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Abstract

Collective action dilemmas pervade the social and biological sciences - from human decision-making
to bacterial quorum sensing. In these scenarios, individuals sense cues from the environment to
adopt a suitable phenotype or change in behavior. However, when cues include signals from other
individuals, then the appropriate behavior of each individual is linked. Here, we develop a framework
to quantify the influence of information sharing on individual behavior in the context of two player
coordination games. In this framework, the environment stochastically switches between two states,
and the state determines which one of two actions players must coordinate on. Given a stochastically
switching environment, we then consider two versions of the game that differ in the way players
acquire information. In the first model, players independently sense private environmental cues,
but do not communicate with each other. We find there are two types of strategies that emerge
as Nash equilibria and fitness maximizers - players prefer to commit to one particular action when
private information is poor, or prefer to employ phenotypic plasticity when it is good. The second
model adds an additional layer of communication, where players share social cues as well. When the
quality of social information is high, we find the socially optimal strategy is a novel “majority logic”
strategy that bases decision-making on social cues. Our game-theoretic approach offers a principled
way of investigating the role of communication in group decision-making under uncertain conditions.
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1. Introduction

In stochastically fluctuating environments, organisms adapt their behavior to increase their chances
of survival. For instance, bacteria process information from extracellular cues to reduce their un-
certainty about the environmental state and employ stochastic phenotype switching in proportion
to the remaining uncertainty (Lopez et al., 2009; Perkins and Swain, 2009). However in many cir-
cumstances, coordination of behavior with others directly influences survival. In bacteria, some
cooperative behaviors are facilitated by quorum sensing, a cell-to-cell communication system where
individual cells secrete and sense autoinducer molecules to obtain information about the environment
and to gauge local cell density (Miller et al., 2001; Henke and Bassler, 2004). Quorum sensing can
induce formation of biofilms for protection against a host’s immune system, secretion of virulence
factors to consolidate colonization of the host, motility, and many other behaviors (West et al., 2007;
Nadell et al., 2008; de Kievit and Iglewski, 2000; Atkinson et al., 2006). In honeybee and ant colonies,
individuals process and share information to collectively reach an informed collective decision about
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the best nesting site (Franks et al., 2002; Pratt et al., 2002). The individual-level mechanisms that
produce collective behaviors in animal groups is an area of ongoing research (Couzin, 2009; Sasaki
and Pratt, 2018). Inspired by these examples, the aim of this paper is to develop a game-theoretic
framework in which to study the individual-level decision-making processes which produce collective
behavior under environmental uncertainty and noisy communication.

There is an extensive body of work on individual (as opposed to group) decision-making in fluctu-
ating environments (Perkins and Swain, 2009; Lopez et al., 2009). In many scenarios, an individual
must match its phenotype or behavior to changing conditions by using sensory cues from the envi-
ronment, signals from other individuals in the population, or both (Lachmann et al., 2000; Kussell
and Leibler, 2005; Rivoire and Leibler, 2011; Donaldson-Matasci et al., 2010, 2013). An individ-
ual employing the optimal bet-hedging strategy diversifies behaviors at frequencies that mirror the
posterior knowledge of environmental fluctuations. These results quantify an information-theoretic
connection between the optimal population-level growth rate and the amount of information about
the environment available to the individual. However, the resulting individual fitness is indepen-
dent of the actions of others in the population. Hence, these models do not address the interplay
between information and collective decision-making in fluctuating environments. In bacterial quo-
rum sensing, the autoinducer signaling molecules that individual cells send serve as social cues that
indicate local cell density (Miller et al., 2001; Nadell et al., 2008; Popat et al., 2015). Substantial
experimental research has been done in recent years to unravel the mechanisms of this complex
communication system. Nonetheless, questions remain regarding why such communication systems
are utilized, particularly from an evolutionary standpoint (Whiteley et al., 2017).

Game theory offers a framework to explain rational behaviors when an individual’s well-being
depends on the actions of others. To understand the role of communication in collective decision-
making under uncertainty, we recognize there are two components to the decision-making process:
1) a communication system, or the way individuals acquire information and 2) strategies, or the
way individuals use acquired information to make a decision. In this vein, two recent works have
attempted to understand the role of communication in group coordination under uncertain fluctuat-
ing environments from a game-theoretic perspective. Pacheco et al. (2015) studies the evolutionary
outcomes of communication systems in an N -person volunteer’s dilemma game, where all players
adopt a majority rules strategy. Burgos and Polani (2016) consider how the choice of communi-
cation systems affect levels of cooperation between two populations of microbes in an information
exchange game. In that model, each individual is assumed to follow a bet-hedging strategy. Both
works assume the players’ strategies are fixed while the communication systems are evolvable, and
do not investigate how players may adapt their strategies to a given communication system.

In this paper, we study a two-player, two-action game where the environment stochastically
switches between two possible states. The state determines game payoffs, where the players must
coordinate on the correct action corresponding to the environment. Here, we study two versions of
this game in order to highlight the value of information sharing. In the first, players only receive
a private cue from the environment. In the second, players receive a shared social cue in addition
to private cues. By considering social interactions and their effects on a single stage payoff, our
game-theoretic model differs from bet-hedging models that focus on the link between variation in
individual strategies and long-term growth rates of the population. Additionally, complementary
to Pacheco et al. (2015) and Burgos and Polani (2016), we seek to identify the optimal strategies
that promote coordination given the limitations of a fixed, noisy communication system of variable
fidelity. Most notable is a “majority logic” type strategy that is socially optimal when environmental
sensing has intermediate reliability, and information sharing is very reliable. As we show, this allows
an individual to act upon their inference of the environmental state when it is validated by social
information.
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2. Model and methods

2.1. A coordination game in fluctuating environments

We consider a two action, two player game that is played repeatedly in stages t = 1, 2, . . .. We
denote the set of players N ≡ {1, 2} with generic member i, and the set of actions X ≡ {A,B}. At
each stage t, the environment E(t) takes one of two possible states, eA or eB . If E(t) = eA then
E(t+ 1) = eB with probability vAB , and if E(t) = eB then E(t+ 1) = eA with probability vBA. We
assume that E(1) is arbitrarily determined and the switching probabilities vAB > 0 and vBA > 0 are
fixed. Hence, the environmental state evolves according to a two-state Markov chain that spends
a fraction vA ≡ vBA

vBA+vAB
and vB ≡ vAB

vBA+vAB
of time in states eA and eB , respectively. Once E(t)

is determined, players select their actions xi(t) ∈ X . They do not know E(t) with certainty, and
the state E(t) governs the players’ utility functions at each stage. We are interested in the average
payoff of the players given the stochastically switching environment.

