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Abstract
The capacity to learn abstract concepts such as ‘sameness’ and ‘dif-

ference’ is considered a higher-order cognitive function, typically thought
to be dependent on top-down neocortical processing. It is therefore sur-
prising that honey bees apparantly have this capacity. Here we report
a model of the structures of the honey bee brain that can learn same-
ness and difference, as well as a range of complex and simple associative
learning tasks. Our model is constrained by the known connections and
properties of the mushroom body, including the protocerebral tract, and
provides a good fit to the learning rates and performances of real bees in
all tasks, including learning sameness and difference. The model proposes
a novel mechanism for learning the abstract concepts of ‘sameness’ and
‘difference’ that is compatible with the insect brain, and is not dependent
on top-down or executive control processing.

Abstract concepts involve the relationships between things. Two simple and
classic examples of abstract concepts are ‘sameness’ and ‘difference’. These cat-
egorise the relative similarity of things: they are properties of a relationship
between objects, but they are independent of, and unrelated to, the features of
the objects themselves. The capacity to identify and act on abstract relation-
ships is a higher-order cognitive capacity, and one that is considered critical for
any operation involving equivalence or general quantitative comparison (Wright
and Katz, 2007; Piaget and Inhelder, 1969; Daehler and Greco, 1985; Avarguès-
Weber and Giurfa, 2013). The capacity to recognise abstract concepts such as
sameness has even been considered to form the “very keel and backbone of our
thinking” (James, 1890). Several non-verbal animals have been shown to be
able to recognise ‘sameness’ and ‘difference’ including, notably, the honey bee
(Wright, 1997, 1992; Giurfa et al., 2001; D’Amato et al., 1985).

The ability of the honey bee to recognise ‘sameness’ and ‘difference’ is inter-
esting, as the learning of abstract concepts is interpreted as a property of the

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/268375doi: bioRxiv preprint 

https://doi.org/10.1101/268375


mammalian neocortex, or of regions of the avian pallium (Diekamp et al., 2002;
Wallis et al., 2001; Miller et al., 2003) and to be a form of top-down executive
modulation of lower-order learning mechanisms (Avarguès-Weber and Giurfa,
2013; Miller et al., 2003). This interpretation has been reinforced by the find-
ing that activity of neurons in the prefrontal cortex of rhesus monkeys (Macaca
mulatta) correlates with success in recognising sameness in tasks (Wallis et al.,
2001; Miller et al., 2003). The honey bee, however, has nothing like a prefrontal
cortex in its much smaller brain.

In this paper we use a modelling approach to explore how an animal like a
honey bee might be able to solve an abstract concept learning task. To consider
this issue we must outline in more detail how learning of sameness and difference
has been demonstrated in honey bees, and originally in other animals.

A family of ‘match-to-sample’ tasks has been developed to evaluate sameness
and difference learning in non-verbal animals. In these tasks animals are shown
a sample stimulus followed, after a delay, by two stimuli: one that matches
the sample and one that does not. Sometimes delays of varying duration have
been imposed between the presentation of the sample and matching stimuli to
test duration of the ‘working memory’ required to perform the task (Wright
and Katz, 2007; Katz et al., 2007). This working memory concept is likened
to a neural scratchpad that can store a short term memory of a fixed number
of items, previously seen but no longer present (Baddeley and Hitch, 1974).
Tests in which animals are trained to choose matching stimuli are described
as Match-to-Sample (MTS) or Delayed-Match-To-Sample (DMTS) tasks, and
tests in which animals are trained to choose the non-matching stimulus are Not-
Match-To-Sample (NMTS) or Delayed-Not-Match-To-Sample (DNMTS) tasks.

On their own, match-to-sample tasks are not sufficient to show concept learn-
ing of sameness or difference. For this it is necessary to show, having been
trained to select matching or non-matching stimuli, that the animal can apply
the concept of sameness or difference in a new context (Avarguès-Weber and
Giurfa, 2013). Typically this is done by training animals with one set of stimuli
and testing whether they can perform the task with a new set of stimuli (Wright,
1997, 1992; Giurfa et al., 2001; D’Amato et al., 1985); this is referred to as a
transfer test.

In a landmark study Giurfa et al. (2001) showed that honey bees can learn
both sameness and difference. They could learn both DMTS and DNMTS
tasks and generalise performance in both tasks to tests with new, previously
unseen, stimuli (Giurfa et al., 2001). In this study free-flying bees were trained
and tested using a Y-maze in which the sample and matching stimuli were
experienced sequentially during flight, with the sample at the entrance to the
maze and the match stimuli at each of the y-maze arms. Bees could solve and
generalise both DMTS and DNMTS tasks when trained with visual stimuli, and
could even transfer the concept of sameness learned in an olfactory DMTS task
to a visual DMTS task, showing cross-modal transfer of the learned concept of
sameness (Giurfa et al., 2001). Bees took 60 trials to learn these tasks (Giurfa
et al., 2001); this is much longer than learning a simple olfactory or visual
associative learning task, which can be learned by bees in 3 trials (Matsumoto
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et al., 2012). Their performance in DMTS and DNMTS was not perfect either;
the population average for performance in test and transfer tests was around
75%, but they could clearly perform at better than chance levels (Giurfa et al.,
2001) in both.

The concept of working memory is crucial for solving a DMTS/DNMTS
task, as information about the sample stimulus is no longer available externally
to the animal when choosing between the match stimuli. If there is no neural
information that can identify the match then the task cannot be solved. We
therefore must identify in the honeybee a candidate for providing this informa-
tion in order to produce a model that can solve the task.

A previous model by Arena et al. (2013) demonstrates DMTS and DNMTS
with transfer, however the model contains many biologically unfounded mech-
anisms that are solely added for the purpose of solving these tasks, and the
outcome of these additions disagrees with neurophysiological, and behavioural
evidence. We instead take an approach of constraining our model strongly to
established neurophysiology and neuronanatomy, and demonstrating behaviour
that matches that of real bees. We will compare this model to the model pre-
sented here further in the Discussion.

