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Abstract

Understanding how groups of neurons interact within a network is a fundamental
question in system neuroscience. Instead of passively observing the ongoing activity of a
network, we can typically perturb its activity, either by external sensory stimulation or
directly via techniques such as two-photon optogenetics. A natural question is how to
use such perturbations to identify the connectivity of the network efficiently. Here we
introduce a method to infer sparse connectivity graphs from in-vivo, two-photon
imaging of population activity in response to external stimuli. A novel aspect of the
work is the introduction of an oracle which, at any point in time, can recommend a
distribution of external stimuli that will optimally refine the inferred network. Unlike
existing system identification techniques, this “active learning” method automatically
focuses its attention on key undiscovered areas of the network, instead of targeting
global uncertainty indicators like parameter variance. We show how active learning
leads to faster inference while, at the same time, provides confidence intervals for the
network parameters. We present simulations on artificial small-world networks to
validate the methods and apply the method to real data. Analysis of frequency of motifs
recovered show that cortical networks are consistent with a small-word topology model.

Introduction 1

A fundamental question of system neuroscience is how large groups of neurons interact, 2

within a network to perform computations that go beyond the individual ability of each 3

one. One hypothesis is that the emergent behavior in neural networks results from their 4

organization into a hierarchy of modular sub-networks, or motifs, each performing 5

simpler computations than the network as a whole [1]. 6

To test this hypothesis and to understand brain networks in general we need to 7

develop methods that can reliably measure network connectivity, detect recurring 8

motifs, elucidate the computations they perform, and understand how these smaller 9
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modules are combined into larger networks capable of performing increasingly complex 10

computations. 11

Here we focus on the first of these problems, which is a pre-requisite to the rest: the 12

identification of network connectivity from in-vivo, two-photon imaging data. Advances 13

in two-photon imaging are giving us the first look at how large ensembles of neurons 14

behave in-vivo during complex behavioral tasks [2–4]. Developing methods capable of 15

analyzing the connectivity between a large number neurons, from noisy, stochastic 16

activations, and limited recording time, is a significant challenge. 17

It is often the case that we can probe the networks under study, instead of merely 18

observing their ongoing activity. For example, in studying visual cortex we can select a 19

specific visual stimulus [5–8], or we can stimulate individual neurons directly via 20

two-photon optogenetics [9, 10]. This active observation has been shown critical for 21

system identification beyond brain networks, and is the direction here pursued. 22

We introduce a method that infers a sparse connectivity graph from available 23

simultaneous recording of external stimuli and individual neural spiking rates, and 24

recommends the future distribution of external stimuli to apply in order to optimally 25

refine the inferred network. We show how such iterative “active learning” leads to faster 26

inference while at the same time providing confidence measurements for the computed 27

network components. The proposed decision-making approach takes into account 28

information we may already have about network connectivity, the stochastic nature of 29

the neural responses, and the uncertainty of connection weights. 30

Our framework consists of modelling the neuron spiking rates using a Generalized 31

Linear Model (GLM) [11], using past spiking rates and applied stimuli as regressors. 32

The coefficients of these regressors in the GLM model make the edge weights of the 33

directed network. A variable selection approach is used to make the network sparse (set 34

most edges to zero). Active learning is then used to decide, at any given point in time, 35

the next sets of stimuli that allow for optimal inference of the network connectivity. Fig 36

1 shows a visual representation of the proposed framework. 37
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Fig 1. Recordings of spiking activity of a neuron population and the presented visual
stimuli are fed into a GLM model. The GLM and Variable Selection blocks work in
tandem to decide which connections are relevant for explaining the system’s behaviour
(the data) and building the directed connectivity graph (network). The active learning
component analyzes the data obtained so far to optimize the visual stimuli to be
presented for the next step of data acquisition, this is done to reduce graph uncertainty.
This process is iteratively repeated. The bottom row shows how the network is
gradually reconstructed as a function of acquired samples. Gray edges represent yet
undiscovered edges present in the network, while red and blue edges represent
discovered excitatory and inhibitory edges respectively.

While the proposed framework is general, we illustrate it by applying it to 38

two-photon imaging data from mouse primary visual cortex. We also validate the 39

method’s effectiveness on in-silico network simulations. 40

Materials and methods 41

Following the brief description of the data acquisition, we then describe the foundation 42

of the proposed active network inference framework. In doing so, we use terminology 43

that will be relevant for the particular application at hand: the estimation of 44

connectivity in neural networks. However, the framework is general enough to be 45

applied in other contexts and using other modalities. 46

Data acquisition 47

Animals: All procedures were approved by UCLA’s Office of Animal Research Oversight 48

(the Institutional Animal Care and Use Committee), and were in accord with guidelines 49

set by the US National Institutes of Health. The present study used data already 50

collected for other studies. Thus, no new animal experiments were performed for the 51

purposes of the present study. A detailed account of the experimental methods can be 52

found elsewhere [12]. A brief description follows. 53

Imaging: Imaging of GCaMP6f expressed in primary visual cortex was performed 54

using a resonant, two-photon microscope (Neurolabware, Los Angeles, CA) controlled 55
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by Scanbox acquisition software (Scanbox, Los Angeles, CA). The light source was a 56

Coherent Chameleon Ultra II laser (Coherent Inc, Santa Clara, CA) running at 920nm. 57

The objective was an x16 water immersion lens (Nikon, 0.8NA, 3mm working distance). 58

The microscope frame rate was 15.6Hz (512 lines with a resonant mirror at 8kHz). Eye 59

movements and pupil size were recorded via a Dalsa Genie M1280 camera (Teledyne 60

Dalsa, Ontario, Canada) fitted with a 740 nm long-pass filter that looked at the eye 61

indirectly through the reflection of an infrared-reflecting glass. Images were captured at 62

an average depth of 260 µm. 63

Sequences of pseudo-random sinusoidal gratings [5, 13] and sparse noise stimuli were 64

generated in real-time by a Processing sketch using OpenGL shaders (see 65

http://processing.org). A detailed description is provided in [14]. The duration of 66

the sequences was either 20 or 30 min, and gratings were updated 4 times a second on a 67

screen refreshed at 60Hz. In a 20 min sequence, each combination of orientation and 68

spatial frequency appeared at least 22 times on average. 69

In all experiments we used a BenQ XL2720Z screen which measured 60 cm by 34 cm 70

and was viewed at 20 cm distance, subtending 112 x 80 degrees of visual angle. The 71

screen was calibrated using a Photo-Research (Chatsworth, CA) PR-650 72

spectro-radiometer, and the result used to generate the appropriate gamma corrections 73

for the red, green and blue components via an nVidia Quadro K4000 graphics card. The 74

contrast of the stimulus was 80%. The center of the monitor was positioned with the 75

center of the receptive field population for the eye contralateral to the cortical 76

hemisphere under consideration. The location of the receptive fields were estimated by 77

an automated process where localized, flickering checkerboards patches, appeared at 78

randomized locations within the screen. This experiment was run at the beginning of 79

each imaging session to ensure the centering of receptive fields on the monitor. 80

Image processing: The image processing pipeline was the same as described in detail 81

elsewhere [12]. Briefly, calcium images were aligned to correct for motion artifacts. 82

Following motion stabilization, we used a Matlab graphical user interface (GUI) tool 83

developed in our laboratory to define regions of interest corresponding to putative cell 84

bodies manually. Following segmentation, we extracted signals by computing the mean 85

of the calcium fluorescence within each region of interest and discounting the signals 86

from the nearby neuropil. Spikes were then estimated via deconvolution [15]. The 87

present results are based on the inferred spiking activity. 88

Generalized linear models: Poisson point process 89

Let X = {X1, ..., Xnc
} and R = {R1, ..., Rnr

} be two sets of random variables called the 90

target variables and regressor variables respectively. In our case, the target variables X 91

are the spike time series of the nc observed neurons. The regressors R are nr time series 92

that carry information about the spiking activity of a neuron, they consist of the past 93

spiking activity of all the observed neurons and the history of the presented external 94

stimuli. 95

We say that the set X is a Poisson Point Process if the conditional probability 96

distribution (CPD) is of the form 97

Xc|R ∼ Poisson
(
fc

(
R
))
.