We define the game that is played at each stage as follows. Both must coordinate on action
A (B) if E(t) = eA (eB) to receive a payoff bA > 0 (bB > 0). If they mis-coordinate, or if they
coordinate on the incorrect action, the payoff is zero. The environment-dependent payoff matrices
are illustrated in Figure 1. Note that the payoff value to either player is the same. Thus, a generic
player’s utility function is defined as

U(x1, x2, E(t)) ≡


bA if x1 = x2 = A and E(t) = eA

bB if x1 = x2 = B and E(t) = eB

0 otherwise

(1)

Given the realization of the environment E(t), a normal form game is played at stage t between
the set of players N equipped with action set X , and with utility function U(·, ·, E(t)). We denote
this normal form game by the triple G ≡ (N ,X , U(·, ·, E(t))), following standard game-theoretic
notation. In the following, we introduce two models where players receive noisy information about
E(t), and present our definition of fitness, which we refer to as time-averaged payoffs.

2.2. The game Gp with environmental sensing

At each stage t, suppose each player (i = 1, 2) independently senses the environment E(t) by
receiving a private cue αi(t) ∈ {eA, eB}. The cue αi(t) matches the true environmental state with
probability p ∈ [1/2, 1], and mismatches with probability 1− p.

P (αi(t) = X|E(t) = Y ) =

{
p if X = Y

1− p if X 6= Y
, X, Y ∈ {eA, eB} (2)

Thus, αi(t) is the output of a binary noisy channel of fidelity p whose input is E(t). We will refer
to the parameter p as the sensing fidelity.

A strategy is a mapping from the set of cues {eA, eB} to the set of actions X . In other words,
a strategy is a contingency plan or policy that a player adopts that assigns the action to take upon
receiving a particular cue. Hence, it is a description of how a player makes informed decisions. Since
there are two possible cues and two actions, each player can choose among 22 = 4 strategies. We
assume player i chooses only one strategy si, which is fixed for all stages t = 1, 2, . . .. For notational
convenience, we will denote a strategy by an ordered two-vector whose entries are either A or B.
For instance, si = [A,B] denotes the strategy where i plays action A when αi(t) = eA and action B
when αi(t) = eB . We write si(eA) = A and si(eB) = B. We denote the set of all four strategies S4.
When the context is clear, we will also omit the notation (t) indicating variables realized at stage t.

The list of all four strategies is given in Table 1. They are read “Only A” (OA), “Follow Cue”
(FC), “FC bar” (FC), and “Only B” (OB). When p = 1/2, sFC and sFC reduce to the strategy that
uniformly randomizes between A and B.
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eA eB

Environment switching

vAB

vBA

1− vAB 1− vBA

⇓ ⇓
Game payoffs

bA 0
0 0

Player 1

Player 2

A B

A

B

0 0
0 bB

Player 1

Player 2

A B

A

B

Figure 1: After each stage, the environment stochastically switches between eA and eB and determines the payoff
matrix. In eA (eB), players need to coordinate on the A (B) action to receive a positive payoff bA (bB).

Remark 1. These strategies, with the exception of FC, can be classified as a max likelihood
estimate of the environmental state, depending on the environmental switching probabilities vA, vB
and private cue fidelity p. Specifically, the strategy

sMLE(αi) = arg max
X=A,B

P (E = eX|αi) (3)

is precisely OA (vB < p < vA), OB (vA < p < vB), or FC (vA < p, vB < p). In this paper, we omit
analysis of the sMLE strategy because it simply corresponds to one strategy in Table 1 for any given
set of parameters.

αi/ si sOA sFC sFC sOB

eA A A B B
eB A B A B

Table 1: List of all strategies in the game with no information sharing.

A measure of fitness is the fraction of time the players coordinate on the correct action, weighted
by the benefits bA and bB accordingly. We calculate this measure as follows. Consider the envi-
ronment E(t), which evolves according to the two-state Markov chain with stationary distribution
(vA, vB). Additionally, the players’ cues are drawn independently of each other, but conditionally on
the state E(t). Since neither the cues nor player actions affect the environment switching probabili-
ties, the fraction of time spent in the aggregate state (α1, α2, E) is given by the following stationary
distribution

πp(α1, α2, E) =

{
vAP (α1|eA)P (α2|eA), if E = eA

vBP (α1|eB)P (α2|eB), if E = eB
. (4)

For instance, the value of the stationary distribution πp at the entry (eA, eA, eB) is vB(1− p)2. We
define the time-averaged payoff as the expected utility with respect to the stationary distribution,

fp(s1, s2) ≡
∑

α1,α2,E

πp(α1, α2, E)U(s1(αi), s2(αj), E). (5)

Via (5), we define the normal form game Gp ≡ (N ,S4, fp) played between players N equipped with
strategy space S4, and with utility function fp for a given sensing fidelity p ∈ [1/2, 1]. Figure 2
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E(t): Environmental state (eA or eB)
P (E(t+ 1)|E(t))

stochastic switching

U(x1, x2, E)

...

...