The honey bee brain is structured as discrete regions of neuropil (zones of
synaptic contact). These are well described, as are the major tracts connecting
them (Strausfeld, 2012). The learning pathways have been particularly intensely
studied (e.g. Menzel, 2001; Søvik et al., 2015; Giurfa, 2007; Galizia, 2014). The
mushroom bodies (corpora pedunculata) receive processed olfactory, visual and
mechanosensory input (Mobbs, 1982) and are a locus of multimodal associative
learning in honey bees (Menzel, 2001). They are essential for reversal and con-
figural learning (Avarguès-Weber and Giurfa, 2013; Boitard et al., 2015; Devaud
et al., 2015). Avarguès-Weber and Giurfa (Avarguès-Weber and Giurfa, 2013)
have argued the mushroom bodies to be the most likely brain region supporting
concept learning, because of their roles in stimulus identification, classification
and elemental learning (Galizia, 2014; Bazhenov et al., 2013; Menzel, 2001). Yet
it is not clear how mushroom bodies and associated structures might be able to
learn abstract concepts that are independent of any of the specific features of
learned stimuli and, crucially, how the identity of the sample stimulus could be
represented. Solving such a problem requires two computational components.
First, a means of storing the identity of the sample stimulus, a form of working
memory; second, a mechanism that can learn to use this stored identity to in-
fluence the behaviour at the decision point. Below we propose a model of the
circuitry of the honey bee mushroom bodies that can perform these computa-
tions and is able to solve DMTS and DNMTS tasks.
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Results

Key model principles: A circuit model inspired by the
honey bee mushroom bodies

We explored whether a neural circuit model, inspired and constrained by the
known connections of the honey bee mushroom bodies, is capable of learning
sameness and difference in a DMTS and DNMTS task (Figure 1). Full details
of the models can be found in Methods.
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Figure 1: Models of the mushroom bodies based on known neu-
roanatomy. A Neuroanatomy: MB Mushroom Bodies; AL Antennal Lobe
glomeruli (circles); ME & LO Medulla and Lobula optic neuropils. The rel-
evant neural pathways are shown and labelled for comparison with the model.
B Reduced model; neuron classes indicated at righthand side of sub-figure. C
Full model, showing the model connectivity and indicating the approximate
relative numbers of each neuron type. Colour coding and labels are preserved
throughout all the diagrams for clarity. Excitatory and inhibitory connections
indicated as in figure legend. Key of neuron types: KC, Kenyon Cells; PCT,
Protocerebellar Tract neurons; IN, Input Neurons (olfactory or visual); EN,
Extrinsic MB Neurons from the GO and NOGO subpopulations, where the
subpopulation with the highest sum activity defines the behavioural choice in
the experimental protocol (Figure 2).

The mushroom body has previously been modelled as an associative net-
work consisting of three neural network layers (Bazhenov et al., 2013; Huerta
and Nowotny, 2009), comprised of input neurons (IN) providing processed ol-
factory, visual and mechanosensory inputs (Mobbs, 1982; Fahrbach, 2006), an
expansive middle layer of Kenyon cells (KC) which enables sparse-coding of sen-
sory information for effective stimulus classification (Galizia, 2014), and finally
mushroom body extrinsic neurons (EN) which output to premotor regions of the
brain and can be considered (at this level of abstraction) to activate different
possible behavioural responses (Galizia, 2014; Bazhenov et al., 2013). Here, for
simplicity, we consider the EN as simply two subpopulations controlling either
‘go’ or ‘no-go’ behavioural responses only, which allow choice between different
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options via sequential presentations where ‘go’ chooses the currently presented
option. Connections between the KC output and ENs are modifiable by synap-
tic plasticity (Bazhenov et al., 2013; Heisenberg, 2003; Schwaerzel et al., 2003;
Strube-Bloss et al., 2011) supporting learned changes in behavioural responses
to stimuli.

As outlined in the introduction, we require two computational mechanisms
for solving the DMTS/DNMTS task. First is a means of storing the identity of
the sample stimulus. Second is learning to use this identity to drive behaviour
and solve the task. Moreover this learning must generalise to other stimuli. The
computational complexity of this problem should not be underestimated; either
the means of storing the identity of the sample, or the behavioural learning,
must generalise to other stimulus sets. The bees were not given any reward with
the transfer stimuli in Giurfa et al. (2001)’s study, so no post-training learning
mechanism can explain the transfer performance. In addition, during the course
of the experiment of Giurfa et al. (2001) each of the two stimuli were used as
the match, i.e. for stimuli A and B the stimulus at the maze entrance were
alternated between A and B throughout the training phase of the experiment.
This requires, therefore, that the bees have a sense of stimulus ‘novelty’, and
can associate novelty with a behaviour: either approach for DNMTS, or avoid
for DMTS. With one training set the problem is solvable as delayed paired non-
elemental learning tasks, however with the transfer of learning to new stimulus
sets such an approach does not solve the whole task.

There is one feature of the Kenyon Cells which can fulfill this computational
requirement for novelty detection, that of sensory accommodation. In honey
bees, even in the absence of reward or punishment, the KC show a stark decrease
in activity between initial and repeated stimulus presentations of up to 50%, an
effect that persists over several minutes (Szyszka et al., 2008). This effect is also
found in Drosophila melanogaster (Hattori et al., 2017), where there is addition-
ally a set of mushroom body output neurons that show even starker decreases in
response to repeated stimuli, and which respond to many stimuli with stimulus
specific decreases (thus making them clear novelty detectors), however such a
neuron has not been found in bees to date. This response decrease in Kenyon
Cells found in flies and bees is sufficient to influence behaviour during a trial but,
given the decay time of this effect, not likely to influence subsequent trials. The
mechanism behind this accommodation property is not known, and therefore we
are only able to model phenomenologically, which do by reducing the strength
of the KC synapses for the sample stimulus by a fixed factor, tuned to repro-
duce the reduction in total KC output found by Szyszka et al. (Szyszka et al.,
2008) (see Figure 3 panel E). However it should be noted that stimulus-specific
adaptation is shown in many species and brain areas, and can be explained by
short-term plasticity mechanisms (Tsodyks and Markram, 1997; Vasilaki and
Giugliano, 2014; Esposito et al., 2014) and architectural constraints only; see
for instance Yarden and Nelken (2017).

