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8

Abstract The capacity to learn abstract concepts such as ‘sameness’ and ‘difference’ is9

considered a higher-order cognitive function, typically thought to be dependent on top-down10

neocortical processing. It is therefore surprising that honey bees apparantly have this capacity.11

Here we report a model of the structures of the honey bee brain that can learn sameness and12

difference, as well as a range of complex and simple associative learning tasks. Our model is13

constrained by the known connections and properties of the mushroom body, including the14

protocerebral tract, and provides a good fit to the learning rates and performances of real bees in15

all tasks, including learning sameness and difference. The model proposes a novel mechanism for16

learning the abstract concepts of ‘sameness’ and ‘difference’ that is compatible with the insect brain,17

and is not dependent on top-down or executive control processing.18

19

Abstract concepts involve the relationships between things. Two simple and classic examples of20

abstract concepts are ‘sameness’ and ‘difference’. These categorise the relative similarity of things:21

they are properties of a relationship between objects, but they are independent of, and unrelated22

to, the features of the objects themselves. The capacity to identify and act on abstract relationships23

is a higher-order cognitive capacity, and one that is considered critical for any operation involving24

equivalence or general quantitative comparison (Wright and Katz, 2007; Piaget and Inhelder, 1969;25

Daehler and Greco, 1985; Avarguès-Weber and Giurfa, 2013). The capacity to recognise abstract26

concepts such as sameness has even been considered to form the “very keel and backbone of27

our thinking" (James, 1890). Several non-verbal animals have been shown to be able to recognise28

‘sameness’ and ‘difference’ including, notably, the honey bee (Wright, 1997, 1992; Giurfa et al., 2001;29

D’Amato et al., 1985).30

The ability of the honey bee to recognise ‘sameness’ and ‘difference’ is interesting, as the learning31

of abstract concepts is interpreted as a property of the mammalian neocortex, or of regions of32

the avian pallium (Diekamp et al., 2002;Wallis et al., 2001;Miller et al., 2003) and to be a form of33

top-down executive modulation of lower-order learning mechanisms (Avarguès-Weber and Giurfa,34

2013; Miller et al., 2003). This interpretation has been reinforced by the finding that activity of35

neurons in the prefrontal cortex of rhesus monkeys (Macaca mulatta) correlates with success in36

recognising sameness in tasks (Wallis et al., 2001;Miller et al., 2003). The honey bee, however, has37

nothing like a prefrontal cortex in its much smaller brain.38

In this paper we use a modelling approach to explore how an animal like a honey bee might be39

able to solve an abstract concept learning task. To consider this issue we must outline in more detail40

how learning of sameness and difference has been demonstrated in honey bees, and originally in41
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other animals.42

A family of ‘match-to-sample’ tasks has been developed to evaluate sameness and difference43

learning in non-verbal animals. In these tasks animals are shown a sample stimulus followed, after44

a delay, by two stimuli: one that matches the sample and one that does not. Sometimes delays45

of varying duration have been imposed between the presentation of the sample and matching46

stimuli to test duration of the ‘working memory’ required to perform the task (Wright and Katz,47

2007; Katz et al., 2007). This working memory concept is likened to a neural scratchpad that can48

store a short term memory of a fixed number of items, previously seen but no longer present49

(Baddeley and Hitch, 1974). Tests in which animals are trained to choose matching stimuli are50

described as Match-to-Sample (MTS) or Delayed-Match-To-Sample (DMTS) tasks, and tests in which51

animals are trained to choose the non-matching stimulus are Not-Match-To-Sample (NMTS) or52

Delayed-Not-Match-To-Sample (DNMTS) tasks.53

On their own, match-to-sample tasks are not sufficient to show concept learning of sameness54

or difference. For this it is necessary to show, having been trained to select matching or non-55

matching stimuli, that the animal can apply the concept of sameness or difference in a new context56

(Avarguès-Weber and Giurfa, 2013). Typically this is done by training animals with one set of stimuli57

and testing whether they can perform the task with a new set of stimuli (Wright, 1997, 1992; Giurfa58

et al., 2001; D’Amato et al., 1985); this is referred to as a transfer test.59

In a landmark study Giurfa et al. (2001) showed that honey bees can learn both sameness and60

difference. They could learn both DMTS and DNMTS tasks and generalise performance in both61

tasks to tests with new, previously unseen, stimuli (Giurfa et al., 2001). In this study free-flying bees62

were trained and tested using a Y-maze in which the sample and matching stimuli were experienced63

sequentially during flight, with the sample at the entrance to the maze and the match stimuli at64

each of the y-maze arms. Bees could solve and generalise both DMTS and DNMTS tasks when65

trained with visual stimuli, and could even transfer the concept of sameness learned in an olfactory66

DMTS task to a visual DMTS task, showing cross-modal transfer of the learned concept of sameness67

(Giurfa et al., 2001). Bees took 60 trials to learn these tasks (Giurfa et al., 2001); this is much longer68

than learning a simple olfactory or visual associative learning task, which can be learned by bees in69

3 trials (Matsumoto et al., 2012). Their performance in DMTS and DNMTS was not perfect either;70

the population average for performance in test and transfer tests was around 75%, but they could71

clearly perform at better than chance levels (Giurfa et al., 2001) in both.72

The concept of working memory is crucial for solving a DMTS/DNMTS task, as information about73

the sample stimulus is no longer available externally to the animal when choosing between the74

match stimuli. If there is no neural information that can identify the match then the task cannot be75

solved. We therefore must identify in the honeybee a candidate for providing this information in76

order to produce a model that can solve the task.77

A previous model by Arena et al. (2013) demonstrates DMTS and DNMTS with transfer, however78

the model contains many biologically unfounded mechanisms that are solely added for the purpose79

of solving these tasks, and the outcome of these additions disagrees with neurophysiological,80

and behavioural evidence. We instead take an approach of constraining our model strongly to81

established neurophysiology and neuronanatomy, and demonstrating behaviour that matches that82

of real bees. We will compare this model to the model presented here further in the Discussion.83

The honey bee brain is structured as discrete regions of neuropil (zones of synaptic contact).84

