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Abstract: Parvoviruses (family Parvoviridae) are small, single-stranded DNA viruses. Many 30 
parvoviral pathogens of medical, veterinary and ecological importance have been identified. In 31 
this study, we used high-throughput sequencing (HTS) to investigate the diversity of parvoviruses 32 
infecting wild and domestic animals in Brazil. We identified 21 parvovirus sequences (including 33 
twelve nearly complete genomes and nine partial genomes) in samples derived from rodents, bats, 34 
opossums, birds and cattle in Pernambuco, São Paulo, Paraná and Rio Grande do Sul states. These 35 
sequences were investigated using phylogenetic and distance-based approaches, and were thereby 36 
classified into eight parvovirus species (six of which have not been described previously), 37 
representing six distinct genera in the subfamily Parvovirinae. Our findings extend the known 38 
biogeographic range of previously characterized parvovirus species, and the known host range of 39 
three parvovirus genera (Dependovirus, Aveparvovirus, and Tetraparvovirus). Moreover, our 40 
investigation provides a window into the ecological dynamics of parvovirus infections in 41 
vertebrates, revealing that many parvovirus genera contain well-defined sub-lineages that 42 
circulate widely throughout the world within particular taxonomic groups of hosts.  43 
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1. Introduction 47 
Parvoviruses are small, linear and non-enveloped viruses with single-stranded DNA (ssDNA) 48 

genomes ~5-6 kilobases (kb) in length [1]. All parvoviruses possess two major genes, a 49 
non-structural (NS) gene encoding the viral replicase, and a capsid (VP) gene encoding the 50 
structural proteins of the virion [2]. The Parvoviridae family is divided into two subfamilies. All 51 
parvoviruses that infect vertebrates falling into one subfamily (Parvovirinae), which currently 52 
contains 41 viral species, classified into eight genera [1]. 53 

Parvoviruses cause disease in humans and domestic animals. For example, parvovirus B19, a 54 
species in the genus Tetraparvovirus, causes ‘erythema infectiosum’ in children and polyarthropathy 55 
syndrome in adults [2], while canine parvovirus, a member of the genus Protoparvovirus, can cause 56 
haemorrhagic enteritis in dogs, with lethality around 80% of cases [3]. 57 

In recent years, high throughput sequencing (HTS) approaches have been instrumental in the 58 
discovery of many novel parvovirus species [4-7]. Consequently, the known diversity of parvovirus 59 
species has expanded greatly, and recent studies have suggested that parvovirus host range may 60 
encompass the entire animal kingdom [8]. To understand the natural biology of vertebrate 61 
parvoviruses – i.e. their dynamics in natural hosts, propensity to cause disease, and zoonotic 62 
potential – it is important to document their distribution and diversity across a wide range of 63 
vertebrate species and populations. In this study, we used a HTS approach to investigate 64 
parvovirus infections among wild mammals and birds in Brazil. 65 

2. Materials and Methods  66 
2.1. Samples 67 

A total of 1073 specimens obtained from 21 different animal species were collected from 2007 68 
to 2016 from rural areas of Pará, Pernambuco, São Paulo, Paraná, Santa Catarina and the Rio 69 
Grande do Sul states in Brazil. Individual specimens were distributed in 60 pools based on the 70 
species, sample type (i.e., tissue, blood, sera and cloacal swab), date and place of collection 71 
(Supplementary Table 1). The species of wild animals were identified using morphological 72 
characteristics keys as previously described [9-11]. The geographical distribution of the pools is 73 
shown in Figure 1. 74 

 75 
2.2. Preparation of pools, viral genome sequencing and assembly   76 

Tissues samples were individually homogenized with Hank's balanced salt solution using the 77 
TissueLyser system (Qiagen, USA). Then, the homogenized tissue, sera, and cloacal swabs were 78 
centrifuged by 5 min at 10,000g, and the pools were prepared as previously described [12]. The viral 79 
genomes were extracted with a QIAamp viral RNA mini kit (Qiagen, USA) and stored at -80°C. 80 
Subsequently, the nucleic acid was quantified using a Qubit® 2.0 Fluorometer (Invitrogen, 81 
Carlsbad, USA) and the purity and integrity of nucleic acid of samples were measured using an 82 
Agilent 2100 Bioanalyzer (Agilent Technologies, USA).  83 

