDtools [52].  298 

The ratio of circular to linear RNA isoforms was calculated using the approach described in [8]. For each 299 

circRNA candidate, we used the number of back-spliced reads for circRNA quantification (Nc) and the 300 

number of linear reads supporting the same 5’ or 3’ splice junction (Nl5 or Nl3) as the number of linear 301 

RNA reads. The linear junction supporting reads were obtained by aligning our RNAseq data to the 302 

reference genome (GRCh37) using STAR [53].  303 

Circular to linear ratio   ��/max���� , ���� 

 304 

5.2.1 miRNA target prediction 305 

For circRNAs detected in at least 50% of the samples, we next conducted miRNA binding site prediction 306 

using the miRanda [30] and RNAHybrid [31] algorithms. The miRanda algorithm finds potential target 307 

sites for miRNAs in a genomic sequence using a two-step strategy. First, a dynamic programming local 308 

alignment is implemented between the miRNA sequence and the sequence of interest (circRNA 309 
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sequence in this study), scoring the alignment based on sequence complementarity (match score). In the 310 

second step, the thermodynamic stability of the resulting RNA duplex is estimated based on the high-311 

scoring alignments from the first phase. The RNAHybrid algorithm finds the energetically most favorable 312 

hybridizations of a small RNA to a large RNA. Only those circRNA-miRNA interactions predicted by both 313 

the algorithms are used for our downstream network construction and analyses. From the list of 314 

commonly predicted circRNA-miRNA interactions, we filtered for those having a miRanda match score 315 

>= 150.  316 

 317 

5.2.2 circRNA-miRNA-mRNA network construction 318 

miRNA-mRNA interactions that are common in both miRTarBase [34] and TargetScan [35] were then 319 

used to determine the gene targets of each filtered miRNA and compared with genes identified using 320 

differential expression analysis of the linear RNAs (uncorrected p < 0.05; DESeq2 performed as described 321 

in our previous publication). Using these data, we outlined a low-stringency circRNA-miRNA-mRNA 322 

regulatory network with custom python scripts and visualized the network using cytoscape. We further 323 

filtered for the circRNA-miRNA interactions with miRanda match scores >= 180 and miRNAs with mRNA 324 

targets showing differential expression (uncorrected p < 0.05, log2[fold change] > 2 or < -2) to outline a 325 

high-stringency circRNA-miRNA-mRNA network.  326 

 327 

5.2.3 Pathway analysis  328 

On the list of filtered miRNA target genes with DESeq2 uncorrected p < 0.05, we performed pathway 329 

analysis using MetaCore GeneGO (v6.32.69020) from Thompson Reuters to predict pathways that are 330 

commonly impacted in the AD and ND groups. The results were filtered for enriched pathways with a 331 

false discovery rate (FDR)-corrected P < 0.01. 332 

 333 
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Tables 548 

Table 1: circRNA-miRNA-mRNA network elements for those circRNA-miRNA interactions predicted by 549 

both miRanda and RNAHybrid, with a miRanda match score >= 180 and mRNA targets differentially 550 

expressed (uncorrected p < 0.05) with log2(fold change) > 2 or < -2 (high stringency network).  551 

Circular RNA microRNA target 
Number of 

binding sites 

predicted 

Target genes (differentially expressed) 

X:47431299-48327824 hsa-miR-139-5p 6 
NOTCH1, STAMBP, TPD52 

8:144989320-145838888 hsa-miR-320a 2 METTL7A, PBX3, PLS1, SEC14L1, VCL, 

VIM, VOPP1, YPEL2 

8:144989320-145838888 hsa-miR-320b 2 
RTKN, VCL, VOPP1 

X:47431299-48327824 hsa-miR-449a 1 
BAZ2A, MFSD8, NOTCH1, TSN, ZNF551 

8:144989320-145838888 hsa-miR-125a-3p 1 ANKRD62, C15orf40, COL18A1, MFSD11, 

MPEG1, MUL1, TTC31, WDR12, ZNF641 

X:47431299-48327824 hsa-miR-125a-5p 1 
CD34, MEGF9, PANX1, RIT1, TP53INP1 

8:144989320-145838888 hsa-miR-125a-5p 1 
CD34, MEGF9, PANX1, RIT1, TP53INP1 

X:47431299-48327824 hsa-miR-324-5p 1 
FOXO1, MEMO1, PSMD4, SMARCD2 

14:23815526-24037279 hsa-miR-142-3p 1 BTBD7, CLDN12, CPEB2, CSRP2, DAG1, 

KIF5B, PTPN23, WHAMM 

4:88394487-89061166 hsa-miR-133b 1 
FAM160B1 

4:88394487-89061166 hsa-miR-448 1 
DDIT4, PURG 

4:88394487-89061166 hsa-miR-339-5p 1 
AXL, HLA-E, METTL7A, ZNF285, ZNRF3 

 552 

 553 

 554 

 555 

 556 
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Table 2: Top 25 pathways with FDR corrected P < 0.01 from Metacore GeneGO pathway 557 

analysis. Remaining pathways with corrected P < 0.01 summarized in Additional file 5: Table S5. 558 