These are well described, as are the major tracts connecting them (Strausfeld, 2012). The learning85

pathways have been particularly intensely studied (e.g. Menzel, 2001; Søvik et al., 2015; Giurfa,86

2007; Galizia, 2014). The mushroom bodies (corpora pedunculata) receive processed olfactory,87

visual and mechanosensory input (Mobbs, 1982) and are a locus of multimodal associative learning88

in honey bees (Menzel, 2001). They are essential for reversal and configural learning (Avarguès-89

Weber and Giurfa, 2013; Boitard et al., 2015; Devaud et al., 2015). Avarguès-Weber and Giurfa90

(Avarguès-Weber and Giurfa, 2013) have argued the mushroom bodies to be the most likely brain91

region supporting concept learning, because of their roles in stimulus identification, classification92
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and elemental learning (Galizia, 2014; Bazhenov et al., 2013;Menzel, 2001). Yet it is not clear how93

mushroom bodies and associated structures might be able to learn abstract concepts that are94

independent of any of the specific features of learned stimuli and, crucially, how the identity of95

the sample stimulus could be represented. Solving such a problem requires two computational96

components. First, a means of storing the identity of the sample stimulus, a form of working97

memory; second, a mechanism that can learn to use this stored identity to influence the behaviour98

at the decision point. Below we propose a model of the circuitry of the honey bee mushroom99

bodies that can perform these computations and is able to solve DMTS and DNMTS tasks.100

Results101

Key model principles: A circuit model inspired by the honey bee mushroom bodies102

We explored whether a neural circuit model, inspired and constrained by the known connections of103

the honey bee mushroom bodies, is capable of learning sameness and difference in a DMTS and104

DNMTS task (Figure 1). Full details of the models can be found in Methods.105
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Figure 1. Models of the mushroom bodies based on known neuroanatomy. A Neuroanatomy: MB
Mushroom Bodies; AL Antennal Lobe glomeruli (circles);ME & LOMedulla and Lobula optic neuropils. The
relevant neural pathways are shown and labelled for comparison with the model. B Reduced model; neuron
classes indicated at righthand side of sub-figure. C Full model, showing the model connectivity and indicating
the approximate relative numbers of each neuron type. Colour coding and labels are preserved throughout all

the diagrams for clarity. Excitatory and inhibitory connections indicated as in figure legend. Key of neuron types:

KC, Kenyon Cells; PCT, Protocerebellar Tract neurons; IN, Input Neurons (olfactory or visual); EN, Extrinsic MB

Neurons from the GO and NOGO subpopulations, where the subpopulation with the highest sum activity

defines the behavioural choice in the experimental protocol (Figure 2).

The mushroom body has previously been modelled as an associative network consisting of106

three neural network layers (Bazhenov et al., 2013; Huerta and Nowotny, 2009), comprised of107

input neurons (IN) providing processed olfactory, visual and mechanosensory inputs (Mobbs, 1982;108

Fahrbach, 2006), an expansive middle layer of Kenyon cells (KC) which enables sparse-coding of109

sensory information for effective stimulus classification (Galizia, 2014), and finally mushroom body110

extrinsic neurons (EN) which output to premotor regions of the brain and can be considered (at this111

level of abstraction) to activate different possible behavioural responses (Galizia, 2014; Bazhenov112

et al., 2013). Here, for simplicity, we consider the EN as simply two subpopulations controlling113

either ‘go’ or ‘no-go’ behavioural responses only, which allow choice between different options via114

sequential presentations where ‘go’ chooses the currently presented option. Connections between115

the KC output and ENs are modifiable by synaptic plasticity (Bazhenov et al., 2013; Heisenberg,116

2003; Schwaerzel et al., 2003; Strube-Bloss et al., 2011) supporting learned changes in behavioural117

responses to stimuli.118

As outlined in the introduction, we require two computational mechanisms for solving the119

DMTS/DNMTS task. First is a means of storing the identity of the sample stimulus. Second is learning120

to use this identity to drive behaviour and solve the task. Moreover this learning must generalise to121
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other stimuli. The computational complexity of this problem should not be underestimated; either122

the means of storing the identity of the sample, or the behavioural learning, must generalise to123

other stimulus sets. The bees were not given any reward with the transfer stimuli in Giurfa et al.124

(2001)’s study, so no post-training learning mechanism can explain the transfer performance. In125

addition, during the course of the experiment of Giurfa et al. (2001) each of the two stimuli were126

used as the match, i.e. for stimuli A and B the stimulus at the maze entrance were alternated127

between A and B throughout the training phase of the experiment. This requires, therefore, that128

the bees have a sense of stimulus ‘novelty’, and can associate novelty with a behaviour: either129

approach for DNMTS, or avoid for DMTS. With one training set the problem is solvable as delayed130

paired non-elemental learning tasks, however with the transfer of learning to new stimulus sets131

such an approach does not solve the whole task.132

There is one feature of the Kenyon Cells which can fulfill this computational requirement for133

novelty detection, that of sensory accommodation. In honey bees, even in the absence of reward134

or punishment, the KC show a stark decrease in activity between initial and repeated stimulus135

presentations of up to 50%, an effect that persists over several minutes (Szyszka et al., 2008). This136

effect is also found in Drosophila melanogaster (Hattori et al., 2017), where there is additionally a137

set of mushroom body output neurons that show even starker decreases in response to repeated138

stimuli, and which respond to many stimuli with stimulus specific decreases (thus making them139

clear novelty detectors), however such a neuron has not been found in bees to date. This response140

decrease in Kenyon Cells found in flies and bees is sufficient to influence behaviour during a trial141

but, given the decay time of this effect, not likely to influence subsequent trials. The mechanism142

behind this accommodation property is not known, and therefore we are only able to model143

phenomenologically, which do by reducing the strength of the KC synapses for the sample stimulus144

by a fixed factor, tuned to reproduce the reduction in total KC output found by Szyszka et al. (Szyszka145

et al., 2008) (see Figure 3 panel E). However it should be noted that stimulus-specific adaptation is146

shown in many species and brain areas, and can be explained by short-term plasticity mechanisms147