The DNAs were prepared for high-throughput sequencing using the RAPID module with the 84 
TruSeq Universal adapter (Illumina, USA) protocols and standard multiplex adaptors. A 85 
paired-end, 150-base-read protocol in RAPID module was used for sequencing on an Illumina 86 
HiSeq 2500 instrument as recommended by the manufacturer. Sequencing was performed in Life 87 
Sciences Core Facility from University of Campinas, Brazil. A total of 7,059,398 to 94,508,748 88 
paired-end reads per pool were generated with 64.85% to 91.45% of bases ≥ Q30 with a base call 89 
accuracy of 99.9% (Supplementary Table 1). The sequencing reads were assembled using the de 90 
novo approach in the metaViC pipeline (https://github.com/sejmodha/MetaViC) [12]. 91 

 92 
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 93 
Figure 1. Geographic locations of collected samples in Brazil. 94 

 95 
2.3. Genome characterization  96 

Genome size, coding potential and molecular protein weight were assessed with Geneious 97 
9.1.2 (Biomatters, New Zealand). The annotations of protein domains were performed using the 98 
Conserved Domain Database [13]. The nucleotide sequences determined in this study have been 99 
deposited in GenBank under the accession numbers listed in Table 1.  100 

 101 
2.4. Phylogenetic analysis 102 

Maximum likelihood (ML) phylogenetic trees were reconstructed using alignments of NS and 103 
VP proteins identified in the present study with representative members of Parvovirinae subfamily 104 
[1]. Multiple sequence alignment (MSA) was carried out using RevTrans 2.0 [14] with manual 105 
adjustment. The alignments of core of NS and VP proteins ML trees were inferred by IQ-TREE 106 
version 1.4.3 software based on LG+F+G4 protein substitution model to core of NS protein with 145 107 
amino acids, and LG+F+I+G4 protein substitution model to core of VP protein with 245 amino acids, 108 
both with 1,000 replicates [15,16]. Statistical support for individual nodes was estimated via 109 
bootstrap replicates. Phylogenetic trees were visualized using Figtree 1.4.2. Nucleotide divergence 110 
calculations were performed using the Sequence Demarcation Tool (SDT) version 1.2 in muscle 111 
mode [17]. 112 

3. Results 113 
Using HTS we identified 21 parvovirus sequences in samples derived from rodents, bats, 114 

opossums, birds and cattle in Pernambuco, São Paulo, Paraná and Rio Grande do Sul states in 115 
Brazil (Figure 1). These sequences comprised twelve nearly complete genomes and nine partial 116 
genomes (Table 1), and included the first examples of parvoviruses identified in opossums, New 117 
World bats, and sigmondontine rodents. Parvovirus sequences recovered in our study were 118 
classified on the basis of (i) phylogeny and (ii) pairwise distance. 119 
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Table 1. Sequences information, sources, sample, location, location, date and environment of viruses identified 120 
in wild animals from Brazil. 121 
Genus Viral Species Strain Genome Size 

(nt) 

Host Species Sample N Location Date GenBank 

Tetraparvovirus Rodent 

tetraparvovirus 

1135 Complete 5494 Necromys 

lasiurus 

Blood 59 Ribeirão 

Preto, SP 

2008 MG745669 

Tetraparvovirus Rodent 

tetraparvovirus 

3542 Complete 5494 Necromys 

lasiurus 

Blood 52 Ribeirão 

Preto, SP 

2009 MG745670 

Tetraparvovirus Opossum 

tetraparvovirus 

4113 Complete 5420 Didelphis 

albiventris 

Serum 14 Teodoro 

Sampaio, SP 

2009 MG745671 

Aveparvovirus Pileated finch 

aveparvovirus 

29 Complete 5368 Coryphospingus 

pileatus 

Cloacal 

Swab 

4 São José do 

Egito, PE 

2010 MG745672 

 