E(t+ 1)

NC(p) NC(p)

sensed cues

s1 s2Player 1 Player 2

α1 α2

x1 x2
actions

payoff
bA, bB , or 0

Figure 2: Diagram of the game with no information sharing Gp. At stage t, each player independently senses a cue
αi directly from the environment E(t) through a binary noisy channel with fidelity p, denoted here as NC(p). That
is, αi = E(t) with probability p, and αi 6= E(t) with probability 1 − p. Player i’s strategy si(αi) determines its
action xi ∈ {A,B}. The payoff U(x1, x2, E) (eq. (1)) to both players is either bA, bB , or 0, which is determined by
the current actions of both players and the current environment. The environmental state stochastically switches to
E(t+ 1) at stage t+ 1.

shows a diagram of the stage game and information system that underlies Gp. We can represent Gp
with the following 4× 4 matrix of time-averaged payoffs fp(s1, s2),

sOA sFC sFC sOB


sOA cA cAp cAp̄ 0
sFC cAp (cA + cB)p2 (cA + cB)pp̄ cBp
sFC cAp̄ (cA + cB)pp̄ (cA + cB)p̄2 cB p̄
sOB 0 cBp cB p̄ cB

(6)

where p̄ ≡ 1− p and
cA ≡ bAvA and cB ≡ bBvB (7)

are the relative benefits of each environmental state. Note the payoff matrix is symmetric, which
gives 10 unique strategy profiles. Therefore, the identity of the players do not matter. An expression
to calculate each entry of (6) is given in Appendix A of the SI. We note that a “normalized” fitness
value for all the entries above can be attained by dividing by cB . This captures all relative payoffs
in terms of a single environment-related parameter,

κ ≡ cA
cB

(8)

We call κ the ratio of relative benefits, and it is positive and nonzero. We will later see in Section 3
that κ is useful for parameterizing Nash equilibrium and fitness maximizer regions.

Remark 2. The average payoff (5) can also be viewed as the ex-ante expected utility in the one-shot
Bayesian game Bp consisting of the set of players N , action set A, external states {eA, eB}, type
space {eA, eB}, utility U (eq. (1)), beliefs P (α1, α2, E), and a common prior on E, P (eA) = vA
and P (eB) = vB . The ex-ante expected utility is defined as the expectation of U with respect to
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the belief P (α1, α2, E), which is the induced probability distribution over the aggregate state of the
world and coincides with (4). In an ex-ante setup, players evaluate their utilities before receiving
their signal αi, and therefore must reason about the possible environmental states, the signal of the
other player, and its own signal. The (normal form) Nash equilibrium solution concept applied to
the game Gp coincides with the definition of ex-ante Bayesian Nash equilibrium (BNE) of Bp. A
Bayesian Nash equilibrium describes a state of rationality where no player can profitably deviate
by changing its strategy given its belief of the world. We focus our attention on the normal-form
formulation Gp in this paper, keeping in mind that a Nash equilibrium in Gp can also be interpreted
as a Bayesian Nash equilibrium of Bp. A treatment of Bayesian games can be found in Ch. 6 of
Vega-Redondo (2003).

2.3. The game Gpq with information sharing

The game Gp is extended by allowing players to share their private cues with each other before
deciding on an action. At stage t, after players sense αi(t), player i sends a social cue βj(t) to player
j (j 6= i), which matches i’s private cue αi(t) with probability q ∈ [1/2, 1].

P (βi(t) = X|αj(t) = Y ) =

{
q if X = Y

1− q if X 6= Y
, X, Y ∈ {eA, eB} (9)

Thus, βi(t) is the output of a binary noisy channel of fidelity q whose input is αj(t). We will
refer to parameter q as the sharing fidelity. We assume here that players signal honestly, i.e. each
player attempts to share their true private cue. This is a reasonable assumption because the players’
interests are aligned - they must attempt to coordinate. In different contexts where player interests
conflict, dishonest signalling becomes a rational alternative. For example, male fiddler crabs with
inferior claws can bluff fighting ability to ward off other males (Backwell et al., 2000).

Player i’s information is now composed of the pair yi(t) ≡ (αi(t), βi(t)) ∈ {eA, eB}2. Similarly
for this model, a strategy is a mapping from the set of information pairs {eA, eB}2 to actions, so
player i can now choose among 24 = 16 strategies. We represent strategies as ordered four-vectors
whose entries are A or B. For instance, si = [A,B,B,A] is the strategy where i plays action A when
yi = (eA, eA), B when yi = (eA, eB), B when yi = (eB , eA), and A when yi = (eB , eB). We note that
the four strategies available in Gp are also strategies in this game. They are now represented by the
vectors sOA = [A,A,A,A], sFC = [A,A,B,B], sFC = [B,B,A,A], sOB = [B,B,B,B]. These four
strategies base decision-making either on no information at all (OA and OB), or only on the private
cue αi (FC and FC). The 12 new strategies base decisions on both private and shared signals. The
set of all 16 strategies is denoted S16.

Similarly to (4), we calculate the time-averaged payoff by considering the aggregate state (y1, y2, E),
which occurs a fraction of the time according to the following stationary distribution

πpq(y1, y2, E) =

{
vAP (y1, y2|eA), if E = eA

vBP (y1, y2|eB), if E = eB
. (10)

One can expand P (y1, y2|E) = P (α1|E)P (α2|E)P (β1|α2)P (β2|α1). For instance, the value of the
stationary distribution at the entry ((eA, eA), (eA, eB), eA) is vAp

2q(1−q). The time-averaged payoff
at (p, q) ∈ [1/2, 1]2 is defined as

fpq(s1, s2) ≡
∑

y1,y2,E

πpq(y1, y2, E)U(s1(y1), s2(y2), E). (11)

Via (11) and following the arguments from Remark 2, we define the normal form game Gpq ≡
(N ,S16, fpq) played between the set of players N equipped with strategy space S16, and with utility
function fpq for a given pair of sensing and sharing fidelities (p, q) ∈ [1/2, 1]2. Figure 3 shows
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E(t): Environmental state (eA or eB)
P (E(t+ 1)|E(t))

stochastic switching

U(x1, x2, E)

...