Having identified our first computational mechanism, a memory trace in
the form of reduced KC output for the repeated stimulus, we need only to
identify the second, a learning mechanism that can use this reduced KC output
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to drive behaviour to choose the correct (matching or non-matching) arm of the
y-maze. If this learning mechanism exists at the output synapses of the KC
it is either specific to the stimulus - if using a pre-postsynaptic learning rule -
and therefore cannot transfer, or it utilises a postsynaptic-only learning rule.
Initially the postsynaptic learning rule appears a plausible solution, however we
must consider that bees can learn both DMTS and DNMTS, and that learning
can only occur when the bee chooses to ‘go’. This creates a contradiction,
as postsynaptic learning will proportionally raise both the weaker (repeated)
stimulus activity, as well as the stronger (non-repeated) stimulus activity in the
GO EN subpopulation. To select ‘go’ the GO activity for the currently presented
stimulus must be larger than the activity in the NOGO subpopulation, which
is fixed. Therefore we face the contradiction that in the DMTS case the weaker
stimulus response must be higher than the stronger one in the GO subpopulation
with respect to their NOGO subpopulation counterpart responses, yet in the
DNMTS case the converse must apply. No single postsynaptic learning rule can
fulfil this requirement.

A separate set of neurons that can act as a relay between the KC and be-
haviour is therefore required to solve both DMTS and DNMTS tasks. A plau-
sible candidate is the inhibitory neurons that form the protocerebellar tract
(PCT). These neurons have been implicated in both non-elemental olfactory
learning (Devaud et al., 2015) and regulatory processes at the KC input re-
gions. They also project to the KC output regions (Ganeshina and Menzel,
2001; Haehnel and Menzel, 2010; Rybak and Menzel, 1993; Okada et al., 2007),
where there are reward-linked neuromodulators and learning-related changes
(Perry and Barron, 2013; Søvik et al., 2015). These neurons are few in number
in comparison to the KC population, and some take input from large numbers of
KC (Papadopoulou et al., 2011). We therefore propose that, in addition to their
posited role in modulating and regulating the input to the KC based on overall
KC activity (Papadopoulou et al., 2011), these neurons could also regulate and
modulate the activity of the EN populations at the KC output regions. Such
a role would allow, via synaptic plasticity, a single summation of activity from
the KCs to differentially affect both their inputs and outputs. If we assume
a high threshold for activity for the PCT neurons (again consistent with their
proposed role) such that repeated stimuli would not activate the PCT neurons
but non-repeated stimuli would, it is then possible for synaptic plasticity from
the PCT neurons to the EN to solve the DMTS and DNMTS tasks and, vitally,
transfer that learning to novel stimuli. We do not propose that this is the pur-
pose of these neurons, but instead that it is a consequence of their regulatory
role.

We present two models inspired by the anatomy and properties of the honey
bee brain that are computationally capable of learning in DMTS and DNMTS
tasks, and the generalisation of this learning to novel stimuli (Figure 1).

Our first, reduced, model is a simple demonstration that the key principles
outlined above can solve DMTS and DNMTS tasks, and generalise the learning
to novel stimulus sets. By simplifying the model in this way the computational
principles are readily apparent. Such a simple model, however, cannot demon-
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strate that associative learning in the KC to EN synapses does not interfere
with learning in the PCT to EN synapses or vice versa. For this we present a
full model that includes the associative learning pathway from the KC to the
EN, and demonstrate that this model can not only solve DMTS and DNMTS
with transfer to novel stimuli, but can also solve a suite of associative learning
tasks in which the MB have been implicated. The results of computational
experiments performed with these models are presented below. The full model
addresses the interaction of the PCT to EN learning and the KC to EN learning,
as well as suggesting a possible computational role of the PCT to EN synaptic
pathway in regulating the behavioural choices driven by the MB output, which
we present in the Discussion.

NOGOGO

50%

   50%

GO

GO

Figure 2: Experimental protocol for the model. The model bee is moved
between a set of states which describe different locations in the Y-maze appara-
tus: at the entrance, in the central chamber facing the left arm, in the central
chamber facing the right arm, in the left arm or in the right arm. When at
the entrance or in the main chamber the bee is presented with a sensory input
corresponding to one of the test stimuli; GO selection leads the bee to enter
the maze when at the entrance, and to enter an arm and experience a potential
reward when facing that arm; NOGO leads the bee to delay entering the maze,
or to choose another maze arm uniformly at random, respectively. We can then
set the test stimuli presented to match the requirements of a given trial (e.g.
entrance (A), main chamber left (A), main chamber right (B) for DMTS when
rewarding the left arm, or DNMTS when rewarding the right arm).

A reduced model of the core computational principles pro-
duces sameness and difference learning, and transfers this
learning to novel stimuli

The reduced model is shown in Figure 1 Panel B and model equations are
presented in Methods. The input nodes S1 and S2 represent the two alternative
stimuli, where we have reduced the sparse KC representation into two non-
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overlapping single nodes for simplicity, and as such we do not need to model the
IN input neurons separately. Node I (which corresponds to the PCT neurons,
again reduced to a single node for simplicity) represents the inhibitory input to
the output neurons GO and NOGO. Nodes S1 and S2 project to nodes I and
to GO and NOGO with fixed excitatory weighted connection. Finally, node I
projects to GO and NOGO with plastic inhibitory weighted connections. Node
I is thresholded so that it only responds to novel stimuli.

Figure 3 panels A and B show the performance of the reduced model bees for
task learning and transfer to novel input stimuli. While the reduced model solves
the transfer of sameness and difference learning the pretraining process strongly
biases the model towards non-repeated stimuli, proportional to the number of
pretraining trials. Notably, this bias in the reduced model is different to that
found in the full model, which we discuss below.

The model operates by adjusting the weights between the I and the GO to
change the likelihood of choosing the non-matching stimulus. Since only connec-
tions from the I (representing the PCT neuron) to GO neurons are changed, the
I to GO/NOGO weights are initialised to half the maximum weight value. Note
that the I node is only active for the non-repeated stimulus, and this pathway
has no effect for repeated stimuli. This means that if the weights are increased
then non-repeated stimuli will have greater inhibition to the GO neuron, and
therefore be less likely to be chosen. If the weights are decreased then non-
repeated stimuli will have less inhibition to the GO neuron and therefore will
be more likely to be chosen. As the conditions for changing the weights are
only met when the non-repeated stimulus is chosen for ‘go‘, this means that the
model only learns on unsuccessful trial for DMTS (increasing the weight), or
successful trials for DNMTS (decreasing the weight).