(Tsodyks and Markram, 1997; Vasilaki and Giugliano, 2014; Esposito et al., 2014) and architectural148

constraints only; see for instance Yarden and Nelken (2017).149

Having identified our first computational mechanism, a memory trace in the form of reduced KC150

output for the repeated stimulus, we need only to identify the second, a learning mechanism that151

can use this reduced KC output to drive behaviour to choose the correct (matching or non-matching)152

arm of the y-maze. If this learning mechanism exists at the output synapses of the KC it is either153

specific to the stimulus - if using a pre-postsynaptic learning rule - and therefore cannot transfer,154

or it utilises a postsynaptic-only learning rule. Initially the postsynaptic learning rule appears a155

plausible solution, however we must consider that bees can learn both DMTS and DNMTS, and that156

learning can only occur when the bee chooses to ‘go’. This creates a contradiction, as postsynaptic157

learning will proportionally raise both the weaker (repeated) stimulus activity, as well as the stronger158

(non-repeated) stimulus activity in the GO EN subpopulation. To select ‘go’ the GO activity for the159

currently presented stimulus must be larger than the activity in the NOGO subpopulation, which is160

fixed. Therefore we face the contradiction that in the DMTS case the weaker stimulus response must161

be higher than the stronger one in the GO subpopulation with respect to their NOGO subpopulation162

counterpart responses, yet in the DNMTS case the converse must apply. No single postsynaptic163

learning rule can fulfil this requirement.164

A separate set of neurons that can act as a relay between the KC and behaviour is therefore165

required to solve both DMTS and DNMTS tasks. A plausible candidate is the inhibitory neurons that166

form the protocerebellar tract (PCT). These neurons have been implicated in both non-elemental167

olfactory learning (Devaud et al., 2015) and regulatory processes at the KC input regions. They168

also project to the KC output regions (Ganeshina and Menzel, 2001; Haehnel and Menzel, 2010;169

Rybak and Menzel, 1993; Okada et al., 2007), where there are reward-linked neuromodulators170

and learning-related changes (Perry and Barron, 2013; Søvik et al., 2015). These neurons are171

few in number in comparison to the KC population, and some take input from large numbers of172
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KC (Papadopoulou et al., 2011). We therefore propose that, in addition to their posited role in173

modulating and regulating the input to the KC based on overall KC activity (Papadopoulou et al.,174

2011), these neurons could also regulate and modulate the activity of the EN populations at the KC175

output regions. Such a role would allow, via synaptic plasticity, a single summation of activity from176

the KCs to differentially affect both their inputs and outputs. If we assume a high threshold for177

activity for the PCT neurons (again consistent with their proposed role) such that repeated stimuli178

would not activate the PCT neurons but non-repeated stimuli would, it is then possible for synaptic179

plasticity from the PCT neurons to the EN to solve the DMTS and DNMTS tasks and, vitally, transfer180

that learning to novel stimuli. We do not propose that this is the purpose of these neurons, but181

instead that it is a consequence of their regulatory role.182

We present two models inspired by the anatomy and properties of the honey bee brain that183

are computationally capable of learning in DMTS and DNMTS tasks, and the generalisation of this184

learning to novel stimuli (Figure 1).185

Our first, reduced, model is a simple demonstration that the key principles outlined above can186

solve DMTS and DNMTS tasks, and generalise the learning to novel stimulus sets. By simplifying187

the model in this way the computational principles are readily apparent. Such a simple model,188

however, cannot demonstrate that associative learning in the KC to EN synapses does not interfere189

with learning in the PCT to EN synapses or vice versa. For this we present a full model that includes190

the associative learning pathway from the KC to the EN, and demonstrate that this model can not191

only solve DMTS and DNMTS with transfer to novel stimuli, but can also solve a suite of associative192

learning tasks in which the MB have been implicated. The results of computational experiments193

performed with these models are presented below. The full model addresses the interaction of the194

PCT to EN learning and the KC to EN learning, as well as suggesting a possible computational role195

of the PCT to EN synaptic pathway in regulating the behavioural choices driven by the MB output,196

which we present in the Discussion.197

NOGOGO

50%

   50%

GO

GO

Figure 2. Experimental protocol for the model. The model bee is moved between a set of states which
describe different locations in the Y-maze apparatus: at the entrance, in the central chamber facing the left arm,

in the central chamber facing the right arm, in the left arm or in the right arm. When at the entrance or in the

main chamber the bee is presented with a sensory input corresponding to one of the test stimuli; GO selection

leads the bee to enter the maze when at the entrance, and to enter an arm and experience a potential reward

when facing that arm; NOGO leads the bee to delay entering the maze, or to choose another maze arm

uniformly at random, respectively. We can then set the test stimuli presented to match the requirements of a

given trial (e.g. entrance (A), main chamber left (A), main chamber right (B) for DMTS when rewarding the left

arm, or DNMTS when rewarding the right arm).
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A reduced model of the core computational principles produces sameness and dif-198

ference learning, and transfers this learning to novel stimuli199

The reduced model is shown in Figure 1 Panel B and model equations are presented in Methods.200

The input nodes S1 and S2 represent the two alternative stimuli, where we have reduced the sparse201

KC representation into two non-overlapping single nodes for simplicity, and as such we do not need202

to model the IN input neurons separately. Node I (which corresponds to the PCT neurons, again203

reduced to a single node for simplicity) represents the inhibitory input to the output neurons GO204

and NOGO. Nodes S1 and S2 project to nodes I and to GO and NOGO with fixed excitatory weighted205

connection. Finally, node I projects to GO and NOGO with plastic inhibitory weighted connections.206