Bocaparvovirus Rodent 

bocaparvovirus 

1 Complete 5227 Necromys 

lasiurus 

Blood 58 Ribeirão 

Preto, SP 

2008 MG745673 

Protoparvovirus Rodent 

protoparvovirus 

9424 Complete 5219 Necromys 

lasiurus 

Blood 58 Ribeirão 

Preto, SP 

2008 MG745674 

Protoparvovirus Rodent 

protoparvovirus 

284 Complete 5196 Akodon 

montensis 

Blood 41 Ribeirão 

Preto, SP 

2009 MG745675 

Protoparvovirus Rodent 

protoparvovirus 

119 Complete 4998 Calomys tener Blood 38 Ribeirão 

Preto, SP 

2008 MG745676 

Dependoparvovirus Desmodus 

rotundus 

dependoparvovi

rus 

246 Complete 4894 Desmodus 

rotundus 

Kidney 8 Araçatuba, SP 2010 MG745677 

Protoparvovirus Rodent 

protoparvovirus 

2 Complete 4898 Necromys 

lasiurus 

Blood 59 Ribeirão 

Preto, SP 

2008 MG745678 

Tetraparvovirus Ungulate 

tetraparvovirus 

MR Complete 5368 Bos taurus Blood 15 Manoel Ribas, 

PR 

2016 MG745679 

Erythroparvovirus Bovine 

parvovirus 3 

Ronda 

Alta 

Complete 5220 Bos taurus Blood 6 Ronda Alta, 

RS 

2016 MG745680 

Protoparvovirus Rodent 

protoparvovirus 

1594 Partial 2255 Didelphis 

albiventris 

Blood 32 Ribeirão 

Preto, SP 

2012-2

013 

MG745681 

Bocaparvovirus Rodent 

bocaparvovirus 

4093 Partial 2844 Necromys 

lasiurus 

Blood 52 Ribeirão 

Preto, SP 

2009 MG745682 

Protoparvovirus Rodent 

protoparvovirus 

8 Partial 1679 Calomys tener Blood 34 Ribeirão 

Preto, SP 

2009, 

2012-2

013 

MG745683 

 

Protoparvovirus Rodent 

protoparvovirus 

888 Partial 1606 Oligoryzomys 

nigripes 

Blood 20 Ribeirão 

Preto, SP 

2012-2

013 

MG745684 

Protoparvovirus Rodent 

protoparvovirus 

23 Partial 1566 Akodon 

montensis 

Blood 55 Ribeirão 

Preto, SP 

2008 MG745685 

Bocaparvovirus Rodent 

bocaparvovirus 

422 Partial 1362 Necromys 

lasiurus 

Blood 52 Ribeirão 

Preto, SP 

2009 MG745686 
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Protoparvovirus Rodent 

protoparvovirus 

1010 Partial 1283 Oligoryzomys 

nigripes 

Blood 20 Ribeirão 

Preto, SP 

2012-2

013 

MG745687 

Protoparvovirus Rodent 

protoparvovirus 

66 Partial 1099 Akodon 

montensis 

Blood 55 Ribeirão 

Preto, SP 

2008 MG745688 

 

Protoparvovirus Rodent 

protoparvovirus 

38 Partial 1067 Calomys tener Blood 34 Ribeirão 

Preto, SP 

2009,2

012-20

13 

MG745689 

Legend: “N” number of samples per pool, SP (São Paulo State), PR (Paraná State), PE (Pernambuco State), RS (Rio 122 
Grande do Sul State).  123 

 124 
To investigate the phylogenetic relationships of the novel parvoviruses to those described 125 

previously, we inferred ML phylogenetic trees from alignments of 71 NS proteins and 71 VP 126 
peptide sequences. Phylogenies revealed eight distinct clades corresponding to recognized genera, 127 
each having high bootstrap support (values >75%). The sequences recovered in this study grouped 128 
into six distinct genera (Figure 2). In most cases, the newly identified sequences grouped robustly 129 
within the established diversity of their respective genera. Only the Dependoparvovirus-like sequence 130 
identified in our study grouped in a basal position with respect to previously characterized taxa in 131 
both NS and VP trees.  132 

 133 

 134 
Figure 2. Maximum likelihood phylogenies showing the evolutionary relationships of newly 135 
identified parvoviruses. (a) Phylogenetic tree of NS proteins. (b) Phylogenetic tree of VP proteins. 136 
Phylogenies are midpoint rooted for clarity of presentation. The scale bar indicates evolutionary 137 
distance in substitutions per amino acid site. Black lines indicate genera within the Parvovirinae 138 
subfamily. Black circles indicate nodes with maximum likelihood bootstrap support levels >75%, 139 
based on 1,000 bootstrap replicates. Taxa names of parvoviruses identified in our study are coloured 140 
according to sample type, as shown in the key. Silhouettes indicate host species groups. 141 
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 142 
According to the species demarcation criteria of the International Committee on Taxonomy of 143 

Viruses (ICTV), parvoviruses in the same species should share >85% amino acid sequence identity 144 
across the entire NS polypeptide sequence [1]. On this basis, the 21 genomes described in this study 145 
represent six novel species of parvoviruses, and two that have been described previously (bovine 146 
parvovirus 3 and ungulate tetraparvovirus 1) (Supplementary Figures 1 and 2). 147 