...

E(t+ 1)

NC(p) NC(p)

s1 s2

Player 1 Player 2

α1 α2

sensed cues

NC(q)

NC(q)

α1 β2

α2β1

shared cues

x1 x2
actions

payoff
bA, bB , or 0

Figure 3: Diagram of the game with information sharing Gpq . At stage t, each player independently senses a private
cue αi from the environment E(t) through a binary noisy channel with fidelity p, denoted here as NC(p). Then, each
player receives a signal βi from the other’s private cue through a separate noisy channel of fidelity q. Given player
i’s information (αi, βi), its action is determined by its strategy, si(αi, βi) = xi. The payoff U(x1, x2, E) (eq. (1)) to
both players is either bA, bB , or 0, which is determined by the actions of both players and the current environment.
The environmental state stochastically switches to E(t+ 1) at stage t+ 1.

a diagram of the stage game and communication system that underlies Gpq. An expression to
calculate each entry of the resulting 16× 16 symmetric payoff matrix is given in Appendix A of the
SI. Given the symmetry of the payoff matrix, there are 136 unique strategy profiles. A summary of
all relevant parameters that define the games Gp and Gpq is listed in Table 2.

Parameter Description Notes
eX environmental state, X = {A,B}
p environment sensing fidelity ∈ [1/2, 1]
q sharing fidelity ∈ [1/2, 1]
αi private environment cue for player i ∈ {eA, eB}, i = 1, 2
βi social cue player i receives from player j ∈ {eA, eB}, j 6= i
bX payoff of coordinating in eX, X = {A,B} > 0

vAB , vBA prob. of switching to eB from eA, vice versa both ∈ [1/2, 1]
vX fraction of time spent in eX, X = {A,B} vA + vB = 1
cX relative payoff of coordinating in eX = vXbX
κ ratio of relative payoffs = cA/cB

Table 2: List of parameters that define the games Gp and Gpq .

Remark 3. We note that the payoff matrices of Gp and Gpq are symmetric. Hence, the identity
of the player (player 1 or 2) does not matter. Such games fall into the class of potential games
(Monderer and Shapley, 1996; Sandholm, 2001). A game is a potential game if the incentives of the
players align with a global potential function. Here, the change in payoff from a unilateral deviation
of a single player is equivalent to the change in global potential, given all other players remain the
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same. In our formulation, the potential function is the average player fitness, or welfare.

3. Results

We consider the Nash equilibrium solution concept and fitness maximizing strategies as notions of
rational and optimal behavior, respectively. The comparison of the fitness maximizing strategies
between the two models (Gp and Gpq) presented offers a principled way to investigate the role of
sensing and communication in collective decision-making in systems such as quorum sensing.

Specifically, we are interested in how the quality of the communication system, defined by the
parameter p for Gp and (p, q) for Gpq, dictates which strategy profiles are Nash equilibria and fitness
maximizers. A Nash equilibrium is the classical solution concept in game theory which describes a
rational steady-state configuration where no player has an incentive to deviate from its strategy. A
Nash equilibrium in Gp is a strategy profile (s∗1, s

∗
2) that satisfies

fp(s
∗
1, s
∗
2) ≥ fp(s1, s∗2)

fp(s
∗
1, s
∗
2) ≥ fp(s∗1, s2)

(12)

for all s1 ∈ S4, s1 6= s∗1, and for all s2 ∈ S4, s2 6= s∗2. A strict Nash equilibrium is a Nash equilibrium
satisfying (12) with strict inequality. We say a strategy profile (ŝ1, ŝ2) is a fitness maximizer at p if
it satisfies

fp(ŝ1, ŝ2) = max
s1,s2∈S4

fp(s1, s2). (13)

The same definitions above apply for Gpq, where fp is replaced by fpq, and S4 by S16. Because the
payoff matrices of Gp and Gpq are symmetric, the following fact holds: in Gp and Gpq, the fitness
maximizer(s) is necessarily a Nash equilibrium. However, the converse is not true. We note that in
our model, there is no fitness cost to having higher sensing and sharing fidelities p and q. Our aim
is not to investigate such evolutionary tradeoffs, but to identify the types of strategies that ensure
coordination in fluctuating environments given that the players utilize a communication system of
quality (p, q) ∈ [1/2, 1]2.

3.1. Nash equilibria and fitness maximizers in Gp
The base game G (see Eq. (1)) admits a single strict Nash equilibrium at the correct coordinated
action. We might expect the game Gp, represented by (6), also has a coordination structure. That is,
the players are better off if they coordinate on the same strategy in S4. In other words, they should
play the same action given they receive the same signal. We can show that this intuition is indeed
correct and state the following fact: For p ∈ [1/2, 1], all Nash equilibria and fitness maximizers of Gp
are necessarily symmetric strategy profiles, i.e. s∗1 = s∗2. The proof of this fact, given in Appendix
B of the SI, relies on showing that for any asymmetric strategy profile, there is one player that can
switch to the other player’s strategy to improve the fitness fp.

Due to this result, we can limit our analysis to the four symmetric strategy profiles. To refer to
symmetric strategy profiles (s, s) for the four strategies we simply write “OA” to denote (sOA,sOA),
and similarly for the other three. Their resulting fitnesses correspond to the diagonal entries of (6).

We find that OA and OB are always Nash equilibria regardless of the value for sensing fidelity p
and the relative benefits cA, cB . We find that FC is not a Nash equilibrium for any set of parameters.
Figure 4 (left) illustrates the Nash equilibrium region of FC. We can characterize the equilibrium
region of FC in the game Gp with respect to just two parameters, (p, κ) ∈ [1/2, 1]× (0,∞), where we
recall κ = cA/cB is the ratio of relative benefits. This is possible by normalizing the fitness, fp/cB ,
and applying (12) to solve for the region’s conditions on p and κ.