A full model is capable of sameness and difference learning,
and transfers this learning to novel stimuli

The full model is shown in Figure 1 Panel C and model equations are presented
in Methods. Figure 3 panel D shows the performance of the full model for the
first block of learning following from different numbers of pretraining repeti-
tions. When only the PCT pathway is plastic there is a large bias towards the
non-repeated stimulus due to the pretraining, as found in the reduced model.
This bias is reduced by the presence of the associative learning pathway, and
the bias is independent of the number of pretraining trials for more than 5 tri-
als. It should be noted that the experimental data (Giurfa et al., 2001) show
indications of such a bias, in line with the results from the full model. The
reduced model therefore requires fewer pretraining trials than the full model
to produce a similar bias, which leads to the reduced model having large mal-
adaptive behavioural biases for non-repeated stimuli if all stimuli are rewarded.
This is important, as it suggests a role for the PCT pathway in modulating
the behavioural choice of the bee. This possible role is explored further in the
Discussion.

Figure 3 panels A and B show the performance of the model bees compared
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with the performance of real bees from Giurfa et al. (2001). In both cases the
trends found in the performance of the model bees match the trends found in the
real bees for both task learning and transfer to novel stimuli. It is important to
note the different forms of the learning in the DMTS and DNMTS paradigms,
with DNMTS slower to learn. This is a direct consequence of the inhibitory
nature of the PCT neurons; excitatory neurons performing the role of the PCT
neurons in the model would lead to a reversal of this feature, with DMTS
learning more slowly.

Learning in the PCT pathway of the full model is essential
for transfer of learning to novel stimuli

We next sought to confirm that learning in the PCT neuron to EN pathway
enabled generalisable learning of sameness and difference. Computational mod-
elling provides powerful tools with which to do this, by comparing model per-
formance when different elements are suppressed with the full model. We se-
lectively suppressed the KC associative learning pathway, the PCT pathway
learning, and all learning in the model. When a learning mechanism is sup-
pressed this means that the synaptic weights stay the same throughout the
training, but the pathway is otherwise active.

The results are summarised in Figure 3 panel C. It can clearly be seen that
within our model learning in the PCT pathway is necessary for transfer of the
sameness and difference learning to novel stimuli. Associative learning via the
KC pathway alone has no effect on the transfer task performance compared to
the fully learning-suppressed model. Unsuppressed associative learning leads to
a preference for the matched stimulus, which has weaker KC activity, but this
learning is specific to the trained stimuli, and does not transfer to novel stimuli.

Validation: the full model is capable of performing a range
of conditioning tasks

Many models have reproduced the input neuron to Kenyon Cell to Extrinsic neu-
ron pathway (Huerta et al., 2004; Huerta and Nowotny, 2009; Bazhenov et al.,
2013; Peng and Chittka, 2016), and these models demonstrate many forms of
elementary and complex associative learning that have been attributed to the
mushroom bodies. It is therefore important to demonstrate that in our model
then PCT neuron pathway does not affect the reproduction of such learning be-
haviours. We therefore tested elemental and non-elemental associative learning
undertaken by conditioning the PER in restrained bees, and reversal learning in
free flying bees, as described in Methods. Our model is capable of reproducing
the results found in experiments involving real bees, with the model’s acquisi-
tion curves showing similar to the performance to the real bees. The results are
shown in Figure 4.
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A: DMTS learning and transfer: models vs experiment 

B: DNMTS learning and transfer: models vs experiment 

C: Learning blockade / lesion trials 

D: The effect of pretraining on the 1st learning block E: KC repetition bias

Figure 3: The full and reduced versions of our model reproduce the
transfer of sameness and difference learning. A & B The average per-
centage of correct choices made by the model and real bees within blocks of
ten trials as the task is learned (lines), along with the transfer of learning onto
novel stimulus sets (bars). Both versions of the model reproduce the pattern
of learning acquisition for DMTS (Full: N=338, Reduced: N= 360) and DN-
MTS (Full & Reduced: N=360) found when testing real bees (test for learning:
P¡0.0001), along with the transfer of learning (P¡0.0001). For DMTS Giurfa
A & B are the data from Experiments 1 & 2 respectively from Giurfa et al.
Giurfa et al. (2001), and for DNMTS Giurfa A & B are the data from Ex-
periments 5 & 6 respectively from the same source. For an explanation of the
initial offsets from chance for the model please see the text for panel D. C The
blockade of plasticity from the MB and PCT pathways shows that the PCT
pathway is necessary and sufficient for sameness and difference learning in the
full model. All non-overlapping SEM error bars are significantly different. D
PCT pathway learning in the absence of associative learning leads to preference
for non-matching stimuli following pre-training, demonstrating that learning in
the associative pathway changes the form of the sameness and difference acqui-
sition curves. The equivalent offsets and error ranges for the first two blocks
of Giurfa Experiments 1, 2, 5 & 6 along with the averages for DMTS and DN-
MTS for these blocks are shown alongside the model data for comparison as
overlapping grey boxes - overlapping boxes create darker regions, thus the area
of greatest darkness is the point where the most of the error ranges overlap. E
The average activity of the model KC neurons when presented with repeated
stimuli.
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Figure 4: The full model is capable of performing a range of condition-
ing tasks. With modification of only the experimental protocol, our full model
can successfully perform a range of conditioning tasks which can be performed
by restrained (using the Proboscis Extention Reflex (PER) paradigm) and free
flying bees. Performance closely matches experimental data with real bees (e.g.
A:Bitterman et al. (1983), B:Giurfa (2004), C & D:Deisig et al. (2001)).

Discussion

We have presented a simple neural model that is capable of learning the concepts
of sameness and difference in Delayed Match to Sample (DMTS) and Delayed
Not Match to Sample (DNMTS) tasks. Our model is inspired by the known
neurobiology of the honey bee, and is capable of reproducing the performance
of honey bees in a simulation of DMTS and DNMTS tasks. Our model there-
fore proposes a hypothesis for how animals like the honey bee might be able
apparently to learn abstract concepts.