We identified a novel species of protoparvovirus in sigmondontine rodents. This virus, which 148 
was detected in samples from several distinct animal and species (Table 1), is quite similar to 149 
minute virus of mice (MVM), but is sufficiently distinct based on ICTV criteria to be considered a 150 
distinct species. We also identified novel tetraparvoviruses in the opossum and hairy-tailed bolo 151 
mouse, and a novel dependoparvovirus in tissue samples derived from common vampire bats 152 
(Desmodus rotundus). We identified a novel bocaparvovirus species - rodent bocaparvovirus - in two 153 
distinct sample pools obtained from hairy-tailed bolo mice, and a novel aveparvovirus in grey 154 
pileated finch in São José do Egito, Pernambuco State, Brazil. We also identified strains of two 155 
parvoviruses that previously detected in cattle, bovine parvovirus 3 and ungulate tetraparvovirus 1, 156 
identified in cattle serum of Ronda Alta in the Rio Grande do Sul State and Manoel Ribas in Paraná 157 
State, respectively, both located in South of Brazil.  158 

All the viruses identified in our study have typical parvovirus genome structures encoding NS 159 
and VP proteins. The deduced NS protein sequences from these viruses contains the “HxH” and 160 
“GPASTGKS” motifs, which play a critical role in viral DNA replication [20]. Most of the capsid 161 
proteins also possess the PLA2 motif involved in particle release [21], and the glycine-rich (G-rich) 162 
region required for cellular entry [22]. Interestingly, we observed that one species, Desmodus 163 
rotundus dependoparvovirus encodes NS and VP as overlapping ORFs, with a shared region of 47 164 
nucleotides (Figure 3).  165 

 166 

 167 
Figure 3. Genome structures of newly identified parvoviruses. The length of the determined 168 
nucleotide sequences of the viral sequences are shown in the left. Boxes indicate the open reading 169 
frames (ORFs), and the number represent theirs respective position of ORFs. 170 
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 171 
 172 
Notably, the rodent bocaparvoviruses and pileated finch aveparvovirus contain a putative 173 

additional ORF (NP1). This gene is located in the middle of the viral genome and overlaps with the 174 
C-terminus region of the NS ORF, but in a different reading frame (Figure 3). In the case of the 175 
rodent bocaparvoviruses, this ORF may correspond to the NP1 protein, which has been reported to 176 
play a role in efficient replication for human and canine bocaparvoviruses [25-27], and in immune 177 
evasion for porcine bocaparvoviruses [28].  178 

 179 

4. Discussion 180 
Brazil has a great diversity and abundance of wildlife, and is considered a hotspot for the 181 

potential emergence of novel zoonotic viruses [23]. However, parvovirus studies in Brazil have 182 
focused predominantly on canine parvovirus and human parvovirus B19 [2,24]. In this study, we 183 
used a HTS approach to investigate parvovirus infections among wild mammals and birds 184 
apparently without symptoms or disease from Brazil. We identified 21 parvovirus sequences, 185 
representing six novel and two previously described parvovirus species. We report the first 186 
examples of parvoviruses in samples derived from Sigmondontinae rodents, opossums and New 187 
World bats. Interestingly, all of the viruses detected here were sequenced from serum or blood 188 
samples suggesting that viremia may have been a factor in their identification. 189 

We detected strains of ungulate tetraparvovirus – a virus in the genus Tetraparvovirus - in cattle 190 
from the South of Brazil. Ungulate tetraparvovirus 2 (formerly known as porcine hokovirus) has 191 
previously been identified in swine in Brazil [29]. However, ungulate tetraparvovirus 1 (formerly 192 
known as bovine hokovirus) has not previously been reported outside Asia. This virus, which was 193 
originally identified in bovine spleen samples obtained from food markets in Hong Kong, has also 194 
been identified in domestic yaks (Bos grunniens) in northwestern China [18,19]. The identification of 195 
this virus in an entirely distinct population (Brazilian cattle) not only establishes that it occurs 196 
outside Asia, but also suggests it may be present in cattle populations throughout the world. In 197 
addition, we identified novel species of tetraparvovirus in samples obtained from rodents, and 198 
from an opossum. Interestingly, the opossum sequence grouped basal relative to the largest 199 
Tetraparvovirus clade, which contains isolates from diverse eutherian mammals. Further sampling 200 
may reveal if this basal position reflects the broad co-divergence of tetraparvoviruses and mammals 201 
dating back to the common ancestor of marsupials and eutherians. Such ancient origins of the 202 
Tetraparvovirus genus are consistent with evidence from endogenous viral element (EVE) sequences 203 
that parvoviruses have been infecting mammals for millions of years [30,31]. 204 