where fc is a real-valued function, ∀ c = 1, ..., nc. 98

A Poisson Generalized linear model (GLM) is a special case of a general Poisson 99

point process where 100

Xc|R ∼ Poisson(f(bc +
∑
i∈PAc

Ri × wic)).
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f : R→ R+ is a predefined link function, wic are the influence weights, bc is the bias 101

weight, and PAc is the parent set of Xc, and is the subset of the regressors R that carry 102

information on the behaviour of neuron c. In our case PAc consists of visual stimuli and 103

past neuron activity that directly affect the spiking rate of neuron c. The parameter wic 104

represents the magnitude of that influence. 105

The overall goal of network learning is finding the set (PAc, wic), for each neuron c, 106

that best represents the recorded data (stimuli and neural activity). 107

In the following sections we will present the model in more detail and the chosen 108

algorithm for selecting the relevant regressors PAc and influence weights wic. Then we 109

will introduce an experimental design method to select the stimuli that are more 110

relevant in discovering the structure of the network. We want to emphasize that we are 111

especially interested in correctly inferring the regressor set PAc, this can be seen as a 112

binary classification problem, since a given regressor either belongs or does not belong 113

on PAc for any given neuron c. This will directly translate into the decision of which 114

sets of stimuli are relevant. This decision will be based on improving the PAc 115

classification performance. 116

Model description 117

The system under study consists of a set of nc neurons {C} and ns stimuli or external 118

inputs {S}, that can be used to perturb the neuron’s activity. 119

To differentiate the influence of spiking activity and visual stimuli we will split the 120

set of regressors R explicitly into spike activity Xj(t), j = 1, .., nc, and stimuli activity 121

Ii(t), i = 1, .., ns. 122

To incorporate information about the past observations we further redefine the 123

regressors as X̂j(t) =
∑t−Dl

c

u=t−Du
c
Xj(u) = (1[t−Dl

c,t−Du
c ]
∗Xj)(t), j = 1, .., nc, and 124

Îi(t) =
∑t−Dl

s

u=t−Du
s
Ii(u) = (1[t−Dl

s,t−Du
s ]
∗ Ii)(t), i = 1, .., ns, which are the convolution of 125

past spiking activity (Xj , j = 1..nc) and past stimuli activity (Ii, i = 1..ns) with the 126

boxcar influence function up to delays Du
c and Du

s respectively. 127

To model the spiking train of neuron c, we also define the sets of relevant regressors 128

of neuron c: C ′c = {PAc ∩ C} and S′c = {PAc ∩ S}. 129

Under these conditions, the spiking train of neuron c can be modeled as 130

ηc(t) = bc + 〈WT
c , {X̂u(t)}u∈C′

c
〉+ 〈HT

c , {Îv(t)}v∈S′
c
〉 ∀t, (1)

λc(ηc(t)) =
log(1 + eκηc(t))

κ
, (2)

Xc(t)|{X̂u(t)}u∈C′
c
, {Îv(t)}v∈S′

c
∼ Poisson(λc(ηc(t)), (3)

where < . > denotes inner product. The parameters of interest are: 131

• Wc ∈ R|C
′
c|: Edge weights between parent neurons in C ′c and c. These weights 132

collectively represent the inter-neuron connectivity matrix 133

W = {wic : i, c = 1, ..., nc} =

{
0↔ i 6∈ PAc,
Wc(i)↔ i ∈ PAc.

134

• Hc ∈ R|S
′
c|: Edge weights between parent stimuli in S′c and c. These weights 135

collectively represent the direct stimuli response matrix 136

H = {hjc : j = 1, ..., ns, c = 1, ..., nc} =

{
0↔ j 6∈ PAc,
Hc(j)↔ j ∈ PAc.

137
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• bc ∈ R: Bias of neuron c. This number encodes the base spiking rate of neuron c 138

independently of the state of the other regressors. 139

Note that the model is time homogeneous, i.e., Wc, Hc and bc do not depend on 140

time. The motivation for using the link function Eq. (2) instead of the canonical log link 141

function is that Eq. (2) is pseudo linear in the parameter ηc. κ is a static calibration 142

constant to ensure the link function is operating in the linear approximation region 143

when no strong inhibitions are active. Strong inhibitions can still drive the link function 144

into the nonlinear operation region. 145

Parameter estimation 146

For each observed neuron c we want to find the regressor sets C ′c and S′c that best 147

explain the data without over-fitting. 148

We first define the likelihood function of the proposed model, 149

L(Xc|{X̂}C′
c
, {Î}S′

c
,Wc,Hc) = log[f(Xc|{X̂}C′

c
, {Î}S′

c
,Wc,Hc)]

∝
m∑
t=1

[Xc(t)log[λc(ηc(t))]− λc(ηc(t))].
(4)

A good regressor should provide a significant improvement in the model likelihood, 150

and should have a tight confidence interval around its estimated edge weight. These 151

notions are formalized using the Bayesian Information Criterion (BIC) [16] and the 152

Wald test [17] respectively. A derivation of both in the context of our model is provided 153

below. 154

To estimate the values for a set of parameters θ = {Wc, Hc, bc} we utilize the 155

standard Maximum Likelihood Estimation (MLE) framework. The MLE estimate is 156

denoted as θ̂ = {Ŵc, Ĥc, b̂c} and is obtained as the solution of 157

θ̂ = {Ŵc, Ĥc, b̂c} = argmax{Wc,Hc,bc}

m∑
t=1

[Xc(t)log[λc(ηc(t))]− λc(ηc(t))]. (5)

Furthermore, the parameter obtained from this estimation asymptotically follows a 158

Normal distribution around the true value θ0 [18]. Under further regularity 159

conditions [19], the variance of the estimator can be computed as shown in Eq. (6) (this 160

will form the theoretical basis for the notion of tight confidence intervals), 161

lim
t→∞

P (|θ̂ − θ0| > ε) = 0 ∀ε > 0,

θ̂ ≈ N [θ0, {I(θ0)}−1].

I(θ0) = −E[∂2L/∂θ0∂θ′0].

(6)

The quantity I(θ0) is the Fisher information matrix [19]. Since we do not have 162

access to the true parameter θ0 we use the observed Fisher information 163

(I(θ̂) = −E[∂2L/∂θ̂∂θ̂′]) as an approximation. The quantity I{(θ0)}−1 is a lower 164

bound for the variance of any unbiased estimator, as stated by the Cramér-Rao lower 165

bound [20,21]. The observed Fisher information of the model can be found on Eq. (27) 166

in the Appendix. 167

The MLE estimators combined with the observed Fisher information provide a 168

confidence interval for each parameter of interest. We start from the null hypothesis H0 169
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that the edge is irrelevant (zero value), and use the Wald test [17], to accept or reject 170

this. The probability of parameter θj belonging to the null hypothesis can be computed 171

as 172

θ̂j

[Î(θ̂)]−1j,j
∼ X 2

1 , (7)

pH0
= 1− FX 2

1
(

θ̂j

[Î(θ̂)]−1j,j
), (8)

where X 2
1 is the chi-square distribution with one degree of freedom, FX2

1
(z) is the 173

cumulative distribution function X 2
1 evaluated at z, and pH0

is the p-value associated 174

with the null hypothesis. 175

At this point we have derived a measure of the probability of the parameter being 176

different from zero. 177

To measure how informative a given regressor is we use the Bayesian information 178

criteria (BIC). This quantity decreases with a higher likelihood L̂ and increases with the 179

number of parameters currently used in the model (|P̂Ac| ), and the number of 180

observations (m): 181

BIC = ln(m)× |P̂Ac| − 2× L̂. (9)