Figure 4 (right) illustrates the regions where OA, OB, and FC are fitness maximizers. While
OA and OB are Nash equilibria everywhere, there is a unique fitness maximizer (OA,OB, or FC),
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Figure 4: Characterization of strategies in the game Gp with respect to the parameter space (p, κ) with κ ≡ cA
cB

ranging

in log scale from -5 to 5. Log scale is used to show symmetry between the ranges 0 < κ < 1 and 1 < κ < ∞. The
quantity κ is the ratio of relative benefits between environment eA and eB . (Left) The region where FC is a strict Nash

equilibrium : 1−p
p

< κ < p
1−p . The strategies OA and OB are Nash equilibria everywhere. (Right) Disjoint regions

where the strategies OA, OB, and FC are fitness maximizers. OA: κ > max
{

1, p2

1−p2

}
. OB: κ < min

{
1, 1−p

2

p2

}
. FC:

1−p2
p2

< κ < p2

1−p2

except for on the boundaries dividing each region, for any given (p, κ) value in [1/2, 1]× (0,∞). On
the boundary lines, the fitnesses of the strategy profiles that are separated coincide. We note here
that the region where FC maximizes fitness is a subset of its Nash equilibrium region. This reveals
regions in the parameter space where FC is a suboptimal Nash equilibrium to the OA/OB strategies.

The fitness for FC increases quadratically in p: fp(FC) = (cA+cB)p2. Hence, with higher sensing
fidelity, players are better able to infer the correct environmental state and select the correct action.
The p2 term appears because each player is independently sensing E, and coordination depends on
both players independently receiving the correct cue which occurs with probability p2. The value
of employing FC diminishes as κ→∞ or 0. In either extreme, one environment is favored over the
other. Either one occurs far more frequently over the long run, or its coordination benefit outweighs
that of the other state. Hence, players do best by adopting either OA or OB (corresponding to
the environment that is favored) instead of FC in these situations. FC is most desirable when
κ ≈ 1, where either the environment fluctuates frequently and bA ≈ bB , or a rare environment offers
an enormous coordination benefit compared to the other. These are situations where acting on
knowledge of the environment is most crucial. By playing OA or OB, players miss out on half of the
fitness benefit opportunity whereas players employing FC are able to adapt to changing conditions.

The sFC strategy possesses similarities to the optimal individual bet-hedging strategy that max-
imizes long-term population growth rate in fluctuating environments (Kussell and Leibler, 2005;
Donaldson-Matasci et al., 2008, 2010) because it adapts actions based on the player’s inference on
the environmental state. However in our model, the social context of coordination renders it subop-
timal when private information is unreliable (low p), though it is optimal for sufficiently high values
of p.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/268268doi: bioRxiv preprint 

https://doi.org/10.1101/268268
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2. Nash equilibria and fitness maximizers in Gpq
We now turn to the game Gpq = (N ,S16, fpq). The Nash condition remains the same as in (12),
except the time-averaged payoff is now given by fpq (11). In comparison to Gp, the parameter
space of the information sharing game Gpq has another dimension, the social fidelity q. We search
for the Nash equilibrium strategy profiles and fitness maximizers of Gpq over the parameter space
(p, q, κ) ∈ [1/2, 1]2 × (0,∞). First, we observe that unlike Gp, the coordination structure in the new
set of strategies S16 is not preserved in Gpq. Indeed, we find that the asymmetric strategy profile
(s1, s2) with s1 = sFC = [A,A,B,B] and s2 = [A,B,A,B] is a Nash equilibrium in a region of
low sensing fidelity p and high sharing q (see SI Appendix C for derivation) . Hence, not all Nash
equilibria are necessarily symmetric strategy profiles for all (p, q) ∈ [1/2, 1]2, and we cannot restrict
our search for Nash equilibria and fitness maximizers to symmetric strategy profiles. In essence,
players may now select new strategies that utilize the social cues as a means to coordinate.

There are 136 unique strategy profiles (by symmetry). In Figure 5, we display the multiplicity of
Nash equilibria across the range of fidelity parameters p and q. Here, we do not count OA and OB
because they are always Nash equilibria. We find the maximum number of Nash equilibria in the
upper left region of the parameter space (p, q) ∈ [1/2, 1]2, where private information is unreliable
but information sharing has high fidelity. This suggests reliable social cues are utilized as a means
to coordinate (see Section 4 for further discussion).

The strategy profiles that maximize fitness are shown in Figure 6 in the parameter space (p, q) ∈
[1/2, 1]2 and for cross-sections of κ. We note that the set of fitness maximizers consist only of
symmetric strategy profiles. We find that OA, OB, and FC are fitness maximizers, along with a new
type of strategy we term “Majority Logic” (ML). When environment A is favored (κ > 1), MLA
appears as a fitness maximizer, and similarly MLB when κ < 1. These strategies are written

sMLA
≡ [A,A,A,B]

sMLB
≡ [A,B,B,B].

(14)

Recall that in our strategy vector notation, [A,A,A,B] is the strategy where the player chooses
action A when yi = (eA, eA), action A when yi = (eA, eB), action A when yi = (eB , eA), and action
B when yi = (eB , eB). The majority logic strategies MLA and MLB were not previously available
in Gp. Their fitnesses increase quadratically in q, and their functional forms are given in Appendix
A.

The notation MLA,MLB differentiates which action is assigned, A or B, to the cues yi = (eA, eB)
and (eB , eA), i.e. the middle two entries in the strategy vector. We will write just “ML” when
generally speaking of the majority logic strategies (e.g. when κ = 1).