Node I is thresholded so that it only responds to novel stimuli.207

Figure 3 panels A and B show the performance of the reduced model bees for task learning208

and transfer to novel input stimuli. While the reduced model solves the transfer of sameness and209

difference learning the pretraining process strongly biases the model towards non-repeated stimuli,210

proportional to the number of pretraining trials. Notably, this bias in the reduced model is different211

to that found in the full model, which we discuss below.212

The model operates by adjusting the weights between the I and the GO to change the likelihood213

of choosing the non-matching stimulus. Since only connections from the I (representing the PCT214

neuron) to GO neurons are changed, the I to GO/NOGO weights are initialised to half the maximum215

weight value. Note that the I node is only active for the non-repeated stimulus, and this pathway216

has no effect for repeated stimuli. This means that if the weights are increased then non-repeated217

stimuli will have greater inhibition to the GO neuron, and therefore be less likely to be chosen. If218

the weights are decreased then non-repeated stimuli will have less inhibition to the GO neuron219

and therefore will be more likely to be chosen. As the conditions for changing the weights are only220

met when the non-repeated stimulus is chosen for ‘go‘, this means that the model only learns on221

unsuccessful trial for DMTS (increasing the weight), or successful trials for DNMTS (decreasing the222

weight).223

A full model is capable of sameness and difference learning, and transfers this224

learning to novel stimuli225

The full model is shown in Figure 1 Panel C and model equations are presented in Methods. Figure226

3 panel D shows the performance of the full model for the first block of learning following from227

different numbers of pretraining repetitions. When only the PCT pathway is plastic there is a large228

bias towards the non-repeated stimulus due to the pretraining, as found in the reduced model. This229

bias is reduced by the presence of the associative learning pathway, and the bias is independent of230

the number of pretraining trials for more than 5 trials. It should be noted that the experimental231

data (Giurfa et al., 2001) show indications of such a bias, in line with the results from the full model.232

The reduced model therefore requires fewer pretraining trials than the full model to produce a233

similar bias, which leads to the reduced model having large maladaptive behavioural biases for234

non-repeated stimuli if all stimuli are rewarded. This is important, as it suggests a role for the PCT235

pathway in modulating the behavioural choice of the bee. This possible role is explored further in236

the Discussion.237

Figure 3 panels A and B show the performance of the model bees compared with the perfor-238

mance of real bees from Giurfa et al. (2001). In both cases the trends found in the performance239

of the model bees match the trends found in the real bees for both task learning and transfer to240

novel stimuli. It is important to note the different forms of the learning in the DMTS and DNMTS241

paradigms, with DNMTS slower to learn. This is a direct consequence of the inhibitory nature of the242

PCT neurons; excitatory neurons performing the role of the PCT neurons in the model would lead243

to a reversal of this feature, with DMTS learning more slowly.244

6 of 19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 20, 2018. ; https://doi.org/10.1101/268375doi: bioRxiv preprint 

https://doi.org/10.1101/268375


Manuscript submitted to eLife

Learning in the PCT pathway of the full model is essential for transfer of learning245

to novel stimuli246

We next sought to confirm that learning in the PCT neuron to EN pathway enabled generalisable247

learning of sameness and difference. Computational modelling provides powerful tools with which248

to do this, by comparing model performance when different elements are suppressed with the full249

model. We selectively suppressed the KC associative learning pathway, the PCT pathway learning,250

and all learning in the model. When a learning mechanism is suppressed this means that the251

synaptic weights stay the same throughout the training, but the pathway is otherwise active.252

The results are summarised in Figure 3 panel C. It can clearly be seen that within our model253

learning in the PCT pathway is necessary for transfer of the sameness and difference learning to254

novel stimuli. Associative learning via the KC pathway alone has no effect on the transfer task255

performance compared to the fully learning-suppressed model. Unsuppressed associative learning256

leads to a preference for the matched stimulus, which has weaker KC activity, but this learning is257

specific to the trained stimuli, and does not transfer to novel stimuli.258

A: DMTS learning and transfer: models vs experiment 

B: DNMTS learning and transfer: models vs experiment 

C: Learning blockade / lesion trials 

D: The effect of pretraining on the 1st learning block E: KC repetition bias

Figure 3. The full and reduced versions of our model reproduce the transfer of sameness anddifference learning. A & B The average percentage of correct choices made by the model and real bees within
blocks of ten trials as the task is learned (lines), along with the transfer of learning onto novel stimulus sets

(bars). Both versions of the model reproduce the pattern of learning acquisition for DMTS (Full: N=338, Reduced:

N= 360) and DNMTS (Full & Reduced: N=360) found when testing real bees (test for learning: P<0.0001), along

with the transfer of learning (P<0.0001). For DMTS Giurfa A & B are the data from Experiments 1 & 2 respectively
from Giurfa et al. Giurfa et al. (2001), and for DNMTS Giurfa A & B are the data from Experiments 5 & 6
respectively from the same source. For an explanation of the initial offsets from chance for the model please

see the text for panel D. C The blockade of plasticity from the MB and PCT pathways shows that the PCT
pathway is necessary and sufficient for sameness and difference learning in the full model. All non-overlapping

SEM error bars are significantly different. D PCT pathway learning in the absence of associative learning leads
to preference for non-matching stimuli following pre-training, demonstrating that learning in the associative

pathway changes the form of the sameness and difference acquisition curves. The equivalent offsets and error

ranges for the first two blocks of Giurfa Experiments 1, 2, 5 & 6 along with the averages for DMTS and DNMTS

for these blocks are shown alongside the model data for comparison as overlapping grey boxes - overlapping

boxes create darker regions, thus the area of greatest darkness is the point where the most of the error ranges

overlap. E The average activity of the model KC neurons when presented with repeated stimuli.
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Validation: the full model is capable of performing a range of conditioning tasks259

Manymodels have reproduced the input neuron to Kenyon Cell to Extrinsic neuron pathway (Huerta260

et al., 2004; Huerta and Nowotny, 2009; Bazhenov et al., 2013; Peng and Chittka, 2016), and these261

models demonstrate many forms of elementary and complex associative learning that have been262

attributed to the mushroom bodies. It is therefore important to demonstrate that in our model then263

PCT neuron pathway does not affect the reproduction of such learning behaviours. We therefore264

tested elemental and non-elemental associative learning undertaken by conditioning the PER in265

restrained bees, and reversal learning in free flying bees, as described in Methods. Our model266

is capable of reproducing the results found in experiments involving real bees, with the model’s267

acquisition curves showing similar to the performance to the real bees. The results are shown in268

Figure 4.269

Figure 4. The full model is capable of performing a range of conditioning tasks. With modification of only
the experimental protocol, our full model can successfully perform a range of conditioning tasks which can be

performed by restrained (using the Proboscis Extention Reflex (PER) paradigm) and free flying bees.