When comparing two models, the model with the lowest BIC value is preferred. The 182

quantity ln(m)× |P̂Ac| penalizes model complexity, reducing the number of noisy weak 183

connections. 184

For each observed neuron c, our objective is finding the parent set estimate P̂Ac 185

that minimizes the BIC, subject to a p-value restriction γ which forces the selected 186

regressors to have a tight confidence interval: 187

{P̂Ac} = argminPAc
{BIC(L̂[{PAc}]},

s.t. max(pH0(PAc)) ≤ γ.
(10)

In the following section we will briefly explain how we approach this minimization. 188

Selecting relevant regressors 189

The optimization problem presented in Eq. (10) can be stated concisely as the problem 190

of finding the set of regressors P̂Ac that yields the best BIC score (Eq. 9) subject to a 191

p-value restriction. This is done to ensure that the regression model has good prediction 192

capabilities and generalizes well to non observed data points. 193

The problem as stated in Eq. (10) is combinatorial in nature and cannot be directly 194

optimized. There is a rich literature on model selection using various search strategies 195

and evaluation criteria [22–28]. Usual model evaluation criteria include BIC and Akaike 196

Information Criterion (AIC) [29] among others, while search algorithms include 197

stochastic search variable selection [28], forward model selection, backward elimination, 198

and stepwise methods in general, among others [23]. 199

For this particular problem, we decided to use a greedy elastic-forward subset 200

selection algorithm; an extensive overview of subset selection strategies can be found 201

in [23]. In addition, we take several randomly selected subsets from the training dataset, 202

each containing a fraction ν of available samples, and we evaluate the BIC performance 203

and p-value restriction for regressor candidates across all bootstrapping subsets to find 204
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candidates that are consistently relevant across subsets. In our experiments the fraction 205

ν is set to 0.7. We show the performance of varying the ν parameter on simulated data 206

in the Appendix. 207

The algorithm starts from PAc = ∅, and iteratively includes regressors that improve 208

the median BIC score across the random subsets, as well as the BIC score over the full 209

dataset, while satisfying the p-value constraint. The algorithm is described in detail in 210

the Appendix. The results section compares the performance of this algorithm against 211

the LASSO method for variable selection [30]. 212

Now that we have described the model and algorithm, we proceed to describe the 213

active learning strategy. 214

Experimental design - Active learning 215

Our goal is to develop a method to select, at any time, the optimal action (or network 216

perturbation) that is expected to yield the maximum information about its currently 217

computed connectivity. For the purposes of this paper, our action set will consist of 218

selecting which set of visual stimuli will be presented next. 219

We are interested in gathering samples from network connections (edges) that show 220

a promising improvement in the likelihood of the model but have not yet been added to 221

it, we refer to these edges as candidate edges. That means we want to improve the 222

parent set estimate P̂Ac, c = 1, ..., nc, and edge weight estimates 223

wic, i = 1, ..., nr, c = 1, ..., nc, as in equations (10) and (5) respectively. The samples are 224

collected by presenting stimuli that directly or indirectly generate activations in the 225

parent nodes of the promising candidate edges. 226

To address this, we will define a relevance score for each potential stimulus. This 227

score will consider the effects of presenting one stimulus over random selection on each 228

candidate edge, weighted by the potential log-likelihood improvement of adding those 229

edges to the current network model. This in effect means that stimuli that directly 230

trigger neurons associated with good candidate edges will be presented more often than 231

other stimuli during the next intervention. The exact formulation is presented next. 232

Defining a score for each stimuli 233

Define Ŵ l, Ĥ l as the estimated adjacency and stimuli response matrices up to sample 234

ml, where l is an iteration counter. Our objective is to obtain a probability distribution 235

vector P l+1 = [pl+1
1 , ..., pl+1

s , ..., pl+1
ns

] for presenting each stimuli s = 1, ..., ns at 236

intervention l + 1. 237

Lets start by estimating the effect on every neuron c = 1, ..., nc of presenting each 238

stimuli s = 1, ..., ns more frequently. For each stimuli s, we define a surrogate 239

probability distribution vector associated with it: P̂s = {p̂sj : j = 1, ..., ns}, where 240

stimuli s has the highest occurrence probability. Given the previous observations, we 241

want to predict the expected change in spiking rate of each neuron c when preferentially 242

applying stimuli s using P̂s, as opposed to the baseline where all stimuli are presented 243

equally: P̂ = { 1
ns
}. Formally the probability vector that favors stimuli s (P̂s) is defined 244

as 245

P̂s = {p̂sj : j = 1, ..., ns},

p̂sj = (1− β)× δs−j + β × 1

ns
,

(11)

where p̂sj is the j-th element of the probability vector P̂s and corresponds to the 246

probability of presenting stimuli j in the surrogate probability distribution vector 247
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associated with s, β is a smoothing constant that satisfies 0 ≤ β ≤ 1 and controls the 248

overall probability of other stimuli appearing, and ns is the number of available stimuli. 249

We will define ĨMs,c as the impact of stimuli s on neuron c. 250

The impact of stimuli s on neuron c for iteration l + 1 (ĨMs,c[l + 1]) is presented in 251

Eq. (12) next. This corresponds to the effect of using a stimuli distribution P̂s on 252

neuron c when compared to using the baseline (uniform) distribution P̂ . The quantity 253

ĨMs,c[l + 1] shows the impact of preferentially presenting stimuli s on the spiking rate 254

of neuron c (λc) according to our previous ml observations, 255

ĨMs,c[l + 1] =
E[λc|Ŵ l, Ĥ l, {S}P=P̂s

]

E[λc|Ŵ l, Ĥ l, {S}P=P̂ ]
. (12)

Next we introduce the log-likelihood score of each of the output edges of neuron c 256

that did not satisfy the parameter selection criteria in Eq. (10) and therefore c 6∈ P̂Aci 257

for some neuron ci. This is the log-likelihood difference (noted as L̂c,ci [ml]) between the 258

network model up to sample ml (where c 6∈ P̂Aci) and a network model where c is 259

included as a parent of ci: 260

L̂c,ci [ml] = −L̂[X̂ci(ml)|P̂Aci(ml)] + L̂[X̂ci(ml)|(P̂Aci ∪ c)(ml)]. (13)

Note that Eq. (13) is always non-positive, a highly negative value indicates a strong 261

possibility of neuron c influencing neuron ci. By acquiring more samples from this 262

interaction (samples where the candidate parent node is active), we can either disprove 263

this notion, or gather enough evidence to add this edge into the regressor set (by 264

satisfying the BIC and p-value criteria for adding an edge to the model). 265

We therefore define the score of stimuli s associated with inter neuron edges W as 266

ŜCs,W [l + 1] =
∑
c∈C

[ĨMs,c[l + 1]×
∑

ci:c6∈P̂Aci
(ml)

L̂c,ci [ml]

|{ci:c 6∈ P̂Aci(ml)}|
]. (14)

We have so far assigned a score that considers the impact of preferentially applying a 267

stimuli s on the inter neuron connectivity matrix W . It is important to note that the 268

set {ci:c 6∈ P̂Aci(ml)} refers to the set of cells that up to sample ml were not included 269

as children of cell c, and therefore are considered as candidate edges for the purpose of 270

the score. In this score, the first summation considers the impact of stimuli s over each 271

cell c multiplied by the second summation, which is the mean log-likelihood difference 272

over all the cells that were not considered as children of neuron c up to sample ml. 273

In a similar fashion, we also need to consider the effect of prioritizing any given 274

stimuli s on the stimuli response matrix H. In this case, the impact of prioritizing 275

stimuli s over stimuli si is the quotient of the si entry of the stimuli probability 276

distribution vector associated with s (P̂s) over the baseline (uniform) probability 277

distribution vector (P̂ ), 278

ĨMs,si [l + 1] =
p̂s,si

1
ns

= (1− β)× ns × δs−si + β.