The region where the ML strategies maximize fitness is characterized by intermediate sensing
fidelity p and high sharing fidelity q. The shared cues βi are highly accurate so each player will have
reliable knowledge of the other’s private cue. Our interpretation of why ML thrives in this regime is
as follows. With reliable information sharing, players can detect when their private cues agree and
when they disagree. As an example, consider when both players employ strategy sMLA

= [A,A,A,B]
and suppose environment A is favored over B (κ > 1). When both of their private cues coincide,
i.e. y1 = y2 = (eA, eA) or (eB , eB), they choose the correct action. This occurs with overall
probability p2q2. When they believe their private cues disagree with each other (e.g. y1 = (eA, eB)
and y2 = (eB , eA)), they will both play action A, and obtain a positive payoff with overall probability
vAp(1− p)q2. Moreover, the above situations will occur far more frequently than players obtaining
polarized beliefs (e.g. y1 = (eA, eA) and y2 = (eB , eB)), where they mis-coordinate actions with
probability p(1 − p)(1 − q)2. The MLA or MLB strategy profile appears as the fitness maximizer
depending on which environment is favored (Figure 6 right).

The sMLA
strategy vector [A,A,A,B] ([A,B,B,B]) differs from sFC = [A,A,B,B] and sOA =

[A,A,A,A] by only one action, whereas sFC differs from sOA by two actions (similarly for sMLB

and sOB). Thus, we interpret sML to be a hybrid of sFC and sOA. It acts as an estimator of
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Figure 5: The number of Nash equilibria not including OA or OB, that exist across fidelity values (p, q) ∈ [1/2, 1]2,
for κ = 1 (Left) and κ = 5 (Right) in the game Gpq . The data is numerically calculated by sweeping through
(p, q) ∈ [1/2, 1]2 in a uniform grid of spacing .001, and exhaustively verifying whether each 136 strategy profile
satisfies its Nash condition, given in (12). We verify whether a strategy profile is a Nash equilibrium or not by using
a simplified expression of the Nash condition in (12) that is amenable to numerical evaluation, given in Appendix C
of the SI.

Figure 6: Three classes of strategies emerge as the fitness maximizers in Gpq : 1) the pure strategies OA and OB, 2)
follow cue (FC), and 3) majority logic (MLA and MLB). The regions are drawn by first sweeping (p, q) ∈ [1/2, 1]2 in
a uniform grid with spacing .001, and exhaustively searching all 136 strategy profiles for the fitness maximizer. Each
grid cell is then filled with the unique color corresponding to the fitness-maximizing strategy profile. Upon observing
the emergence of the three strategy classes, the boundaries are analytically solved by equating their fitnesses. Hence,
results are accurate within a spacing tolerance of .001. (Left) When κ = 1, players do not prefer any environment over
the other. Hence, OA and OB give the same fitness value and we indicate this by OA/OB (similarly for MLA/MLB).
(Right) When κ 6= 1, the region boundaries are the same for both 5 and 1

5
but the fitness maximizer is either OA or

OB, depending on whether κ is greater or less than 1, respectively (similarly, either MLA or MLB).
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the environment when the posterior belief on the environmental state is very high. This is the
reasoning for the term “Majority Logic” - players act upon their inference of the environmental
state only when their private information is validated by social information, i.e. when yi = (eA, eA)
or (eB , eB). Otherwise, when yi = (eA, eB) or (eB , eA), the posterior is not as high and the player
disregards its information altogether, playing the default action A.

3.3. The fitness value of information sharing

Majority logic stands alone among all possible strategies in Gpq that can outperform the fitness
maximizers of Gp (OA, OB, and FC). However, recall from Figure 6 (Left, for example) that it
requires the sharing fidelity q to be sufficiently high for a fixed sensing fidelity p. This critical
threshold value, which we denote with qc(p), is the value of q above which the majority logic strategy
is the fitness maximizer. Hence, the values of qc(p) are parameterized by the boundary lines that
separate the ML strategies from OA/OB and FC in Figure 6. Full parameterizations of qc(p) are
given in Appendix D of the SI.

The critical thresholds qc(p) when the ML strategies outperform the optimal strategies of Gp
suggests there is no value for players to share signals unless sharing fidelity is sufficiently high,
q > qc(p). Higher sharing fidelity is needed for extreme values of p: qc(p) increases up to 1 as p
decreases towards 1/2, as well as when p increases towards 1. When p is near 1, players prefer FC
because they are able to independently detect the correct environment with very high probability
and act accordingly. When p is near 1/2, private cues are effectively random because they contain
no information about E. Consequently, the shared signals are also effectively random. Players then
receive any of the four signals yi with equal probability. By employing ML in this regime, players
will miscoordinate more often than they would if they committed to OA or OB.

We are also interested in quantifying the fitness benefit of sharing signals over no sharing. Let

Fp(κ) ≡ max
X=OA,OB,FC

fp(X) (15)

be the maximum fitness attainable in the game Gp at (p, κ), and let

Fpq(κ) ≡ max
X=OA,OB,FC,MLA,MLB

fpq(X) (16)

be the maximum fitness attainable in the game Gpq at (p, q, κ). Then we define the fitness value of
information sharing as

V (p, q, κ) ≡ Fpq(κ)

Fp(κ)
, (17)

which gives the ratio of the maximum fitness in Gpq to the maximum fitness in Gp at the parameters
(p, q, κ). By definition, V (p, q, κ) = 1 for q ≤ qc(p). In other words, there is no fitness benefit to
sharing signals when q does not exceed the threshold qc(p). A contour map of V is shown in Figure
7. When κ = 1 (Figure 7, Left), V is maximized at p = 1/

√
2 and q = 1, giving Vmax =

√
2 (using

Eq. (A.12) and divide by cB). Thus, information sharing can improve fitness by approximately 41%
when the environment fluctuates frequently. For κ > 1, it is maximized at q = 1, p =

√
κ/(1 + κ)

(Figure 7, Right). The general form of Vmax(κ) is the following piecewise continuous function,

Vmax(κ) =


√

κ
κ+1

(
2−

√
κ
κ+1 (1− κ−1)

)
if κ > 1

√
2 if κ = 1
1√
κ+1

(
2− 1√

κ+1
(1− κ)

)
if 0 < κ < 1

(18)

and is plotted in Figure 8. As κ→ 0 or∞, the improvement ratio Vmax degrades as one environment
becomes favored over the other. In these extreme scenarios, either OA or OB become optimal for
increasingly larger regions.
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1.2
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1.4

Figure 7: The fitness value of information sharing V (p, q, κ). (Left) When κ = 1, the maximum value of V is attained
at (p = 1/

√
2, q = 1, κ = 1), where information sharing leads to approximately a 41% increase in fitness over no

sharing. (Right) When κ = 5, information sharing leads to approximately 15% increase in fitness at best (p =
√

κ
1+κ

,

q = 1).