Abstract concept learning is typically described as a higher-order cognitive
capacity (Wright and Katz, 2007; Avarguès-Weber and Giurfa, 2013), and one
that is dependent on a top-down modulation of simpler learning mechanisms by
a higher cognitive process (Moore et al., 2012). By contrast our model proposes
a solution to sameness and difference learning in DMTS-style tasks with no
top-down structure. The actions of the PCT neurons are integrated with the
KC learning pathway and provide a parallel processing pathway sensitive to
stimulus magnitude, rather than a top-down imposition of a learned concept of
sameness or difference (Figure 1). This is a radical new proposal for how an
abstract concept might be learned by an animal brain.

The first question we must ask when constructing a model regards plausibil-
ity. Our model (Figure 1) shows a close match to the neuroanatomical data for
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the mushroom bodies. Several computational requirements of our model match
with experimental data, notably the sensory accommodation in the response of
the KC neurons. Previous neural models based on this structure have proposed
mechanisms for various forms of associative learning, including extinction of
learning, and positive and negative patterning (Bazhenov et al., 2013; Arena
et al., 2013; Peng and Chittka, 2016). Our model is also capable of solving a
range of stimulus-specific learning tasks, including patterning (Figure 4). No
plausible previous model of the MB or the insect brain has been capable of
learning abstract concepts, however.

As mentioned in the Introduction, a previous model by Arena et al. (2013)
demonstrates DMTS and DNMTS with transfer. Their motivation is the cre-
ation of a model for robotic implementation, rather than reproduction of be-
havioural observations from honey bees. While we suggest a role for the PCT
neurons given experimental evidence of changes in the response of Kenyon Cells
to repeasted stimuli, Arena et al.’s model assumes resonance between brain re-
gions that is dependent upon the time after stimulus onset and the addition
of specific neurons for ‘Match’ and ‘Non-match’; there is no biological evidence
for either of these assumptions. Furthermore, the outcome of these additions
is an increase in Kenyon cell firing in response to repeated stimuli; this is in
opposition to neurophysiological evidence from multiple insect species, includ-
ing honey bees (Szyszka et al., 2008; Hattori et al., 2017). In addition, Arena
et al‘s proposed mechanism does not replicate the difficulty honey bees have in
learning DMTS/DNMTS tasks, exhiibting learning in three trials, as opposed
to 60 in real bees. In contrast, our model captures the rate and form of the
learning found in real honey bees.

To enable a capacity for learning the stimulus-independent abstract concept
of sameness or difference our model uniquely includes two interacting pathways.
The KC pathway of the mushroom bodies retains stimulus-specific informa-
tion and supports stimulus-dependent learning. The PCT pathway responds
to summed activity across the KC population and is therefore largely indepen-
dent of any stimulus-specific information. This allows information on stimulus
magnitude, independent of stimulus specifics, to influence learning. Including
a sensory accommodation property to the KCs (Szyszka et al., 2008) makes
summed activity in the KCs in response to a stimulus sensitive to repetition,
and therefore stimuli encountered successively (same) cause a different magni-
tude of KC response to novel stimuli (different) irrespective of stimulus specifics.
This model is capable of learning sameness and difference rules in a simulation
of the Y-maze DMTS and DNMTS tasks applied to honey bees (Figure 3), but
in theory it could also solve other abstract concepts related to stimulus mag-
nitude such as quantitative comparisons (Avarguès-Weber and Giurfa, 2013;
Avarguès-Weber et al., 2014).

Our model demonstrates a bias towards non-repeated stimuli, induced by the
combination of sensory accommodation in the KC neurons and PCT learning
during the pretraining phase, and largely mitigated by associative learning in
the KC to EN synapses. This bias (see Figure 3) is indicated in the data from
Giurfa et al. (2001), and could be confirmed by further experimentation.
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We note, however, that our model only supports a rather limited form of con-
cept learning of sameness and difference. Learning in the model is dependent on
sensory accommodation of the KCs to repeated stimuli (Szyszka et al., 2008).
This effect is transient, and hence the capacity to learn sameness or difference
will be limited to situations with a relatively short delay between sample and
matching stimuli. This limitation holds for honey bee learning of DMTS tasks
(Zhang et al., 2005), but many higher vertebrates do not have this limitation
Lind et al. (2015). For example, in capuchins learning of sameness and difference
is independent of time between sample and match (Wright and Katz, 2006). We
would expect that for animals with larger brains and a developed neocortex (or
equivalent) many other neural mechanisms are likely to be at play to reinforce
and enhance concept learning, enabling performance that exceeds that demon-
strated for honey bees. Monkey pre-frontal cortex (PFC) neurons demonstrate
considerable stimulus-specificity in matching tasks, and different regions appear
to have different roles in coding the salience of these stimuli (Seger and Miller,
2010; Tsujimoto et al., 2011). Recurrent neural activity between these selective
PFC neurons and lower-order neural mechanisms could support such time inde-
pendence. Language-trained primates did particularly well on complex identity
matching tasks and the ability to form a language-related mental representation
of a concept might be the reason (Premack, 1978; Premack and Premack, 1983;
Thompson and Oden, 1995).

Wright and Katz (Wright and Katz, 2007) have utilised a more elaborate
form of a MTS task in which vertebrates simultaneously learn to respond to
sameness and difference, and are trained with large sets of stimuli rather than
just two. They argue this gives less-ambiguous evidence of true concept learning
since both sameness and difference are learned during training, and the large
size of the training stimulus set encourages true generalisation of the concept.
In theory our model could also solve this form of task, but it is unlikely a honey
bee could. Capuchins, rhesus and pigeons required hundreds of learning trials
to learn and generalise the sameness and difference concepts (Wright and Katz,
2007). Bees would not live long enough to complete this training,

Finally as a consequence of our model we question whether it is necessary to
consider abstract concept learning to be a higher cognitive process. Mechanisms
necessary to support it may not be much more complex than those needed for
simple associative learning. This is important because many behavioural sci-
entists still adhere to something like Lloyd Morgan’s Canon (Lloyd Morgan,
1903), which proposes that “in no case is an animal activity to be interpreted
in terms of higher psychological processes if it can be fairly interpreted in terms
of processes which stand lower in the scale of psychological evolution and de-
velopment” (Lloyd Morgan (1903) p59). Yet the Canon is therefore reliant on
an unambiguous stratification of cognitive processes according to evolutionary
history and development (Sober, 2015). If abstract concept learning is in fact de-
velopmentally quite simple, evolutionarily old and phylogenetically widespread,
then Morgan’s Canon would simply beg the question of why even more animals
do not have this capacity (Mikhalevich, 2015). We argue that far more infor-
mation on the precise neural mechanisms of different cognitive processes, and
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Table 1: Model parameters; all parameters are in arbitrary units
Name Value Name Value

Full
NIN 144 NKC 5000
NEN 8 NPCT 6
pIN−>KC 0.02

b 1.2 bs (l > 0) 150
bs (l = 0) 120

Reduced
c 80 d0 1

Shared
λe 0.06 λi 0.03
Rb 2/3

the distribution of cognitive abilities across animal groups, is needed in order
to properly rank capacities as higher or lower.