Performance closely matches experimental data with real bees (e.g. A:Bitterman et al. (1983), B:Giurfa (2004),C & D:Deisig et al. (2001)).

Discussion270

We have presented a simple neural model that is capable of learning the concepts of sameness and271

difference in Delayed Match to Sample (DMTS) and Delayed Not Match to Sample (DNMTS) tasks.272

Our model is inspired by the known neurobiology of the honey bee, and is capable of reproducing273

the performance of honey bees in a simulation of DMTS and DNMTS tasks. Our model therefore274

proposes a hypothesis for how animals like the honey beemight be able apparently to learn abstract275

concepts.276

Abstract concept learning is typically described as a higher-order cognitive capacity (Wright277

and Katz, 2007; Avarguès-Weber and Giurfa, 2013), and one that is dependent on a top-down278

modulation of simpler learning mechanisms by a higher cognitive process (Moore et al., 2012). By279

contrast our model proposes a solution to sameness and difference learning in DMTS-style tasks280

with no top-down structure. The actions of the PCT neurons are integrated with the KC learning281

pathway and provide a parallel processing pathway sensitive to stimulus magnitude, rather than a282

top-down imposition of a learned concept of sameness or difference (Figure 1). This is a radical new283

proposal for how an abstract concept might be learned by an animal brain.284
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The first question we must ask when constructing a model regards plausibility. Our model285

(Figure 1) shows a close match to the neuroanatomical data for the mushroom bodies. Several286

computational requirements of our model match with experimental data, notably the sensory287

accommodation in the response of the KC neurons. Previous neural models based on this structure288

have proposed mechanisms for various forms of associative learning, including extinction of289

learning, and positive and negative patterning (Bazhenov et al., 2013; Arena et al., 2013; Peng and290

Chittka, 2016). Our model is also capable of solving a range of stimulus-specific learning tasks,291

including patterning (Figure 4). No plausible previous model of the MB or the insect brain has been292

capable of learning abstract concepts, however.293

As mentioned in the Introduction, a previous model by Arena et al. (2013) demonstrates DMTS294

and DNMTS with transfer. Their motivation is the creation of a model for robotic implementation,295

rather than reproduction of behavioural observations from honey bees. While we suggest a role296

for the PCT neurons given experimental evidence of changes in the response of Kenyon Cells to297

repeasted stimuli, Arena et al.’s model assumes resonance between brain regions that is dependent298

upon the time after stimulus onset and the addition of specific neurons for ‘Match’ and ‘Non-match’;299

there is no biological evidence for either of these assumptions. Furthermore, the outcome of these300

additions is an increase in Kenyon cell firing in response to repeated stimuli; this is in opposition301

to neurophysiological evidence from multiple insect species, including honey bees (Szyszka et al.,302

2008; Hattori et al., 2017). In addition, Arena et al‘s proposed mechanism does not replicate the303

difficulty honey bees have in learning DMTS/DNMTS tasks, exhiibting learning in three trials, as304

opposed to 60 in real bees. In contrast, our model captures the rate and form of the learning found305

in real honey bees.306

To enable a capacity for learning the stimulus-independent abstract concept of sameness307

or difference our model uniquely includes two interacting pathways. The KC pathway of the308

mushroom bodies retains stimulus-specific information and supports stimulus-dependent learning.309

The PCT pathway responds to summed activity across the KC population and is therefore largely310

independent of any stimulus-specific information. This allows information on stimulus magnitude,311

independent of stimulus specifics, to influence learning. Including a sensory accommodation312

property to the KCs (Szyszka et al., 2008) makes summed activity in the KCs in response to a313

stimulus sensitive to repetition, and therefore stimuli encountered successively (same) cause a314

different magnitude of KC response to novel stimuli (different) irrespective of stimulus specifics.315

This model is capable of learning sameness and difference rules in a simulation of the Y-maze DMTS316

and DNMTS tasks applied to honey bees (Figure 3), but in theory it could also solve other abstract317

concepts related to stimulus magnitude such as quantitative comparisons (Avarguès-Weber and318

Giurfa, 2013; Avarguès-Weber et al., 2014).319

Our model demonstrates a bias towards non-repeated stimuli, induced by the combination320

of sensory accommodation in the KC neurons and PCT learning during the pretraining phase,321

and largely mitigated by associative learning in the KC to EN synapses. This bias (see Figure 3) is322

indicated in the data from Giurfa et al. (2001), and could be confirmed by further experimentation.323

We note, however, that our model only supports a rather limited form of concept learning of324

sameness and difference. Learning in the model is dependent on sensory accommodation of the325

KCs to repeated stimuli (Szyszka et al., 2008). This effect is transient, and hence the capacity to learn326

sameness or difference will be limited to situations with a relatively short delay between sample327

and matching stimuli. This limitation holds for honey bee learning of DMTS tasks (Zhang et al.,328

2005), but many higher vertebrates do not have this limitation Lind et al. (2015). For example, in329

capuchins learning of sameness and difference is independent of time between sample and match330

(Wright and Katz, 2006). We would expect that for animals with larger brains and a developed331

neocortex (or equivalent) many other neural mechanisms are likely to be at play to reinforce332

and enhance concept learning, enabling performance that exceeds that demonstrated for honey333

bees. Monkey pre-frontal cortex (PFC) neurons demonstrate considerable stimulus-specificity in334

matching tasks, and different regions appear to have different roles in coding the salience of these335
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stimuli (Seger and Miller, 2010; Tsujimoto et al., 2011). Recurrent neural activity between these336

selective PFC neurons and lower-order neural mechanisms could support such time independence.337

Language-trained primates did particularly well on complex identity matching tasks and the ability338

to form a language-related mental representation of a concept might be the reason (Premack, 1978;339