Figure 8: The maximum value of information sharing Vmax(κ) (Eq. (18)), which is the value of V (p, q, κ) attained at

q = 1 and p = 1/
√

1 + κ when κ < 1 and p =
√
κ/(1 + κ) when κ ≥ 1. The peak of fitness improvement occurs when

no environment is favored over the other (κ = 1), where there is an improvement ratio of
√

2. The value for Vmax

is fpq(MLB)/cB when κ < 1, and fpq(MLA)/cA when κ > 1 (they coincide when κ = 1). The fitness improvement
ratio degrades as κ→ 0 or ∞, i.e. when one environment is favored over the other.
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We also note that V (p, q, κ) increases quadratically in q for q > qc(p). Hence, the rate at which
V increases with respect to q, dV

dq , increases linearly in q. This is due to a majority logic strategy

being the fitness maximizer in this region. We also note that V (p, q, κ) decreases as p deviates away
from the intermediate value

√
κ/(1 + κ). At the extremes p = 1/2 and p = 1, the strategies OA

and FC begin to dominate, respectively, as the line qc(p) tapers to 1.

4. Discussion

We have presented a two-player, two action coordination game in a fluctuating environment where
players independently sense private cues from the environment and share their cues with each other.
In our analysis, we found the optimal strategies that promote coordination across all levels of sensing
and sharing fidelities (Figures 4 and 6). When individual sensing is very reliable, there is no need
to share signals because players can accurately infer the environmental state independently. When
sensing is unreliable, players prefer to ignore their information altogether and always commit to a
single action. The “majority logic” strategy is optimal when private information has intermediate
fidelity and social information has high fidelity. This strategy highlights the importance of informa-
tion sharing because they are the only optimal strategies that utilize the shared social cues. Because
these optimal strategies are derived from a first-principles approach, their appearance in our model
offers insight into the mechanisms that maintain coordinated group behaviors.

The Majority Logic strategies strike a balance between when to use information as a predictor of
the environment and when to use information as a means to coordinate. Essentially, it allows players
to coordinate when their individual inferences (private information) about the environment conflict,
and to choose the correct action when they agree. The interplay of private and social information
in our model draws similarities to Condorcet’s jury theorem, where in King and Cowlishaw (2007),
states that good reliability of private information is a requirement to effectively make group decisions
based on social information in the large population limit. In their model, individuals disregard social
information when private information is poor. When it is more accurate, individuals rely more on
social information to make a decision. In our model, these two situations are akin to the fitness
maximizing regions of OA and OB for poor sensing fidelity, and the region where ML thrives,
respectively. These results also corroborate with controlled experimental lab work conducted on
nine-spined sticklebacks (van Bergen et al., 2004). When private experience about foraging sites
was 100% reliable, sticklebacks based foraging decisions only on private information. When it was
less reliable, they followed social cues instead. Without perfect sensing capabilities, organisms need
to rely on social information to survive (van Bergen et al., 2004; King and Cowlishaw, 2007; Pérez-
Escudero and de Polavieja, 2011; Arganda et al., 2012; Miller et al., 2013).

In the region of unreliable private information and reliable social information (Fig 5, right),
there is an abundance of Nash equilibria (ten) that are suboptimal to the OA and OB strategies.
This suggests that in the context of coordination games, social cues serve as a coordination device
rather than as an additional source of information about the environment. However, the strategies
included in this region, which includes majority logic and its variants, will often coordinate on the
wrong action. This is because the social cues carry no information about the environment, as the
private cues are themselves uninformative. The best an individual can do to infer the environment is
simply to guess. However, if both guess independently, they will only coordinate 1/4 of the time. If
they play OA, they are guaranteed to coordinate for the fraction of time the environment spends in
state eA. Hence, committing to a single action corresponding to the most frequent environment (OA
or OB) is the best the group can do when information about the environment is poor. Therefore
in principle, information sharing is useful only when the information that is being shared is itself
reliable.

Our game-theoretic model portrays situations where communicating individuals must coordinate
behaviors in uncertain fluctuating environments. These situations pervade collective behaviors in
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groups of organisms across the animal kingdom from social insects to bacterial colonies. The in-
formation flow in our model is particularly inspired by quorum sensing in bacterial populations.
Such a communication system enables bacteria to display complex social behaviors (West et al.,
2007). Therefore, game theory is a natural framework in which to study microbial decision-making
to consolidate experimental understanding of the phenomena. Advancing such knowledge may also
have therapeutic applications. For example, a deeper understanding of how bacteria communicate to
form harmful biofilms presents an opportunity to develop methods to inhibit the fidelity of quorum
sensing systems (Rutherford and Bassler, 2012; Popat et al., 2015).

Several questions remain in our study. In animal communication, better quality signalling entails
increasing fitness costs (Bergstrom and Lachmann, 1997; Brown and Johnstone, 2001; Skyrms, 2010;
Meacham et al., 2013; Huttegger et al., 2014). Our work has not yet investigated such evolutionary
tradeoffs. Instead, we have presented a systematic, centralized analysis of the optimal strategies
given a fixed, costless communication system. Consequently, we have yet to address whether the
optimal strategies identified are stable in an evolutionary sense, with or without costly signalling.