Methods

Model parameter selection

Many of the parameters of the model were fixed by the neuroanatomy of the
honey bee, as well as the previous values and procedures described in Bazhenov
et al. (2013), with the following modifications.

First, we increased the sparseness of the connectivity from the PN to the
KC.

Second, the reduction in the magnitude of the KC output to repeated stimuli
was tuned to replicate the magnitude of reduction described in Szyszka et al.
(2008).

Third, the learning rates were set so that acquisition of a single stimulus
is rapid. In addition there are two ratios from this initial value that must
be set. These are the ratio of the speed of excitatory associative learning in
the Kenyon Cell to Extrinsic Neuron pathway to the inhibitory learning in the
Protocerebellar Tract to Extrinsic Neuron pathway, and the ratio of the speed of
acquisition when rewarded to the speed to extinction when no reward is given.
We conservatively set both of these ratios to 2:1, with excitatory learning faster
than inhibitory learning, and extinction faster than acquisition.

Finally, we tuned the threshold value for the PCT neurons so that they only
responded to a new stimulus, and not a repeated one.

A full list of the parameters can be found in Table 1.
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Reduced Model

The reduced model is shown in Figure 1, and described in the text in Results.
Here are the equations governing the model.

The input node S1 projects to node I via a fixed excitatory weight of 1.0 and
to GO and NOGO with excitatory weights we

GO,S1
and we

NOGO,S1
correspond-

ingly (superscript denotes excitatory and subscript the connection from neuron
S1 to GO/NOGO). Similarly, node S2 projects to I via an excitatory weight
we

I,S2
and to GO and NOGO with excitatory weights we

GO,S2
and we

NOGO,S2
.

Finally, node I projects to GO and NOGO with inhibitory weights wi
GO,I and

wi
NOGO,I correspondingly. Node I is a threshold linear neuron with a cut-off at

high values of activity xmax. Nodes GO and NOGO are linear neurons, with
activities restricted between

The model is described by the following equations, where only one input
node S1 or S2 are active (but not both, as the bee observes one option at a
time), where the activities of neurons I, GO and NOGO are calculated by:

I = Si Θ (Si > θ) (1)

GO = we
GO,Si

Si − wi
GO,I I (2)

NOGO = we
NoGo,Si

Si − wi
NoGo,I I, (3)

where i = 1, 2 is an index taking values depending on which stimulus is present
(S1 or S2), and neuronal activities of I, GO and NOGO are constrained between
xmin and xmax. If a stimulus has been shown twice, during its second presenta-
tion there is a suppression of the neuronal activity that represents the specific
stimulus, consistent with experimental findings Szyszka et al. (2008). This is
modelled as a reduction by a factor of 0.7 of the value Si for the repeated stimuli.

To calculate the proabability of the behavioral outcome of GO or NOGO
being the winner we use the following equation:

P (GO) =
1

1 + e−(c−d)(GO−NOGO)
, (4)

P (NOGO) = 1− P (GO). (5)

where c is a fixed coefficient and d a bias that increases linearly with the time
it takes to make a decision, in the following way:

d =
k

do
, (6)

with k being the number of consequent iterations for which GO has not been
selected, set at zero at the beginning of each stimulus presentation. The param-
eter do is a constant, and selected so that the factor c−d will always be positive.
This parameterisation makes sure that the longer it takes for a decision GO to
be made, the higher the probability that GO will be chosen at the next step.
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Inhibitory synaptic weights wi are learned using the following equation:

∆wi = −λi(R−Rb) presynaptic activity × postsynaptic activity, (7)

where λi is the learning rate of the inhibitory weights, reward R = 1 if reward is
given, and zero in all other cases, Rb is a reward baseline, and the presynaptic
(postsynaptic) activity is 1 if the presynaptic (postsynaptic) neuron is active
and 0 elsewhere. This is a reward-modulated Hebbian rule also known as a
three factor rule Vasilaki et al. (2009); Richmond et al. (2011).

Additional neuronal inputs with similar connectivity as S1 and S2, not shown
explicitly in the diagram, are also present in the model simulations, and the
constructing the equations for these simply requires substitution of Si for Ti
in Equations 1, 2 and 3. These represent the transfer stimuli and can be used
following training to demonstrate transfer of learning. Details of training the
model can be found in the Experiment subsection of the Methods.

Full Model

The full model is shown in Figure 1. Our model builds on a well established
abstraction of the mushroom body circuit (see Huerta et al. (2004); Huerta and
Nowotny (2009); Bazhenov et al. (2013)) to model simple learning tasks.

The main structure of the model consists of an associative network with three
neural network layers. Adapting terminology and features from the insect brain
we label these: input neurons (IN) (correponding to S in the Reduced Model),
a large middle layer of Kenyon cells (KC) (correponding to the S to GO /
NOGO connections in the Reduced Model), and a small output population of
mushroom body extrinsic neurons (EN) separated into GO and NOGO subsets
(as in the Reduced Model). The connections, cij , between the IN and KC are
fixed, and are randomly selected from the complete connection matrix with a
fixed probability pIN−>KC = 0.02. Connections from the KC to the EN are
plastic, consisting of a fully connected matrix. The connection strength between
the jth KC and the kth EN (wjk) can take a value between zero and one. The
neural description used in the entire model is linear with a bottom threshold,
and contains no dynamics, consisting of a summation over the inputs followed
by thresholding at a value b via a Heaviside function Θ, with a linear response
above the threshold value. This gives the associative model as the following,
where the outputs of ith, jth and kth neurons of the IN, KC and EN populations
are xi, yj and zk respectively, and M describes the modulation of KC activity
for the stimulus seen at the maze entrance:

M =


1.0 : at maze entrance

1.0 : in arms if yj = 0 (KC inactive) at entrance

0.7 : in arms if yj > 0 (KC active) at entrance

(8)

yj = MΘ

(NIN∑
i=0

cijxi − b
)(NIN∑

i=0

cijxi − b
)

(9)

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 10, 2018. ; https://doi.org/10.1101/268375doi: bioRxiv preprint 

https://doi.org/10.1101/268375


zk = Θ

(NKC∑
j=0

wjkyj

)(
(

NKC∑
j=0

wjkyj

)
(10)

where NIN is the number of IN and NKC is the number of KC.
DMTS generalisation is performed by the inhibitory protocerebral tract

(PCT) neurons sl (correponding to I in the Reduced Model) described by the
following equations:

sl = Θ

(NKC∑
j=0

xj − bs
)(NKC∑

j=0

xj − bs
)

(11)

yj = Θ

(NIN∑
i=0

cijxi − b−
NPCT∑
l=0

s∗l

)(NIN∑
i=0

cijxi − b−
NPCT∑
l=0

s∗l

)
(12)

zk = Θ

(NKC∑
j=0

wjkxj − 0.5

NPCT∑
l=0

wi
lksl

)(NKC∑
j=0

wjkxj − 0.5

NPCT∑
l=0

wi
lksl

)
(13)

Where wlk are the inhibitory weights between the PCT neurons. The ∗

denotes 10 iteration delayed activity from the PCT neurons due to delays in the
KC->PCT->KC loop.

Learning takes place according to equation (7), and the following equation
for excitatory synapses:

∆we = λe(R−Rb) presynaptic activity × postsynaptic activity, (14)

where λe is the learning rate of the excitatory weights, reward R = 1 if reward is
given, and zero in all other cases, Rb is a reward baseline, and the presynaptic
(postsynaptic) activity is 1 if the presynaptic (postsynaptic) neuron is active
and 0 elsewhere.

Similarly to the reduced model, a decision is made when the GO EN subpop-
ulation activity is greater than the NOGO EN population by a bias Rd, where
d increases every time a NOGO decision is made by 10.0, and R is a uniform
random number in the range [−0.5, 0.5]. To prevent early decisions the sum of
the whole EN population activity must be greater than 0.1.

Experiment

Our challenge is to reproduce Giurfa et al’s data demonstrating bees solving
DMTS and DNMTS tasks (Giurfa et al., 2001). To aid exploration of our model
we simplify the task it must face, while retaining the key elements of the problem
as faced by the honeybee. We therefore embody our model in a world described
by a state machine. This simple world sidesteps several navigation problems
associated with the real world, however we believe that for the sufficiency proof
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we present here such simplifications are acceptable - the ability of the honeybee
to form distinct and consistent neural representations of the training set stimuli
as it flies through the maze is a prerequisite of solving the task, and is therefore
assumed.

The experimental paradigm for our Y-maze task is shown in Figure 2. The
model bee is moved between a set of states which describe different locations in
the Y-maze apparatus: at the entrance, in the central chamber facing the left
arm, in the central chamber facing the right arm, in the left arm or in the right
arm. When at the entrance or in the main chamber the bee is presented with a
sensory input corresponding to one of the test stimuli. We can then set the test
stimuli presented to match the requirements of a given trial (e.g. entrance (A),
main chamber left (A), main chamber right (B) for DMTS when rewarding the
left arm, or DNMTS when rewarding the right arm).

Experimental environment

The experimental environment consists of a simplified Y-maze (see Figure 2:
main paper), in which the model bee can assume one of three positions: at the
entrance to the Y-maze; at the choice point in front of the left arm; at the choice
point in front of the right arm. At each position there are two choices available
to the model: go and no-go. Go is always chosen at the entrance to the Y-
maze as bees that refuse to enter the maze would not continue the experiment.
Following this there is a random choice of one of the two maze arms, left or
right. If the model chooses no-go this procedure is repeated until the model
chooses to go. As no learning occurs at this stage it is possible for the model
to constantly move between the two arms, never choosing to go. To prevent
this eventuality we introduce a Uniformly distributed random bias B to the go
channel that increases with the number of times the model chooses no-go (N):
B = 10N(U [0, 1]− 0.5).

The IN neurons are divided into non-overlapping groups of 8 neurons, each
representing a stimulus. These are:

• Z: Stimulus for pretraining

• A: Stimulus for training pair

• B: Stimulus for training pair

• C: Stimulus for transfer test pair

• D: Stimulus for transfer test pair

• E: Stimulus for second transfer test pair

• F: Stimulus for second transfer test pair

Each group contains neurons which are zero when the stimulus is not present,
and a value of 1−U [−0.05, 0.05] - consistent across the experiment for each bee,
but not between bees - when active.
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DMTS / DNMTS experimental procedure

Models as animals
We use the ‘models as animals’ principle to reproduce the experimental

findings of Giurfa et al. (2001), creating many variants of the model which
perform differently in the experiments. To do this we change the random seed
used to generate the connectivity cij between the IN and the KC neurons. For
these experiments we use 360 model bee variants, each of which is individually
tested, as this matches the number of bees in Giurfa et al. (2001).
Pretraining familiarisation

As is undertaken in the experiments with real bees, we first familiarise our
naive model bees with the experimental apparatus. This is done by first training
ten rewarded repetitions of the bee entering the Y-maze with a stimulus not used
in the experiment. In these cases the model does not choose between go and
no-go, it is assumed that the first repetition represents the model finding the Y-
maze and being heavily enough rewarded to complete the remaining repetitions.
Following these ten repetitions the bee is trained with ten repetitions to travel
to each of the two arms of the Y-maze. This procedure ensures that the bees
will enter the maze and the two arms when the training begins, allowing them
to learn the task.
Training

The training procedure comprises 60 trials in total, divided into blocks of 10
trials. The protocol involves a repeated set of four trials: two trials with each
stimulus at the maze entrance, with each of these two trials having the stimulus
at the maze entrance on different arms of the apparatus. In the case of match-
to-sample the entrance stimulus is rewarded and the non-entrance stimulus is
punished, and vice versa for not-match-to-stimulus.
Transfer test

For the transfer test we do not provide a reward or punishment, and test the
models using the procedure for Training, substituting the transfer test stimuli for
the training stimuli. Two sets of transfer stimuli are used, and four repetitions
(left and right arm with each stimulus) are used for each set of stimuli.