*Ratio: Number of genes in input list found in the pathway/Total number of genes in the 559 

pathway. 560 

Pathway Corrected P *Ratio Encoded proteins/protein complexes in input list 

Aberrant B-Raf signaling in 

melanoma progression 

7.456E-07 10/55 BAD, NOTCH1 (NICD), AKT1, Nicastrin, CBP, mTOR, 

ERK1/2, ERK2 (MAPK1), Mcl-1, AKT(PKB) 

Signal transduction_PTMs in 

BAFF-induced signaling 

3.454E-06 9/51 BAD, ERK1 (MAPK3), AKT1, MEKK1(MAP3K1), 

FKHR, mTOR, ERK1/2, ERK2 (MAPK1), AKT(PKB) 

Immune response_IL-15 

signaling 

9.177E-06 9/61 ERK1 (MAPK3), AKT1, MEKK1(MAP3K1), mTOR, 

ERK1/2, UFO, ERK2 (MAPK1), Mcl-1, AKT(PKB) 

Development_Ligand-

independent activation of 

ESR1 and ESR2 

9.177E-06 8/44 EGFR, ERK1 (MAPK3), PKA-cat (cAMP-dependent), 

G-protein alpha-s, CBP, ERK1/2, ERK2 (MAPK1), 

AKT(PKB) 

Translation_Regulation of 

EIF4F activity 

3.883E-05 8/54 EGFR, MEKK1(MAP3K1), eIF4B, PP2A catalytic, 

eIF4A, mTOR, ERK1/2, AKT(PKB) 

Aberrant production of IL-2 

and IL-17 in SLE T cells 

5.718E-05 8/58 PP2A cat (alpha), NOTCH1 (NICD), PKA-cat (cAMP-

dependent), CBP, mTOR, ERK1/2, AKT(PKB), 

NOTCH1 precursor 

IGF family signaling in 

colorectal cancer 

6.001E-05 8/60 ERK1 (MAPK3), IBP, MNK2(GPRK7), mTOR, ERK1/2, 

ERK2 (MAPK1), AKT(PKB), Clusterin 

Apoptosis and survival_BAD 

phosphorylation 

6.001E-05 7/42 BAD, EGFR, PKA-cat (cAMP-dependent), PP2A 

catalytic, G-protein alpha-s, ERK1/2, AKT(PKB) 

Influence of smoking on 

activation of EGFR signaling 

in lung cancer cells 

7.422E-05 7/44 EGFR, ERK1 (MAPK3), PKA-cat (cAMP-dependent), 

MEKK1(MAP3K1), G-protein alpha-s, ERK1/2, ERK2 

(MAPK1) 

Immune response_IL-6 

signaling pathway via 

JAK/STAT 

1.810E-04 8/72 MEKK1(MAP3K1), FKHR, CCL2, CBP, mTOR, Mcl-1, 

AKT(PKB), gp130 
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Signal transduction_Erk 

Interactions: Inhibition of 

Erk 

1.810E-04 6/34 MKP-3, PKA-cat (cAMP-dependent), PP2A 

catalytic, ERK1/2, ERK2 (MAPK1), AKT(PKB) 

Oxidative stress_ROS-

mediated activation of 

MAPK via inhibition of 

phosphatases 

1.810E-04 6/34 EGFR, MKP-3, SOD2, PP2A catalytic, ERK1/2, SOD1 

Apoptosis and 

survival_NGF/ TrkA PI3K-

mediated signaling 

2.255E-04 8/77 BAD, N-WASP, AKT1, FKHR, ILK, mTOR, ERK1/2, 

AKT(PKB) 

PGE2 pathways in cancer 2.255E-04 7/55 EGFR, ERK1 (MAPK3), TGF-alpha, PKA-cat (cAMP-

dependent), G-protein alpha-s, ERK2 (MAPK1), 

AKT(PKB) 

Immune 

response_Oncostatin M 

signaling via MAPK 

2.275E-04 6/37 ERK1 (MAPK3), MEKK1(MAP3K1), CCL2, ERK1/2, 

ERK2 (MAPK1), gp130 

Development_Beta-

adrenergic receptors 

transactivation of EGFR 

2.275E-04 6/37 EGFR, ERK1 (MAPK3), PP2A catalytic, mTOR, 

ERK1/2, ERK2 (MAPK1) 