Premack and Premack, 1983; Thompson and Oden, 1995).340

Wright and Katz (Wright and Katz, 2007) have utilised a more elaborate form of a MTS task in341

which vertebrates simultaneously learn to respond to sameness and difference, and are trained342

with large sets of stimuli rather than just two. They argue this gives less-ambiguous evidence of343

true concept learning since both sameness and difference are learned during training, and the344

large size of the training stimulus set encourages true generalisation of the concept. In theory our345

model could also solve this form of task, but it is unlikely a honey bee could. Capuchins, rhesus and346

pigeons required hundreds of learning trials to learn and generalise the sameness and difference347

concepts (Wright and Katz, 2007). Bees would not live long enough to complete this training,348

Finally as a consequence of our model we question whether it is necessary to consider abstract349

concept learning to be a higher cognitive process. Mechanisms necessary to support it may not be350

much more complex than those needed for simple associative learning. This is important because351

many behavioural scientists still adhere to something like Lloyd Morgan’s Canon (Lloyd Morgan,352

1903), which proposes that “in no case is an animal activity to be interpreted in terms of higher353

psychological processes if it can be fairly interpreted in terms of processes which stand lower in354

the scale of psychological evolution and development” (Lloyd Morgan (1903) p59). Yet the Canon is355

therefore reliant on an unambiguous stratification of cognitive processes according to evolutionary356

history and development (Sober, 2015). If abstract concept learning is in fact developmentally quite357

simple, evolutionarily old and phylogenetically widespread, then Morgan’s Canon would simply beg358

the question of why even more animals do not have this capacity (Mikhalevich, 2015). We argue359

that far more information on the precise neural mechanisms of different cognitive processes, and360

the distribution of cognitive abilities across animal groups, is needed in order to properly rank361

capacities as higher or lower.362

Methods363

Model parameter selection364

Many of the parameters of the model were fixed by the neuroanatomy of the honey bee, as well365

as the previous values and procedures described in Bazhenov et al. (2013), with the following366

modifications.367

First, we increased the sparseness of the connectivity from the PN to the KC.368

Second, the reduction in the magnitude of the KC output to repeated stimuli was tuned to369

replicate the magnitude of reduction described in Szyszka et al. (2008).370

Third, the learning rates were set so that acquisition of a single stimulus is rapid. In addition371

there are two ratios from this initial value that must be set. These are the ratio of the speed of372

excitatory associative learning in the Kenyon Cell to Extrinsic Neuron pathway to the inhibitory373

learning in the Protocerebellar Tract to Extrinsic Neuron pathway, and the ratio of the speed of374

acquisition when rewarded to the speed to extinction when no reward is given. We conservatively375

set both of these ratios to 2:1, with excitatory learning faster than inhibitory learning, and extinction376

faster than acquisition.377

Finally, we tuned the threshold value for the PCT neurons so that they only responded to a new378

stimulus, and not a repeated one.379

A full list of the parameters can be found in Table 1.380

Reduced Model381

The reduced model is shown in Figure 1, and described in the text in Results. Here are the equations382

governing the model.383
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Table 1. Model parameters; all parameters are in arbitrary units
Name Value Name Value

Full
NIN 144 NKC 5000

NEN 8 NPCT 6

pIN−>KC 0.02

b 1.2 bs (l > 0) 150

bs (l = 0) 120

Reduced
c 80 d0 1

Shared
�e 0.06 �i 0.03

Rb 2/3

The input node S1 projects to node I via a fixed excitatory weight of 1.0 and to GO and NOGO384

with excitatory weights we
GO,S1

and we
NOGO,S1

correspondingly (superscript denotes excitatory and385

subscript the connection from neuron S1 to GO∕NOGO). Similarly, node S2 projects to I via an386

excitatory weight we
I,S2
and to GO and NOGO with excitatory weights we

GO,S2
and we

NOGO,S2
. Finally,387

node I projects to GO and NOGO with inhibitory weights wi
GO,I and w

i
NOGO,I correspondingly. Node I388

is a threshold linear neuron with a cut-off at high values of activity xmax. Nodes GO and NOGO are389

linear neurons, with activities restricted between390

The model is described by the following equations, where only one input node S1 or S2 are active391

(but not both, as the bee observes one option at a time), where the activities of neurons I, GO and392

NOGO are calculated by:393

I = Si Θ
(

Si > �
)

(1)

394

GO = we
GO,Si

Si −wi
GO,I I (2)

395

NOGO = we
NoGo,Si

Si −wi
NoGo,I I, (3)

where i = 1, 2 is an index taking values depending on which stimulus is present (S1 or S2), and396

neuronal activities of I, GO and NOGO are constrained between xmin and xmax. If a stimulus has been397

shown twice, during its second presentation there is a suppression of the neuronal activity that398

represents the specific stimulus, consistent with experimental findings Szyszka et al. (2008). This is399

modelled as a reduction by a factor of 0.7 of the value Si for the repeated stimuli.400

To calculate the proabability of the behavioral outcome of GO or NOGO being the winner we401

use the following equation:402

P (GO) = 1
1 + e−(c−d)(GO−NOGO)

, (4)

403

P (NOGO) = 1 − P (GO). (5)

where c is a fixed coefficient and d a bias that increases linearly with the time it takes to make a404

decision, in the following way:405

d = k
do
, (6)
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with k being the number of consequent iterations for which GO has not been selected, set at zero at406

the beginning of each stimulus presentation. The parameter do is a constant, and selected so that407

the factor c − d will always be positive. This parameterisation makes sure that the longer it takes for408

a decision GO to be made, the higher the probability that GO will be chosen at the next step.409

Inhibitory synaptic weights wi are learned using the following equation:410

Δwi = −�i(R − Rb) presynaptic activity × postsynaptic activity, (7)

where �i is the learning rate of the inhibitory weights, reward R = 1 if reward is given, and zero411

in all other cases, Rb is a reward baseline, and the presynaptic (postsynaptic) activity is 1 if the412

presynaptic (postsynaptic) neuron is active and 0 elsewhere. This is a reward-modulated Hebbian413

rule also known as a three factor rule Vasilaki et al. (2009); Richmond et al. (2011).414