(15)

The log-likelihood score of the output edges of s that did not satisfy the parameter 279

selection criteria in Eq. (10) and the score of stimuli s associated with the stimuli 280

response matrix H can be analogously defined: 281
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L̂si,ci [ml] = −L̂[X̂ci(ml)|P̂Aci(ml)] + L̂[X̂ci(ml)|(P̂Aci ∪ si)(ml)], (16)

ŜCs,H [l + 1] =
∑
si∈S

{
ĨMs,si [l + 1]×

∑
ci:si 6∈P̂Aci

(ml)

L̂si,ci [ml]

|{ci : si 6∈ P̂Aci(ml)}|

}
. (17)

Finally, the combined score given to stimuli s is 282

ŜCs[l + 1] = ŜCs,W [l + 1] + ŜCs,H [l + 1]. (18)

At this point we have a score for each stimuli s that is able to capture how 283

informative this stimuli might be based on the impact it has on edges that are not 284

included in the model so far. The next step is mapping these scores into a probability 285

vector. For that we first compute the z-score of each stimuli; this is done as a 286

normalization step of the score values, and allows the detection of outlying stimuli. The 287

z-scores are then converted into a probability vector with the use of the well known 288

softmax function. To avoid giving unnecessarily small or large probabilities to any given 289

stimuli, we truncate the computed z-score into the [−2, 2] range. 290

The formulation is as follows: 291

Zs[l + 1] =
ŜCs[l+1]−mean({ŜCs[l+1]}ns

s=1)

std({ŜCs[l+1]}ns
s=1)

, (19)

Z∗s [l + 1] = max(min(Zs[l + 1], 2),−2), (20)

and the probability distribution vector for presenting each stimuli at intervention l + 1 292

ends up being: 293

P l+1 =

{
expZ∗s [l + 1]∑ns

j=1 expZ∗j [l + 1]
; s = 1, ..., ns

}
. (21)

The use of the z-score as a normalization step allows the algorithm to dynamically 294

pick up on the “relative quality” of the stimulation actions, and the truncation of the 295

score provides a limit on how frequently or infrequently any given stimuli can be shown. 296

Active learning 297

The active learning strategy consists of iteratively evaluating the current network model 298

using Algorithm 1 in the Appendix, then using equations (18) and (21) to compute the 299

stimuli distribution probabilities for the next time interval. The full algorithm is 300

described in Algorithm 2 in the Appendix. 301

Results 302

Simulated data 303

In order to validate the method before applying it to real datasets, we generated a 304

number of artificial datasets where the connectivity is known. 305

Network topology was simulated using the small-world Watts-Strogatz model [31]. 306

This type of network architecture has been used to model functional cortical 307

10

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268599doi: bioRxiv preprint 

https://doi.org/10.1101/268599
http://creativecommons.org/licenses/by-nc-nd/4.0/


connectivity in cats and macaques [32,33], and has been theorized to be of use in 308

understanding human functional connectivity [34]. 309

We defined two separate networks SW1CL and SW3CL, network SW1CL is a single 310

small-world cluster network with 18 neurons, while network SW3CL has three separate 311

small-world clusters, each cluster has 18 neurons. All clusters have an average 312

connectivity degree of 0.03. Edge weights for network SW1CL were drawn from a 313

normal distribution N(0.05, 0.005). Edge weights for the three clusters in network 314

SW3CL were drawn from normal distributions N(0.075, 0.005), N(0.05, 0.005) and 315

N(0.035, 0.005) respectively. Thirty percent of inter-neuron edges were made inhibitory; 316

this is consistent with the observed values on our real datasets. 317

These simulated networks were presented with 30 possible excitatory stimuli, most of 318

which were designed to have no effect on the network. This was done to test that the 319

active learning algorithm has the ability of navigating through confounders. Stimuli 320

edge weights were drawn from the normal distribution N(0.05, 0.005). Fig. 2 shows the 321

connectivity matrix W and stimuli response matrix H for networks SW1CL and 322

SW3CL. Boxcar influence functions as defined for Eq. (1) were set to Dl
s = Dl

c = 5 and 323

Du
s = Du

c = 2 (1[t−2,t−5](t)). These values were selected so that the average spiking rate 324

of the simulated neurons were similar to the ones obtained in real data. 325

Fig 2. Adjacency matrices for networks SW1CL and SW3CL. Red entries in the
adjacency matrices denote an excitatory relation between the regressor and the child
neuron, while blue entries denote inhibitory connections. The block diagonal structure
present in the W matrix for network SW3CL evidences the three cluster structure of
the network. On both networks, we can observe the large number of stimuli that have
no effect on the network.

In the following sections we will present two experiments. The first experiment will 326

show the performance difference in regressor selection when using the proposed 327

Algorithm 1 compared against the Lasso method [30]. The second experiment will 328

compare the performance in regressor selection when stimuli are chosen according to 329

active learning Algorithm 2 versus random stimuli selection. 330
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Algorithmic performance will be presented based on precision, recall, and F1 metrics: 331

precision =

∑
c∈C |P̂Ac ∩ PAc|∑

c∈C |P̂Ac|
,

recall =

∑
c∈C |P̂Ac ∩ PAc|∑

c∈C |PAc|
,

F1 = 2× precision× recall

precision + recall
.

(22)

P̂Ac is again the recovered set of regressors, and PAc is the true set of regressor 332

edges for neuron c. 333

Relevant regressors 334

We first checked the performance of the regressor selection methods on networks 335

SW1CL and SW3CL. We compare the performance of the elastic-forward BIC selection 336

Algorithm 1 with bootstrapping versus standard Lasso [30] regression using the 337

pyglmnet implementation [35]. 338

Stimuli were sampled uniformly with replacement, each stimuli was presented for 4 339

consecutive frames. Spiking trains for the simulations were sampled from a Poisson 340

random process with a spiking rate corresponding to the ground truth model from 341

Eq. (3). 342

The l1 regularization parameter for the Lasso method was selected using an oracle to 343

provide the best possible F1 score. This method was selected for comparison because it 344

is one of the most common approaches to variable selection. The modified log-likelihood 345

function used for the Lasso method was: 346

Ll1(Xc|{X̂}C′
c
, {Î}S′

c
,Wc,Hc) ∝

m∑
t=1

[Xc(t)log[λc(ηc(t))]− λc(ηc(t))]− l1||Wc||1 − l1||Hc||1.