Testing performance of the full model in other conditioning
tasks

In addition to solving the DMTS and DNMTS tasks, we must validate that our
proposed model can also perform a set of conditioning tasks that are associated
with the mushroom bodies in bees, without our additional PCT circuits affecting
performance. Importantly, these tasks are all performed with exactly the same
model parameters that are used in the DMTS and DNMTS tasks, yet match
the timescales and relative performances found in experiments performed on
real bees. We choose four tasks, which comprise olfactory learning experiments
using the proboscis extention reflex (PER) that are performed on restrained bees
as well as visual learning experiments performed with free flying bees (Figure
4).
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Differential learning / reversal experimental procedure (Figure 4,
panel B)

These experiments follow the same protocol as the DMTS experiments, ex-
cept that for the first fifteen trials one stimulus is always rewarded when the
associated arm is chosen (no reward or punishment is given for choosing the non-
associated arm), and subsequent to trial fifteen the other stimulus is rewarded
when the associated arm is chosen. No pretraining or transfer trials are per-
formed and the data is analysed for each trial rather than in blocks of 10 due to
the speed of learning acquisition. 200 virtual bees are used for this experiment
(see Figure 4, panel B for results, to be compared with Giurfa (2004)).
Proboscis Extension Reflex (PER) Experiments

The Proboscis Extension Reflex (PER) is a classical conditioning experimen-
tal paradigm used with restrained bees. In this paradigm the bees are immo-
bilised in small metal tubes with only the head and antennae exposed. Olfactory
stimuli (conditioned stimuli) are then presented to the restrained bees in asso-
ciation with a sucrose solution reward (unconditioned stimulus) (see Bitterman
et al. (1983) for full details).

For the PER experiments we separate the IN neurons as described in Section
, however as the bees are restrained for these experiments we present odors
following a pre-defined protocol, and the choices of the bee do not affect this
protocol.
Single odor learning experimental procedure (Figure 4, panel A)

In the single odor experiments we use the procedure outlined in Bitterman
et al Bitterman et al. (1983). In this procedure acquisition and testing occur
simultaneously. The real bees are presented an odor, and after a delay rewarded
with sucrose solution. If the animal extends its proboscis within the delay period
it is rewarded directly and considered to have responded, if it does not the PER
is invoked by touching the sucrose solution to the antennae and the animal is
rewarded but considered not to have responded. To match this protocol the
performance of the model was recorded at each trial, with NOGO considered a
failure to respond to the stimulus, and GO a response. At each trial a reward
was given regardless of the model’s performance.
Positive / negative patterning learning experimental procedure (Fig-
ure 4, panels C & D)

In these experiments we follow the protocol described in Deisig et al. (2001).
We divide the training into blocks, each containing four presentations of an odor
or odor combination. For positive patterning we do not reward individual odors
A and B, but reward the combination AB (A-B-AB+). In negative patterning
we reward the odors A and B, but not the combination AB (A+B+AB-). In both
cases the combined odor is presented twice for each presentation of the individual
odors, so a block for positive patterning is [A-,AB+,B-,AB+] for example, while
for negative patterning a block is [A+,AB-,B+,AB-]. Performance is assessed as
for the single odor learning experiment, with the two combined odor responses
averaged within each block.
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Software and implementation

The reduced model was simulated in GNU Octave (John W. Eaton David
Bateman and Wehbring, 2015). The full model was created and simulated
using the SpineML toolchain (Richmond et al., 2013) and the SpineCreator
graphical user interface (Cope et al., 2015). These tools are open source and
installation and usage information can be found on the SpineML website at
http://spineml.github.io/. Input vectors for the IN neurons and the state engine
for navigatation of the Y-maze apparatus are simulated using a custom script
written in the Python programming language (Python Software Foundation,
https://www.python.org/) interfaced to the model over a TCP/IP connection.

Statistical tests were performed as in Giurfa et al. (2001) using 2x2 X2 tests
performed in R (R Core Team, 2013) using the chisq.test() function.

The code is available online at http://github.com/BrainsOnBoard/bee-concept-
learning
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proboscis extension in honeybees (Apis mellifera). Journal of comparative
psychology (Washington, DC : 1983). 1983 jun; 97(2):107–19. http://www.

ncbi.nlm.nih.gov/pubmed/6872507.

Boitard C, Devaud JM, Isabel G, Giurfa M. GABAergic feedback sig-
naling into the calyces of the mushroom bodies enables olfactory rever-
sal learning in honey bees. Frontiers in Behavioral Neuroscience. 2015
jul; 9. http://journal.frontiersin.org/Article/10.3389/fnbeh.2015.

00198/abstract, doi: 10.3389/fnbeh.2015.00198.

Cope AJ, Richmond P, James SS, Gurney K, Allerton DJ. SpineCre-
ator: A graphical user interface for the creation of layered neural models.
In-press. 2015 sep; http://www.ncbi.nlm.nih.gov/pubmed/27628934, doi:
10.1007/s12021-016-9311-z.

Daehler MW, Greco C. Memory in very young children. In: Cogni-
tive Learning and Memory in Children Springer New York; 1985.p. 49–
79. http://link.springer.com/10.1007/978-1-4613-9544-7{_}2, doi:
10.1007/978-1-4613-9544-7˙2.

D’Amato MR, Salmon DP, Colombo M. Extent and limits of the matching
concept in monkeys (Cebus apella). Journal of Experimental Psychology: An-
imal Behavior Processes. 1985; 11(1):35–51. http://doi.apa.org/getdoi.

cfm?doi=10.1037/0097-7403.11.1.35, doi: 10.1037/0097-7403.11.1.35.

Deisig N, Lachnit H, Giurfa M, Hellstern F. Configural olfac-
tory learning in honeybees: negative and positive patterning dis-
crimination. Learning & memory (Cold Spring Harbor, NY). 2001;
8(2):70–8. http://www.ncbi.nlm.nih.gov/pubmed/11274252http:

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC311365,
doi: 10.1101lm.38301.

Devaud JM, Papouin T, Carcaud J, Sandoz JC, Grünewald B, Giurfa
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