Additional neuronal inputs with similar connectivity as S1 and S2, not shown explicitly in the415

diagram, are also present in the model simulations, and the constructing the equations for these416

simply requires substitution of Si for Ti in Equations 1, 2 and 3. These represent the transfer stimuli417

and can be used following training to demonstrate transfer of learning. Details of training the418

model can be found in the Experiment subsection of the Methods.419

Full Model420

The full model is shown in Figure 1. Our model builds on a well established abstraction of the421

mushroom body circuit (see Huerta et al. (2004); Huerta and Nowotny (2009); Bazhenov et al.422

(2013)) to model simple learning tasks.423

The main structure of the model consists of an associative network with three neural network424

layers. Adapting terminology and features from the insect brain we label these: input neurons (IN)425

(correponding to S in the Reduced Model), a large middle layer of Kenyon cells (KC) (correponding426

to the S to GO / NOGO connections in the Reduced Model), and a small output population of427

mushroom body extrinsic neurons (EN) separated into GO and NOGO subsets (as in the Reduced428

Model). The connections, cij , between the IN and KC are fixed, and are randomly selected from the429

complete connection matrix with a fixed probability pIN−>KC = 0.02. Connections from the KC to430

the EN are plastic, consisting of a fully connected matrix. The connection strength between the431

jth KC and the kth EN (wjk) can take a value between zero and one. The neural description used432

in the entire model is linear with a bottom threshold, and contains no dynamics, consisting of a433

summation over the inputs followed by thresholding at a value b via a Heaviside function Θ, with434

a linear response above the threshold value. This gives the associative model as the following,435

where the outputs of ith, jth and kth neurons of the IN, KC and EN populations are xi, yj and zk436

respectively, and M describes the modulation of KC activity for the stimulus seen at the maze437

entrance:438

M =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1.0 ∶ at maze entrance

1.0 ∶ in arms if yj = 0 (KC inactive) at entrance

0.7 ∶ in arms if yj > 0 (KC active) at entrance

(8)

yj =MΘ
(NIN
∑

i=0
cijxi − b

)(NIN
∑

i=0
cijxi − b

)

(9)

zk = Θ
(NKC
∑

j=0
wjkyj

)(

(
NKC
∑

j=0
wjkyj

)

(10)

where NIN is the number of IN and NKC is the number of KC.439
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DMTS generalisation is performed by the inhibitory protocerebral tract (PCT) neurons sl (corre-440

ponding to I in the Reduced Model) described by the following equations:441

sl = Θ
(NKC
∑

j=0
xj − bs

)(NKC
∑

j=0
xj − bs

)

(11)

yj = Θ
(NIN
∑

i=0
cijxi − b −

NPCT
∑

l=0
s∗l

)(NIN
∑

i=0
cijxi − b −

NPCT
∑

l=0
s∗l

)

(12)

zk = Θ
(NKC
∑

j=0
wjkxj − 0.5

NPCT
∑

l=0
wi
lksl

)(NKC
∑

j=0
wjkxj − 0.5

NPCT
∑

l=0
wi
lksl

)

(13)

Where wlk are the inhibitory weights between the PCT neurons. The ∗ denotes 10 iteration442

delayed activity from the PCT neurons due to delays in the KC->PCT->KC loop.443

Learning takes place according to equation (7), and the following equation for excitatory444

synapses:445

Δwe = �e(R − Rb) presynaptic activity × postsynaptic activity, (14)

where �e is the learning rate of the excitatory weights, reward R = 1 if reward is given, and zero446

in all other cases, Rb is a reward baseline, and the presynaptic (postsynaptic) activity is 1 if the447

presynaptic (postsynaptic) neuron is active and 0 elsewhere.448

Similarly to the reduced model, a decision is made when the GO EN subpopulation activity is449

greater than the NOGO EN population by a bias Rd, where d increases every time a NOGO decision450

is made by 10.0, and R is a uniform random number in the range [−0.5, 0.5]. To prevent early451

decisions the sum of the whole EN population activity must be greater than 0.1.452

Experiment453

Our challenge is to reproduce Giurfa et al’s data demonstrating bees solving DMTS and DNMTS454

tasks (Giurfa et al., 2001). To aid exploration of our model we simplify the task it must face, while455

retaining the key elements of the problem as faced by the honeybee. We therefore embody our456

model in a world described by a state machine. This simple world sidesteps several navigation457

problems associated with the real world, however we believe that for the sufficiency proof we458

present here such simplifications are acceptable - the ability of the honeybee to form distinct459

and consistent neural representations of the training set stimuli as it flies through the maze is a460

prerequisite of solving the task, and is therefore assumed.461

The experimental paradigm for our Y-maze task is shown in Figure 2. The model bee is moved462

between a set of states which describe different locations in the Y-maze apparatus: at the entrance,463

in the central chamber facing the left arm, in the central chamber facing the right arm, in the left464

arm or in the right arm. When at the entrance or in the main chamber the bee is presented with a465

sensory input corresponding to one of the test stimuli. We can then set the test stimuli presented466

to match the requirements of a given trial (e.g. entrance (A), main chamber left (A), main chamber467

right (B) for DMTS when rewarding the left arm, or DNMTS when rewarding the right arm).468

Experimental environment469

The experimental environment consists of a simplified Y-maze (see Figure 2: main paper), in which470

the model bee can assume one of three positions: at the entrance to the Y-maze; at the choice471

point in front of the left arm; at the choice point in front of the right arm. At each position there472

are two choices available to the model: go and no-go. Go is always chosen at the entrance to the473

Y-maze as bees that refuse to enter the maze would not continue the experiment. Following this474

there is a random choice of one of the two maze arms, left or right. If the model chooses no-go475

this procedure is repeated until the model chooses to go. As no learning occurs at this stage it476

is possible for the model to constantly move between the two arms, never choosing to go. To477
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prevent this eventuality we introduce a Uniformly distributed random bias B to the go channel that478

increases with the number of times the model chooses no-go (N ): B = 10N( [0, 1] − 0.5).479

The IN neurons are divided into non-overlapping groups of 8 neurons, each representing a480

stimulus. These are:481

• Z: Stimulus for pretraining482

• A: Stimulus for training pair483

• B: Stimulus for training pair484

• C: Stimulus for transfer test pair485

• D: Stimulus for transfer test pair486

• E: Stimulus for second transfer test pair487

• F: Stimulus for second transfer test pair488

Each group contains neurons which are zero when the stimulus is not present, and a value of489