(23)

Fig. 3 shows the results; 10 independent trials were used to provide confidence 347

intervals for the metrics. 348
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Fig 3. Whisker plot of performance indicators as a function of number of samples;
elastic-forward BIC selection is shown in red, oracle lasso in blue. Whisker plot is
obtained from 10 independent trials. The elastic-forward BIC selection outperforms
oracle lasso for larger sample sizes. This performance improvement is more noticeable in
the SW3CL network, where edge weights are more diverse

Fig. 3 shows that the elastic-forward BIC method described in Algorithm 1 349

outperforms lasso for larger sample sizes, even when the l1 regularization parameter is 350

selected using an oracle. The improvement is more noticeable for network SW3Cl which 351

has diverse edge weights. In all tested cases, the precision metric in edge recovery was 352

better for elastic-forward BIC subset selection. 353

Active learning: Stimuli selection 354

We now evaluate the performance of the proposed active learning method, Algorithm 2. 355

We compare it against uniformly sampling from all 30 possible stimuli. 356

Both strategies start from the same initial 500 samples, and each intervention adds 357

an additional 500 samples. At the beginning of each intervention step, we compute the 358

best network estimate so far using Algorithm 1, and show the performance in recovering 359

the set of regressor edges PAc using the F1, precision and recall metrics. At this stage, 360

the active learning strategy described in Algorithm 2 recomputes the stimuli probability 361

distribution to apply for the following 500 samples. Active learning parameter β was set 362
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to β = 1/4. 363

Fig. 4 compares the performance of uniform (Random) stimuli sampling and active 364

learning (AL) sampling, while Fig. 5 shows the performance difference only on the 365

entries of the stimuli response matrix H. Experiments were repeated 10 times to 366

provide confidence intervals for the metrics. 367

Active learning outperforms random sampling by a large margin, the inter-quartile 368

ranges for random sampling and active learning do not overlap over a significant sample 369

count. As expected, both strategies converge for large sample sizes, but the process is 370

sped-up by selecting the correct set of stimuli. The most noticeable performance 371

difference is obtained when recovering the stimuli response edges H, since these are the 372

edges we have direct influence on. 373

Fig 4. Comparison of performance between the proposed active learning (AL) method
versus uniformly sampling (Random) from all stimuli. The experiment consisted of 500
sample interventions, with an initial 500 sample observation. Whisker plots are obtained
from 10 independent trials. Left column show F1, precision, and recall performance on
network SW1CL and right column on network SW3CL.
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Fig 5. Comparison of performance between the proposed active learning (AL) method
versus uniformly sampling (Random) from all stimuli only over the direct stimuli
response matrices H. The experiment consisted of 500 sample interventions, with an
initial 500 sample observation. Whisker plots are obtained from 10 independent trials.
Left column shows F1, precision, and recall performance on network SW1CL and right
on network SW3CL.

Fig. 6 shows a visual representation of the edge discovering process over network 374

SW1CL using active learning versus random sampling. Fig. 7 shows the difference 375

between ground truth and the active learning and random sampling estimates as a 376

function of interventions. Here we can clearly see that H edges are quickly recovered 377

using active learning, while W edges show a slower improvement that is network 378

dependent. 379
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Fig 6. Comparison of the edge discovering process for network SW1CL using active
learning versus random stimulation. Rows show inferred connections over a simulated
cluster as a function of samples. Red and blue edges show correctly detected excitatory
and inhibitory connections respectively, while grey edges show connections as not yet
detected. Left column shows detected edges as a function of time when the active
learning stimulation policy is used, right column shows the same cluster with a
completely random stimulation policy. Rightmost cluster shows the ground truth. This
example shows a clear advantage in edge recovery when using active learning compared
to random stimulation.
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Fig 7. Comparison of the edge discovering process for networks SW1CL and SW3CL
using active learning versus random stimulation. Rows show misclassified edges in the
adjacency matrices W and H as a function of samples. Rows 1 and 3 show misclassified
edges as a function of time when the active learning stimulation policy is used, while
rows 2 and 4 show the same network probed with a random stimulation policy. The
misclassified edge matrix under active learning quickly becomes sparse as the number of
misclassifications goes to zero, random stimulation produces the same results but in a
longer time frame.
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Real data 380

We worked with two datasets: lt3-000-002 and lt3-000-003, hereafter called datasets 1 381

and 2, containing a population of 57 and 63 neurons respectively. The presented visual 382

stimuli consisted of sinusoidal gratings defined using Hartley basis functions of the form: 383

H(kx, ky) = A× cas([kxx+ kyy]
2π

M
), (24)

where the function cas(x) is cos(x) + sin(x), A = ±1, (x, y) are the pixel coordinates in 384

the monitor, M is the image size, and kx, ky = {−12, ..., 12} are the frequency 385

components. Parameters A, kx, ky were uniformly sampled from all possible values, and 386

each stimuli persisted for 4 frames. 387

To prevent excessive data fragmentation, the stimuli basis (A, kx, ky) was encoded 388

into an (r, φ) pair using Eq.(25) with the r and φ parameters discretized into 7 values 389

each, 390

r =
√
k2x + k2y,

φ = atan(ky, kx).
(25)

For both spike and stimuli regressors, we used 1[t−2,t−7](t) as the influence function 391

as defined for Eq. (1) (Dl
s = Dl

c = 7 and Du
s = Du

c = 2). 392

7, 000 samples of each dataset were used for training, and 2000 samples were 393

reserved for model validation. Models were computed under two conditions, the first 394

model used all available regressors (full model), while the second model was restricted 395

to self regression coefficients and direct stimuli to neuron connectivity (AR model). 396

We first show the predictive power of both models when evaluated over the 397

validation samples, that is to say, we evaluate the log likelihood (Eq. (4)) of both 398

models over the test samples. 399

We then utilize the model that we obtained from all samples in the dataset as a 400

template for simulations (“ground truth”), and compare the simulated performance 401

between the proposed active learning Algorithm 2 and random sampling. 402

We go on to show that observed neurons tend to respond more to low frequency 403

stimuli. We then show the recovered adjacency matrix (networks) for both datasets, and 404

spiking trains time series for neurons belonging to the largest cliques in the network. 405

Recovered models 406

We now show the recovered connectivity matrices W and stimuli response matrices H 407

for both datasets for the full model and the AR model. 408
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Fig 8. Recovered adjacency matrices for datasets 1 and 2. Top and bottom rows show
the recovered adjacency matrices for datasets 1 and 2 respectively. Columns from left to
right show the full model and the AR model respectively. Inhibitory connections are
shown in blue, and excitatory connections are shown in red. We can observe that self
regression coefficients are always added to the model. We also observe that the overall
sparsity of the recovered network is consistent across datasets , and that the first few
rows of the H matrices show a heavy concentration of excitatory connections. These
rows correspond to low spatial frequency (r) values in the Hartley basis functions
(Eq.( 24)).

The recovered inter-neuron connectivity matrix W for both datasets was 93% sparse. 409

Additionally, 64% and 73% of recovered functional edges of this matrix were excitatory 410

for datasets 1 and 2 respectively. Both datasets also show a large number of stimuli 411

connections in the H matrix corresponding to low spatial frequency stimulation values 412

(r), and consistently selected the self regression coefficient as an important regressor. 413

This was consistent for both regression models. 414

Out of sample prediction power 415

To test the prediction power of the regressor model, we first evaluate the log likelihood 416

of the full model and AR model over the test samples. We compute ηc and λc for each 417

neuron on the test samples using the observed spike trains and visual stimuli as 418

presented in equations (1) and (2). We then evaluate the log likelihood according to 419

Eq. (4). The results are shown in Fig. 9. 420
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Fig 9. Log likelihood difference of full model and AR model over the test samples. The
graph shows that, on average, spiking rate predictions are better on the full model than
on the auto-regressive model. This grounds the idea of neuron to neuron interaction as
being predictive of neuron behaviour.