Moving forward, several evolutionary dynamics can be applied to our model in the context of
population games (Sandholm, 2010). Population games are a framework to describe the interactions
between a well-mixed, continuous mass of agents that select from the same set of strategies. In
the population, interactions between agents are probabilistic and pair-wise, which allows two-player
normal form games to be represented as population games. Such a framework works well with
our aim to describe a population of organisms that can adopt a variety of communication-based
strategies, e.g., quorum sensing bacteria. Furthermore, due to the potential structure of our games
Gp and Gpq (see Remark 3), they admit evolutionary dynamics that have certain stability guarantees
(Sandholm, 2001, 2010). Embedding our model into population games will be necessary to identify
which local maximizers of average fitness are likely to be reached. In doing so, we hope that our
model encourages the integration of social interactions and communication into efforts to understand
coordination, cooperation, and conflict in complex environments.
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S. Atkinson, C-Y Chang, R. E. Sockett, M. Cámara, and P. Williams. Quorum sensing in yersinia
enterocolitica controls swimming and swarming motility. Journal of Bacteriology, 188(4):1451–
1461, 2006.

P. R. Y. Backwell, J. H. Christy, S. R. Telford, M. D. Jennions, and N. I. Passmore. Dishonest
signalling in a fiddler crab. Proceedings: Biological Sciences, 267(1444):719–724, 2000.

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/268268doi: bioRxiv preprint 

https://doi.org/10.1101/268268
http://creativecommons.org/licenses/by-nc-nd/4.0/


Carl T. Bergstrom and Michael Lachmann. Signalling among relatives. i. is costly signalling too
costly? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 352
(1353):609–617, 1997. ISSN 0962-8436.

S. P. Brown and R. A. Johnstone. Cooperation in the dark: Signalling and collective action in
quorum-sensing bacteria. Proceedings of the Royal Society B: Biological Sciences, 268(1470):961–
965, 2001.

A. C. Burgos and D. Polani. Cooperation and antagonism in information exchange in a growth
scenario with two species. Journal of Theoretical Biology, 399:117 – 133, 2016. ISSN 0022-5193.

I. D. Couzin. Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1):36 – 43,
2009. ISSN 1364-6613.

T. R. de Kievit and B. H. Iglewski. Bacterial quorum sensing in pathogenic relationships. Infection
and Immunity, 68(9):4839–4849, 2000.

M. C. Donaldson-Matasci, M. Lachmann, and C. T. Bergstrom. Phenotypic diversity as an adapta-
tion to environmental uncertainty. Evolutionary Ecology Research, 10:493–515, 2008.

M. C. Donaldson-Matasci, C. T. Bergstrom, and M. Lachmann. The fitness value of information.
Oikos, 119(2):219–230, 2010.

M. C. Donaldson-Matasci, C. T. Bergstrom, and M. Lachmann. When unreliable cues are good
enough. The American Naturalist, 182(3):313–327, Sept 2013.

N. R. Franks, S. C. Pratt, E. B. Mallon, N. F. Britton, and D. J. T. Sumpter. Information flow,
opinion polling and collective intelligence in house–hunting social insects. Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 357(1427):1567–1583, 2002. ISSN 0962-8436.
doi: 10.1098/rstb.2002.1066.

J. M. Henke and B. L. Bassler. Bacterial social engagements. Trends in Cell Biology, 14(11):648–656,
2004.

S. Huttegger, B. Skyrms, P. Tarrés, and E. Wagner. Some dynamics of signaling games. Proceedings
of the National Academy of Sciences, 111(Supplement 3):10873–10880, 2014. doi: 10.1073/p-
nas.1400838111.

A. J. King and G. Cowlishaw. When to use social information: the advantage of large group
size in individual decision making. Biology Letters, 3(2):137–139, 2007. ISSN 1744-9561. doi:
10.1098/rsbl.2007.0017.

E. Kussell and S. Leibler. Phenotypic diversity, population growth, and information in fluctuating
environments. Science, 309(5743):2075–2078, 2005. ISSN 0036-8075.

M. Lachmann, G. Sella, and E. Jablonka. On the advantages of information sharing. Proceedings of
the Royal Society of London B: Biological Sciences, 267(1450):1287–1293, 2000. ISSN 0962-8452.

D. Lopez, H. Vlamakis, and R. Kolter. Generation of multiple cell types in bacillus subtilis. FEMS
Microbiology Reviews, 33(1):152–163, 2009. ISSN 1574-6976.

F. Meacham, A. Perlmutter, and C. T. Bergstrom. Honest signalling with costly gambles. Journal
of The Royal Society Interface, 10(87), 2013.

M. B. Miller, , and B. L. Bassler. Quorum sensing in bacteria. Annual Review of Microbiology, 55
(1):165–199, 2001. PMID: 11544353.

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 26, 2018. ; https://doi.org/10.1101/268268doi: bioRxiv preprint 

https://doi.org/10.1101/268268
http://creativecommons.org/licenses/by-nc-nd/4.0/


N. Miller, S. Garnier, A. T. Hartnett, and I. D. Couzin. Both information and social cohesion
determine collective decisions in animal groups. Proceedings of the National Academy of Sciences,
110(13):5263–5268, 2013.

D. Monderer and L. S. Shapley. Potential games. Games and Economic Behavior, 14(1):124 – 143,
1996.

C. D Nadell, J. B Xavier, S. A Levin, and K. R Foster. The evolution of quorum sensing in bacterial
biofilms. PLOS Biology, 6(1):1–9, 01 2008.

J. M. Pacheco, V. V. Vasconcelos, F. C. Santos, and B. Skyrms. Co-evolutionary dynamics of
collective action with signaling for a quorum. PLOS Computational Biology, 11(2):1–12, 02 2015.
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