Development_Regulation of 

lung epithelial progenitor 

cell differentiation 

3.976E-04 6/41 FOXP2, SMAD4, Frizzled, NOTCH1 receptor, 

FOXP1, O-fucose 

Regulation of Tissue factor 

signaling in cancer 

4.726E-04 6/43 EGFR, ERK1 (MAPK3), mTOR, ERK1/2, ERK2 

(MAPK1), AKT(PKB) 

Development_Adenosine 

A2A receptor signaling 

4.726E-04 6/43 BAD, PKA-cat (cAMP-dependent), 

MEKK1(MAP3K1), G-protein alpha-s, ERK1/2, 

AKT(PKB) 

Development_VEGF 

signaling via VEGFR2 - 

generic cascades 

5.478E-04 8/93 ERK1 (MAPK3), MEKK1(MAP3K1), CCL2, Vinculin, 

ERK1/2, ERK2 (MAPK1), AKT(PKB), Fyn 

Signal 

transduction_mTORC2 

downstream signaling 

5.478E-04 7/68 BAD, AKT1, PKA-cat (cAMP-dependent), FKHR, 

mTOR, Mcl-1, AKT(PKB) 

Transcription_Hypoxia- and 

receptor-mediated HIF-1 

activation 

5.478E-04 6/46 EGFR, FKHR, MNK2(GPRK7), CBP, ERK1/2, 

AKT(PKB) 
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Transcription_Androgen 

Receptor nuclear signaling 

5.478E-04 6/46 EGFR, AKT1, PKA-cat (cAMP-dependent), Frizzled, 

ERK2 (MAPK1), AKT(PKB) 

Signal transduction_PTEN 

pathway 

5.478E-04 6/46 BAD, EGFR, ILK, mTOR, ERK1/2, AKT(PKB) 

Immune response_IL-4 

signaling pathway 

5.478E-04 8/94 BAD, PDE3A, MEKK1(MAP3K1), FKHR, mTOR, 

ERK1/2, ERK2 (MAPK1), AKT(PKB) 

 561 

 562 

Figure legends 563 

Figure 1: Summary of circRNA prediction results. (a) Number of unique and common circRNAs in AD and 564 

ND PC. (b) Read count distribution of all detected circRNAs. (c) Intersection of circRNAs called by the 565 

four tools; the red bar indicates the number of circRNAs called by all four tools (d) Size distribution of all 566 

detected circRNAs. (e) Violin plots indicating the number of circRNAs predicted by each tool across PC 567 

samples along with the probability density. (f) Number of circRNAs predicted by each tool across PC 568 

samples, condition-wise. AD, Alzheimer’s disease; ND, no disease; circRNA, circular RNA; PC, posterior 569 

cingulate; bp, base pairs. 570 

Figure 2: circRNA-miRNA network. (a) circRNA-miRNA interactions with 100 or more predicted binding 571 

sites. Red circular nodes: circRNAs, green triangular nodes: miRNAs. (b) miRNA network of CDR1as. The 572 

edge thickness in a and b is weighted by the number of binding sites predicted for the circRNA-miRNA 573 

interaction.  miRNA, micro RNA.  574 

Figure 3: High stringency circRNA-miRNA-mRNA regulatory network. Network of circRNA-miRNA-mRNA 575 

regulation for those circRNA-miRNA interactions predicted by both RNAHybrid and miRanda, with 576 

miRanda match scores >= 180 and mRNA targets with differential expression (uncorrected p < 0.05) and 577 

log2(fold change) > 2 or < -2. Red circular nodes: circRNAs, green triangular nodes: miRNAs, blue square 578 

nodes: genes. mRNA, messenger RNA. 579 
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Figure S1: Circular-to-linear ratios. Ratio of average back-spliced reads to average linearly spliced reads 580 

for all detected circRNAs.  581 

Figure S2: Low stringency circRNA-miRNA-mRNA regulatory network. Network of circRNA-miRNA-mRNA 582 

regulation for those circRNA-miRNA interactions predicted by both RNAHybrid and miRanda, with 583 

miRanda match scores >= 150 and mRNA targets with differential expression (uncorrected p < 0.05). Red 584 

circular nodes: circRNAs, green triangular nodes: miRNAs, blue square nodes: genes 585 

Figure S3: Computational workflow outline and filtering criterion. PC, posterior cingulate; RNAseq, RNA 586 

sequencing; circRNA, circular RNA; miRNA, micro RNA; mRNA, messenger RNA. 587 
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