Fig. 9 shows that, for most neurons, the full model generalizes well to out of sample 421

(unobserved) data, when compared to the AR model. This shows that inter-neuron 422

connectivity is predictive of spiking rates. 423

Long range prediction is also possible using the recovered model parameters 424

(Ŵ , Ĥ, b̂) and the visual stimuli sequence to be presented ({Ik(t)}). Instead of using the 425

observed past spike trains Xj(t) as regressors, we use the expected spiking rate λj(t). 426

This experiment iteratively computes the expected spiking rate for each neuron in the 427

network using a fully observed external stimulation sequence and the past computed 428

expected spiking rate. It is important to note that here we are computing the entire 429

behaviour of the system given a stimuli sequence. 430

Formally, we define the long range spiking rate as 431

λlrc (t) = E[Xc | {λ̂lrj (t)}, {Îk(t)}, Ŵ , Ĥ, b̂], (26)

where λlrc (t) is the expected spiking rate at time t for neuron c, 432

{λ̂lrj (t)} = {
∑t−Dl

c

t−Du
c
λlrj (t)} is the set of past expected spiking rates as seen through the 433

boxcar influence function, and {Îk(t)} = {
∑t−Dl

s

t−Du
s
Ik(t)} is the applied visual stimuli as 434

seen through the boxcar influence function. 435

Here we compare the difference between the log likelihood when simulating the 2000 436

test samples with the stimuli that were presented versus a simulation of the system 437

under a random equally likely stimuli selection. 438

The log likelihood of the sequences is computed against the observed spike trains for 439

each neuron, experiments are repeated over 20 trials to provide error estimates. Results 440

are shown in Fig. 10. 441
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Fig 10. Difference in log likelihood of forecasted sequences, real stimulation sequence
versus randomized stimulation sequences. Error bars represent one standard deviation
over 20 trials.

Iterated simulations like these integrate the influence of stimuli to neuron 442

connectivity and neuron to neuron connectivity. The large majority of neurons for both 443

datasets showed a likelihood increase when presented with the true stimulation 444

sequence, showing that the recovered models really capture interactions between 445

regressors and spiking rates. 446

Active learning on real data 447

In lieu of validating the proposed active learning framework on live animals, we utilize 448

the recovered full model networks from Fig. 8 as ground truth. This is the exact same 449

process as presented in the active learning results on simulated data, but using the 450

recovered inter-neuron and stimuli response matrices (W , H) for real data as the 451

ground truth model. We compare the active learning technique against uniformly 452

sampling from all 49 possible stimuli. 453

Both strategies start from the same initial 1, 000 samples, and each intervention adds 454

an additional 1, 000 samples. As a reminder, the ground truth network was recovered 455

from 9, 000 samples. At the beginning of each intervention step, we compute the best 456

network estimate so far using Algorithm 1, and show the performance in recovering the 457

set of regressor edges PAc using the F1, precision and recall metrics as defined in 458

Eq. (22). At this stage, the active learning strategy recomputes the stimuli probability 459

distribution to apply for the following samples. These results are shown in Fig. 11. 460

Additionally, Fig. 12 shows the stimuli probability distribution (P l+1) obtained from 461

Algorithm 1, averaged over all realizations. 462
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Fig 11. Comparison of performance between the proposed active learning (AL) method
versus uniformly sampling from all stimuli. The experiment consisted of 1, 000 sample
interventions, with an initial 1, 000 sample observation. Whisker plot is obtained from
10 independent trials. Left column shows F1, precision, and recall performance on
network recovered from dataset 1 and right column shows F1, precision, and recall
performance on network dataset 2.
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Fig 12. Distribution of recommended stimuli (P l+1) averaged across all realizations as
a function of the number of interventions. Initially, the distribution is uniform (top).
The experiment consisted of 1, 000 sample interventions, with an initial 1, 000 sample
observation. Left column shows the stimuli probability distribution history for dataset 1,
while right column shows the distribution for dataset 2.

The F1 score of the active learning experiment is consistently better than random 463

stimuli selection. While the performance gain is not large for these networks, the result 464

spreads are tight and consistent; there is thereby no reason for not using the active 465

learning strategy over random stimulation. We also observe that the AL algorithm 466

preferentially presents low frequency stimuli, even though no explicit variable in the AL 467

algorithm distinguishes between low and high frequency stimuli. In the following section 468

we will show this is a reasonable result, since we found that neurons in these datasets 469

tend to respond considerably more to low frequency stimuli. 470
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Network analysis 471

Now that we showed the performance of the proposed methods we will present some 472

observations over the recovered biological models. 473

We first analyze the obtained input response matrices H for both datasets. Fig. 13 474

shows the percentage of neurons in each dataset that directly respond to each 475

stimulation pattern. We can conclude that low frequency stimulation patterns have an 476

out-sized proportion of directly responding neurons when compared to higher frequency 477

patterns. Moreover, when we view Fig. 13 in conjunction with Fig. 8 we can 478

additionally conclude that low frequency stimulation patterns have a net excitatory 479

effect on the observed neurons, while mid and high frequency patterns have a more 480

balanced overall effect. 481

For each dataset, we then examine the adjacency matrices W and extract two of the 482

largest cliques in the network. Fig. 14 shows these cliques, and the spike trains of all 483

neurons in the clique. 484

We additionally count the occurrence rate of motif triplets in the recovered networks, 485

and do a simple hypothesis test to check if these motifs could have arisen from a 486

small-world network topology, Fig. 15 show these results. The high p-values observed in 487

Fig. 15 show that the recovered network motifs are at least compatible with the 488

small-world topology hypothesis. We also compared the distribution of number of 489

children and parents per cell between the inferred networks and a small-world network 490

ensemble. In Fig. 16 we can see that the inferred networks are compatible with a 491

small-world topology in terms of number children and parents per neuron. Finally, we 492

count the percentage of cells involved in multiple cliques, and further show the 493

percentage of cells involved in multiple cliques of a set size. The percentage counts also 494

appear to be within the expected counts of a small-world network, this is shown in Fig. 495

17. This is in accordance with other observations like the ones in [32–34]. 496

24

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268599doi: bioRxiv preprint 

https://doi.org/10.1101/268599
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 13. Percentage of neurons that have an excitatory or inhibitory response to each
possible visual stimuli. Visual stimuli are represented in matrix form, where rows
represent spatial frequency r and columns spatial orientation φ. The value for each
entry in the matrix is the percentage of neurons in the datasets that show an excitatory
(red) or inhibitory (blue) response to that visual stimuli. This visualization shows that
both datasets show a large number of directly responding neurons for low spatial
frequency visual stimuli.
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Fig 14. Figures a), c), e), and g) show the excitatory (red) and inhibitory (blue) edges
detected for neuron cliques in datasets 2 (a) and c)) and 3 (e) and g)). Figures b), d), f),
and h) show the spike time series of the neurons in the clique. The nodes are numbered
according to the corresponding neuron index. We can visually see that spike trains from
neurons in the selected cliques show similar spiking behaviour throughout the
experiment.
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Fig 15. We count the occurrences of motif triplets for both datasets (we ignore edge
weight and sign) by enumerating all neuron triplet combinations in the recovered
networks and checking for graph isomorphism against all 5 motif triplet types. Top and
bottom rows show results for datasets 1 and 2 respectively. We compare the obtained
motif counts against a base model of small-world network topology and show the
obtained p-values. These p-values are obtained by computation of the mean and
standard deviation of each motif type in a small-world network with the same node
count and edge density. The relatively large p-values obtained show that the
small-world model is a good fit for the recovered network topology.

Fig 16. We compare the edge density distribution of the recovered inter neuron
connectivity matrices in both datasets. Edge counts shown from left to right are all
edges (number of neurons connected to node, either as parent or child), outbound edges
(number of child nodes), and inbound nodes (number of parent nodes). The edge counts
are compared against a base model of small-world network topology, error bars denote
two standard deviations obtained from simulation of small-world networks with the
same number of nodes and connectivity degree.
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Fig 17. We count the percentage of cells participating in multiple cliques. The counts
are compared against a base model of small-world network topology, error bars denote
two standard deviations obtained from simulation of small-world networks with the
same number of nodes and connectivity degree.