Recently, studies have reported numerous novel dependoparvoviruses in samples derived 205 
from Asian bats [32,33]. Here, we provide the first report of a dependoparvovirus in a New World 206 
bat - the vampire bat (Desmodus rotundus). In trees based on Rep, this virus groups basally within 207 
the Dependoparvovirus genus, consistent with these viruses potentially having an ancestral origin in 208 
bats, as has been proposed previously [32]. 209 

Currently, only one species is recognised in the genus Aveparvovirus. This virus (Galliform 210 
aveparvovirus 1) infects chickens and turkeys and is widespread in poultry farms in the United 211 
States and Europe [34,35]. We identified a novel Aveparvovirus species in samples derived from 212 
pileated finch (Coryphospingus pileatus), an indigenous (and non-migratory) South American bird, 213 
suggesting that viruses belonging to the Aveparvovirus genus may circulate widely among avian 214 
species, including wild as well as domestic birds. 215 

We detected bovine parvovirus 3 (genus Erythroparvovirus) in Brazilian cattle. Since this virus - 216 
to the best of our knowledge – has only been described as a contaminant of commercial bovine 217 
serum [36], our study is the first to report detection of bovine parvovirus 3 in cattle populations. 218 

We also identified a novel protoparvovirus species infecting sigmodontine rodents in Brazil. 219 
Sigmodontine rodent protoparvovirus was identified in several species of rodents (all belong to 220 
subfamily) that we captured in the Ribeirão Preto region of São Paulo State. These viruses are 221 
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closely related to Minute virus of mice (MVM), a common pathogen of laboratory mice [37], but 222 
following official taxonomic criteria, they are sufficiently divergent from MVM (>85% in NS and 223 
>73% aa in VP) to be considered a distinct species within the Protoparvovirus genus. 224 

Bocaparvoviruses are associated with pathogenic conditions in human, bovine and canine 225 
hosts [2,38]. Rodent bocaparvoviruses have recently been reported [39], but relatively little is 226 
known about their broader distribution. We identified novel rodent bocaparvoviruses in 227 
sigmodontine rodents that are closely related to bocaparvoviruses recently reported in brown rats 228 
(Rattus rattus) in China [39] (data not shown). Together, these findings suggest a broad distribution 229 
for rodent bocaparvoviruses. 230 

Parvoviruses that infect domestic and wild carnivores (including amdoviruses and 231 
protoparvoviruses) have been studied fairly extensively in the field. These studies have shown that 232 
groups of closely related parvoviruses circulate widely among species in the order Carnivora, with 233 
the barriers to transmission between species within the order apparently being relatively low 234 
[40-42]. The findings of our study suggests that this pattern might be reflected more broadly in 235 
parvovirus ecology, with many parvovirus genera containing sublineages that circulate within 236 
particular taxonomic groups of hosts (and are largely restricted to this host group). For example, the 237 
phylogenetic relationships shown in Figure 1 indicate that closely related protoparvoviruses 238 
circulate widely among rodents, and that closely related tetraparvoviruses circulate widely in 239 
ungulates. With further sampling of parvovirus diversity it should quickly become apparent 240 
whether these inferences are accurate.  241 
 242 
5. Conclusions 243 

In this study, we used a sequencing-based approach to characterize parvovirus infections in 244 
wild and domestic animals in Brazil. Our findings extend the known biogeographic range of 245 
previously characterized parvovirus species, and the known host range of three parvovirus genera 246 
(Dependovirus, Aveparvovirus, and Tetraparvovirus). More broadly, our findings indicate that many 247 
parvovirus genera contain well-defined sub-lineages that circulate widely throughout the world 248 
within particular taxonomic groups of hosts.  249 

Supplementary Materials: The following are available online at www.mdpi.com/link, Table S1: Samples 250 
information, host, sources, sample type, location, date, reads, and %Bases >=Q30. Figure S1: Heatmap of 251 
pairwise amino acid identities of the NS protein of parvoviruses identified in this study and representative 252 
members of Parvovirinae subfamily based on ICTV criteria. The viruses described in this study are highlighted 253 
with bold, Figure S1: Heatmap of pairwise amino acid identities of the VP protein of parvoviruses identified in 254 
this study and representative members of Parvovirinae subfamily based on ICTV criteria. The viruses described 255 
in this study are highlighted with bold.  256 
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