1 − [−0.05, 0.05] - consistent across the experiment for each bee, but not between bees - when490

active.491

DMTS / DNMTS experimental procedure492

Models as animals493

We use the ‘models as animals’ principle to reproduce the experimental findings of Giurfa et al.494

(2001), creating many variants of the model which perform differently in the experiments. To do495

this we change the random seed used to generate the connectivity cij between the IN and the KC496

neurons. For these experiments we use 360 model bee variants, each of which is individually tested,497

as this matches the number of bees in Giurfa et al. (2001).498

Pretraining familiarisation499

As is undertaken in the experiments with real bees, we first familiarise our naive model bees500

with the experimental apparatus. This is done by first training ten rewarded repetitions of the bee501

entering the Y-maze with a stimulus not used in the experiment. In these cases the model does not502

choose between go and no-go, it is assumed that the first repetition represents the model finding503

the Y-maze and being heavily enough rewarded to complete the remaining repetitions. Following504

these ten repetitions the bee is trained with ten repetitions to travel to each of the two arms of505

the Y-maze. This procedure ensures that the bees will enter the maze and the two arms when the506

training begins, allowing them to learn the task.507

Training508

The training procedure comprises 60 trials in total, divided into blocks of 10 trials. The protocol509

involves a repeated set of four trials: two trials with each stimulus at the maze entrance, with each510

of these two trials having the stimulus at the maze entrance on different arms of the apparatus. In511

the case of match-to-sample the entrance stimulus is rewarded and the non-entrance stimulus is512

punished, and vice versa for not-match-to-stimulus.513

Transfer test514

For the transfer test we do not provide a reward or punishment, and test the models using the515

procedure for Training, substituting the transfer test stimuli for the training stimuli. Two sets of516

transfer stimuli are used, and four repetitions (left and right arm with each stimulus) are used for517

each set of stimuli.518

Testing performance of the full model in other conditioning tasks519

In addition to solving the DMTS and DNMTS tasks, we must validate that our proposed model520

can also perform a set of conditioning tasks that are associated with the mushroom bodies in521

bees, without our additional PCT circuits affecting performance. Importantly, these tasks are all522

performed with exactly the same model parameters that are used in the DMTS and DNMTS tasks,523

yet match the timescales and relative performances found in experiments performed on real bees.524

We choose four tasks, which comprise olfactory learning experiments using the proboscis extention525
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reflex (PER) that are performed on restrained bees as well as visual learning experiments performed526

with free flying bees (Figure 4).527

Differential learning / reversal experimental procedure (Figure 4, panel B)528

These experiments follow the same protocol as the DMTS experiments, except that for the529

first fifteen trials one stimulus is always rewarded when the associated arm is chosen (no reward530

or punishment is given for choosing the non-associated arm), and subsequent to trial fifteen the531

other stimulus is rewarded when the associated arm is chosen. No pretraining or transfer trials are532

performed and the data is analysed for each trial rather than in blocks of 10 due to the speed of533

learning acquisition. 200 virtual bees are used for this experiment (see Figure 4, panel B for results,534

to be compared with Giurfa (2004)).535

Proboscis Extension Reflex (PER) Experiments536

The Proboscis Extension Reflex (PER) is a classical conditioning experimental paradigm used537

with restrained bees. In this paradigm the bees are immobilised in small metal tubes with only538

the head and antennae exposed. Olfactory stimuli (conditioned stimuli) are then presented to539

the restrained bees in association with a sucrose solution reward (unconditioned stimulus) (see540

Bitterman et al. (1983) for full details).541

For the PER experiments we separate the IN neurons as described in Section , however as the542

bees are restrained for these experiments we present odors following a pre-defined protocol, and543

the choices of the bee do not affect this protocol.544

Single odor learning experimental procedure (Figure 4, panel A)545

In the single odor experiments we use the procedure outlined in Bitterman et al Bitterman546

et al. (1983). In this procedure acquisition and testing occur simultaneously. The real bees are547

presented an odor, and after a delay rewarded with sucrose solution. If the animal extends its548

proboscis within the delay period it is rewarded directly and considered to have responded, if it549

does not the PER is invoked by touching the sucrose solution to the antennae and the animal is550

rewarded but considered not to have responded. To match this protocol the performance of the551

model was recorded at each trial, with NOGO considered a failure to respond to the stimulus, and552

GO a response. At each trial a reward was given regardless of the model’s performance.553

Positive / negative patterning learning experimental procedure (Figure 4, panels C & D)554

In these experiments we follow the protocol described in Deisig et al. (2001). We divide the555

training into blocks, each containing four presentations of an odor or odor combination. For positive556

patterning we do not reward individual odors A and B, but reward the combination AB (A-B-AB+). In557

negative patterning we reward the odors A and B, but not the combination AB (A+B+AB-). In both558

cases the combined odor is presented twice for each presentation of the individual odors, so a559

block for positive patterning is [A-,AB+,B-,AB+] for example, while for negative patterning a block is560

[A+,AB-,B+,AB-]. Performance is assessed as for the single odor learning experiment, with the two561

combined odor responses averaged within each block.562

Software and implementation563

The reduced model was simulated in GNU Octave (John W. Eaton David Bateman and Wehbring,564

2015). The full model was created and simulated using the SpineML toolchain (Richmond et al.,565

2013) and the SpineCreator graphical user interface (Cope et al., 2015). These tools are open source566

and installation and usage information can be found on the SpineMLwebsite at http://spineml.github.io/.567

Input vectors for the IN neurons and the state engine for navigatation of the Y-maze apparatus are568

simulated using a custom script written in the Python programming language (Python Software569

Foundation, https://www.python.org/) interfaced to the model over a TCP/IP connection.570

Statistical tests were performed as in Giurfa et al. (2001) using 2x2 X2 tests performed in R (R571

Core Team, 2013) using the chisq.test() function.572

The code is available online at http://github.com/BrainsOnBoard/bee-concept-learning573
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