Discussion 497

There is a large body of work done in reverse-engineering neural circuits from data 498

across different modalities [36, 37]. Some of these methods learn a directed graph, which 499

provides a compact and interpretable way of encoding Granger causal [38] relations 500

between neurons and covariates. Several works have been published on the use of 501

Gaussian Bayesian Networks to learn connectivity strengths from data [39,40]. For 502

cases where the framework is not applicable, as in the case of spike train time series, 503

Generalized Linear Models (GLMs) have been successfully used [41–48]. 504

Parameters for these models are most commonly estimated using Maximum 505

Likelihood Estimation or Maximum a Posteriori estimation [42–48].The parameters 506

obtained from the GLM models can be interpreted as a directed graph capturing 507
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dependencies between variables of interest, or nodes (neuron spiking rates and visual 508

stimuli). The presence of an edge in this graph represents a directed influence from one 509

node to another, and the weight of the edge represents the magnitude of that influence. 510

The graph can be made sparse with the use of subset selection, where only a limited 511

number of edges are assigned non-zero weights (no influence). Subset selection can be 512

performed using deviance tests [49] or by the use of priors [46]. 513

In parallel, there is a corresponding push for actively estimating the best stimuli 514

subset for network inference, with variants based on mutual information and Gaussian 515

approximations of MAP parameters [42,44,45,47,50,51] 516

Methods like the one proposed in [50] use of mutual information for intervention 517

selection, but rely on a specific Gaussian Bayesian Network framework, making them 518

unsuitable for count data. Methods like [52] generalize D-Optimal factorial design for 519

GLMs and to multi-level regressor covariates, but require full control over the regressor 520

covariates. 521

The proposed variable selection algorithm is focused on subset selection of parent 522

regressors. It is posed as an optimization problem where the objective is to find a set of 523

regressors that minimize the BIC score, subject to a confidence interval restriction. 524

Using BIC as the score to optimize fosters prediction improvement while penalizing 525

model complexity. The use of p-value as a restriction criteria ensures that the regressors 526

in the model are highly significant. A local minimal set of regressors is constructively 527

obtained following a simple rule-set. 528

The variable selection method was tested on simulated data and compared against 529

oracle Lasso. It performed worse than oracle lasso for very small sample sizes, but 530

otherwise proved to be better on the F1 and recall metrics. On settings where no ground 531

truth is available, Lasso would require some other sub-optimal method for parameter 532

tuning. The p-value restriction parameter present in the elastic-forward model selection 533

algorithm is easily interpretable as the desireable confidence level on the regressor 534

parameters, this makes the parameter easy to set beforehand for any experiment. 535

The proposed active learning algorithm follows a simple design philosophy, it looks 536

for promising edges not added into the model so far, and increases the appearance 537

frequency of stimuli that drive up the spiking rate of the parent nodes of these edges. 538

To achieve this, it defines a score for each possible stimuli based on the previous learned 539

model, it takes into account the spiking rate difference (impact) of presenting one 540

stimulus more frequently than the others on every parent node in the system, and 541

weighs it by the potential log-likelihood improvement of adding every edge associated 542

with this parent node to the model. The log-likelihood value of an edge is tightly 543

related with the BIC score the elastic-forward model selection attempts to optimize. 544

Active learning proved to be faster than random stimulation in recovering edges on 545

the simulated networks, this was especially true for edges whose spiking rate could be 546

greatly affected by changing the stimuli distribution (first order connections). On the 547

simulations from networks recovered from real data, the performance of active learning 548

was consistently better than random stimulation, and the measured metrics had a 549

tighter spread. There is therefore no reason not to use active learning during data 550

acquisition. 551

We measured three basic properties of the recovered inter-neuron connectivity 552

networks from on real data: edge distribution, motif type distribution, and number of 553

cliques per neuron. Counts were compared to simulations of small-world networks with 554

an identical number of nodes and connectivity degree. All three properties measured fell 555

well within the expected values for these types of networks, pointing at a 556

small-world-like structure in the recovered inter-neuron connectivity networks. 557
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Conclusion 558

In this paper we propose a simple framework for actively learning network connectivity 559

for GLM models by selecting external forcing actions. The algorithm has the advantage 560

of making relatively few assumptions on the exact distribution of the model, and the 561

amount of control the experimenter has over the regressor covariates. 562

The use of a greedy regressor selector using BIC and Wald testing allows for an easy 563

identification of edges that seem beneficial for the model, but do not yet have a 564

sufficient number of interaction samples to be included in the model. By utilizing 565

external triggers to these interactions, the algorithm prioritizes interventions that 566

provide information over uncertain edges. 567

The greedy regressor selector outperforms the oracle Lasso in identifying the proper 568

regressor subsets in simulations for non-small sample sizes, even when accounting for 569

the oracle selection of the l1 prior. 570

Even on the recovered real datasets, the use of the active learning algorithm proved 571

to be beneficial as well. The algorithm is very quick at recovering directly connected 572

edges, making its application in conjunction with optogenetics an interesting 573

proposition. 574

Finally, we note the method is not restricted to one modality or domain, it can be 575

applied in any situation where there is a family of possible actions available to probe the 576

activity of a network, in both biological and artificial systems. 577

We note that for all measured properties, the recovered network structure on the 578

real datasets was consistent with a small-world topology. 579

Appendix 580

Derivation of the observed Fisher information 581

Given a neuron c and the MLE estimators θ̂ = {Ŵc, Ĥc, b̂c}, the element k, j of the 582

observed Fisher information matrix Îc(θ̂) for the given model can be expressed as 583

[Îc(θ̂)]k,j = −
m∑
i=1

[− yc(t)

λc(t)2
[
∂λc(t)

∂ηc
]2Rk(t)Rj(t) + [

yc(t)

λc(t)
− 1]

∂2λc(t)

∂η2c
Rk(t)Rj(t)], (27)

where R is the concatenation of all the considered regressors (neurons and stimuli), 584

R(t) = [X̂(t), Î(t), 1] ∈ Rm×[ns+nc+1], (28)

and the first and second derivatives of λc(t) are, 585

∂λc(t)

∂ηc
=

exp[k × ηc(t)]
1 + exp[k × ηc(t)]

, (29)

∂2λc(t)

∂η2c
=

k × exp[k × ηc(t)]
(1 + exp[k × ηc(t)])2

. (30)

Regressor selection: fraction parameter ν 586

We evaluate the effect of varying the sample fraction ν used for the random subset 587

selection step of the elastic-forward model selection method. The ν parameter is tested 588
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in the 0.5 to 0.9 ranges. This is compared against the baseline oracle lasso method and 589

model selection where no random subset selection is performed (no-subset). 590

All methods are evaluated on samples drawn from simulated network SW1CL using 591

the F1, precision, and recall performance metrics. Results are shown in Fig. 18. 592
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Fig 18. Whisker plot of performance indicators as a function of number of samples;
elastic-forward BIC selection is compared using several ν parameters against both oracle
Lasso and the special case where the whole dataset is used at once, without splitting
into random subsets (no-subset). The plots show relatively little difference between the
various ν parameters, but the use of the ν parameter is better performing overall to
both oracle lasso and no-subset model selection

We can observe from Fig. 18 that all ν parameters perform similarly for all but the 593

smallest sample sizes. Additionally, the use of no-subset model selection had a large 594

performance decrease for small sample sizes when compared to all ν parameters, but 595
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similar performance on larger sample sizes. 596

Table of defined variables 597

Variable symbol Variable Definition

m number of acquired samples
nc number of neurons
nr number of regressors
X = {Xi}i=1,...,nc

Xi ∈ Rm spike time series of target neurons
R = {Ri}i=1,...,nr Ri ∈ Rm regressor time series
bc bias of target neuron c
wic influence weight of regressor i on neuron c
PAc set of parent regressors of neuron c
ns number of external stimuli
C set of nc neurons
S set of ns external stimuli
I = {Ii}i=1,...,ns Ii ∈ Rm external stimuli time series

X̂ = {X̂i}i=1,...,nc
past neuron activity

Î = {Îi}i=1,...,ns past stimuli activity
Du
s , D

l
s upper and lower bounds of boxcar influence function for stimuli

Du
c , D

l
c upper and lower bounds of boxcar influence function for neurons

C ′c set of parent neurons of neuron c
S′c set of parent stimuli of neuron c

Wc ∈ R|C
′
c| edge weights between parent neurons of c and neuron c

Hc ∈ R|S
′
c| edge weights between parent stimuli of c and neuron c

W = {wij : i, j = 1, ..., nc} adjacency matrix
H = {hij : i = 1, ..., ns, j = 1, ..., nc} stimuli response matrix
λc instantaneous Poisson spiking rate of neuron c
κ spiking rate non-linearity calibration constant

{X̂}C′
c

= {X̂j}j∈C′
c

past neuron activity of parent neurons of c

{Î}S′
c

= {Îj}j∈S′
c

past stimuli activity of parent stimuli of c

θ̂ = {Ŵc, Ĥc, b̂c} MLE estimate of model parameters of neuron c

Ŵ , Ĥ estimators of adjacency matrix W and stimuli response matrix H

P̂Ac estimated parent set of neuron c
γ p-value restriction
l active learning iteration counter
ml number of samples acquired up to active learning iteration l

Ŵ l, Ĥ l estimators of adjacency matrix W and stimuli response matrix H up to iteration l
P l+1 probability distribution vector for presenting each stimuli S at intervention l + 1

P̂s surrogate stimuli probability distribution vector, where stimuli s is presented more frequently

P̂ uniform stimuli probability distribution vector

{S}P=P̂s
sequence of stimuli drawn from distribution P̂s

ÎMs,c relative impact on spiking rate of neuron c when using stimuli probability distribution P̂s
L̂c,ci log likelihood difference in neuron c between model with and without regressor neuron ci
ÎMs,si relative impact on appearance rate of stimuli s when using stimuli probability distribution P̂s
L̂c,si log likelihood difference in neuron c between model with and without regressor stimuli si
ŜCs,W [l + 1] score of stimuli s associated with inter neuron matrix W

ŜCs,H [l + 1] score of stimuli s associated with stimuli response matrix H

ŜCs[l + 1] full score of stimuli s
β active learning smoothing constant

Table 1. Summary of defined variables
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Algorithms 598

Algorithm 1 Elastic-forward selection

Require: Xc, R̂r, k, γ
. Xc sequence of observations of neuron c

. R̂r is the full set of regressor observations
. k maximum number of regressors to add per step

. γ minimum allowed regressor p-value

r′ = {} . Initialize set of active regressors to empty set (only bias is included).
repeat

θ̂r′ ; L̂r′ ; Î(θ̂r′); pvalsr′ ; BICr′ = EvaluateRegressors(Xc; R̂r; r
′)

r†, {ji} = Forward Model Proposal(Xc, R̂r, r
′, γ, k, BICr′)

. Both sub routines are explained in algorithms 3 and 4
if {ji} = ∅ then

. No suitable candidate found
return (θ̂r′ ; L̂r′ ; Î(θ̂r′); pvalsr′ ; BICr′)

end if
success = False
n = |{ji}|
rbest = r′

BICbest = BICr′
while not sucess do

r‡ = r′ + {ji}[: n]

θ̂r‡ ; L̂r‡ ; Î(θ̂r‡); pvalsr‡ ; BICr‡ = EvaluateRegressors(Xc; R̂r; r
‡)

. Update best set found so far using Algorithm 3
if max(pvalsr‡) ≤ γ and BICr‡ ≤ BICbest then

rbest = r‡

BICbest = BICr‡
end if

. Already found best set in the descending sequence, update and exit loop
if BICr‡ ≥ BICbest and rbest 6= r′ then

success = True
r′ = rbest

end if
n = n− 1

end while
until True
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Algorithm 2 Iterative Active Learning

Require: X, I, k, γ, β
. X Initial observations for all neurons

. I Initial applied stimuli
. k maximum number of regressors to add per step

. γ minimum allowed regressor p-value
. β active learning smoothing parameter

for l ∈ interventions do
R̂r ← BuildRegressors(X, I) . Build regressor sequences from X and I as defined

for Eq. (1)
for c ∈ neurons do

. Perform model selection using Algorithm 4
(θ̂r′ [c], L̂r′ [c], Î(θ̂r′)[c], pvalsr′ [c],BICr′ [c]) = ElasticForwardSelection(Xc, R̂r, k, γ)

. Get log-likelihood difference of considering all regressors that are not parent
edges of neuron c

Rnonparent(c) = {r:θ̂r′ [c] = 0}

for r ∈ Rnonparent(c) do
Lr,c ← Compute Loglikelihood difference . Use Eq. (13) for neuron

regressor and Eq. (16) for stimuli regressor
end for

end for

. Compute the impact and score of each stimuli according to previous observations
for s ∈ stimuli do

for c ∈ neurons do
IMs,c ← Compute impact of stimuli s on neuron c . Use Eq. (12)

end for

for si ∈ stimuli do
IMs,si ← Compute impact of stimuli s on stimuli si . Use Eq. (15)

end for
SCs ← Compute score of stimuli s . Use Eqs. (14,17,18)

end for

P l+1 ← Compute Stimuli Probability Vector . Use Eqs. (19,21)
(X, I)← AcquireSamples . Acquire samples of X and I drawing I with

probability P l+1

end for
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Algorithm 3 Sub routine: Evaluate Regressors

Require: Xc, R̂r, r
†

. Xc sequence of observations of neuron c
. R̂r is the full set of regressor observations (R̂r = [X̂, Î, 1])

. r† subset of regressors to consider
θ̂r† = argmaxθ

r†
L(Xc; R̂r† ; θr†)

L̂r† = L(Xc; R̂r† ; θ̂r†)

Î(θ̂r†) = −E[ ∂2L̂
∂θa∂θb

]

pvalsr† = chi2sf(θ̂r†/diag([Î(θ̂r†)]−1)) . Compute X 2
df=1 survival function for each

parameter in r†

BICr† = −2L̂r† + ln(n)×
∣∣r†∣∣

return θ̂r† ; L̂r† ; Î(θ̂r†); pvalsr† ; BICr†

Algorithm 4 Sub routine: Forward Model Proposal

Require: Xc, R̂r, r, γ, k, baseBIC

. Draw nsplits sets from data and regressor sequence randomly, each set will contain
p% of the total sample count

{Xc,i, R̂r,i}i=1,...,nsplits
= Random Samples(X, R̂r, p%, nsplits)

. Add regressors individually and compute indicators
for j 6∈ r do

r† = r + {j}
for i = 1, ..., nsplits do

; ; ; pvals†split[i]; BIC†split[i] = EvaluateRegressors(Xc,i; R̂r,i; r
†)

end for . Evaluate BIC score and p-values on the full dataset as well. Max
function provides an extra safeguard against bad regressors

; ; ; pvals†full; BIC†full = EvaluateRegressors(Xc; R̂r; r
†)

pvalscore[j] = max(median(pvals†split), pvals†full)

BICscore[j] = max(median(BIC†split),BIC†full)

end for
. Sort candidates by best BIC in set, and select at most k of them, subject to γ

restriction

{ji} = argsort(BICscore[BICscore < baseBIC ∧ p− valuescore < γ])[0 : k]
return r† = r + {ji}, {ji}
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