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Abstract  

 

Background: Depression is a complex disorder with large inter-individual variability in 

symptom profiles that often occur alongside symptoms of other psychiatric domains such as 

anxiety. A dimensional and symptom-based approach may help refine the characterization 

and classification of depressive and anxiety disorders and thus aid in establishing robust 

biomarkers. We assess the brain functional connectivity correlates of a symptom-based 

clustering of individuals using functional brain imaging data. 

Methods: We assessed symptoms of depression and anxiety using Beck’s Depression and 

Beck’s Anxiety inventories in individuals with or without a history of depression, and high 

dimensional data clustering to form subgroups based on symptom profiles. To assess the 

biological relevance of this subtyping, we compared functional magnetic resonance imaging-

based dynamic and static functional connectivity between subgroups in a subset of the total 

sample.  

Results: We identified five subgroups with distinct symptom profiles, cutting across 

diagnostic boundaries and differing in terms of total severity, symptom patterns and 

centrality. For instance, inability to relax, fear of the worst, and feelings of guilt were among 

the most severe symptoms in subgroup 1, 2 and 3, respectively. These subgroups showed 

evidence of differential static brain connectivity patterns, in particular comprising a fronto-

temporal network. In contrast, we found no significant associations with clinical sum scores, 

dynamic functional connectivity or global connectivity measures.  

Conclusion: Adding to the ongoing pursuit of individual-based treatment, the results show 

subtyping based on a dimensional conceptualization and unique constellations of anxiety and 

depression symptoms is supported by distinct brain static functional connectivity patterns. 
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Introduction  

Major depressive disorder is among the leading contributors to years lived with disability,1 

and the leading cause in 56 countries.2,3 Although several brain regions have been implicated 

in the pathophysiology of depression including the subgenual anterior cingulate,4 global 

efforts for identifying sensitive, specific and clinically predictive brain correlates of mood 

disorders have still not succeeded.5,6 One reason for the lack of robust imaging-based 

characteristics is that depression is a heterogeneous construct with regards to symptom 

constellation. For example, based on 12 items from the Quick Inventory of Depressive 

Symptomatology (QIDS-16), Fried and Nesse7 found evidence of 1030 unique symptom 

profiles among 3703 depressed outpatients. Remarkably, the most common symptom profile 

had a frequency of < 2%, and > 80% were shared by five or fewer subjects and almost 50% 

by only one individual. Furthermore, depression and anxiety symptoms often co-occur, 

exemplified by 75% of individuals with a depressive disorder in the Netherlands Study of 

Depression and Anxiety (NESDA) study also fulfilling the criteria for an anxiety disorder.8 

Adding to the complexity, individuals of the general, healthy population from time to time 

also experience depression symptoms at various degrees. 

Methodological variability is another reason for the mixed brain imaging findings in 

depression, especially for functional MRI-based measures of brain activation6 and 

connectivity.9 The functions of a healthy mind are supported by the continuous cross talk 

between different brain regions.10 Dysregulations in this fine-tuned and complex interplay 

may increase susceptibility for mental disorders11. Supporting the conceptualization of 

depression as a network-based disorder, fMRI-based functional connectivity (FC) studies 

have implicated large-scale brain network dysfunction in depression.9 Whereas previous 

studies have primarily reported results from various estimates of static FC (sFC; the temporal 

correlation between two brain regions across the entire time-series), there is an increasing 
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awareness of the relevance of dynamic FC (dFC; the variability in the temporal correlations 

across the time-series).12,13 Interestingly, sFC and dFC capture distinct properties of brain 

network dynamics,14,15 and may therefore provide complementary information in 

depression.16 

  Here, in order to address symptom heterogeneity in depression, we used high 

dimensional data-driven clustering (HDDC)17 based on item scores on the Beck’s Depression 

(BDI-II) and Beck’s Anxiety (BAI) inventories to identify groups of individuals with distinct 

symptom profiles among 1084 subjects with or without a history of a diagnosis of depression. 

In order to assess the brain system-level relevance of the symptom-based subgroups, we 

compared measures of fMRI-based static and dynamic connectivity between groups in a 

subset of 251 individuals using network-based statistics.  

 

Methods and Materials 

Sample  

In the total sample (N = 1084), 605 individuals with a history of major depressive episodes 

(MDE) and individuals with no history of an MDE (N = 437) were included (Table 1), drawn 

from four research projects at the Clinical Neuroscience Research Group, Department of 

Psychology, University of Oslo (see the Supplemental Methods). An MRI-subsample of 251 

participants (Table 2) was drawn from one of these research projects (see the Supplemental 

Methods). Individuals with a history of depression were diagnosed using the Structural 

Interview for DSM-IV (SCID-I)18 in one of the sub-studies and Mini International 

Neuropsychiatric Interview (M.I.N.I 6.0)19 in the other three, and were mainly recruited from 

outpatient clinics. Individuals with no history of depression were recruited by posters, 

advertisements in the local newspaper, and social media. The presence of other major Axis I 

psychiatric disorders and number of lifetime MDEs were assessed for all participants based 
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on the M.I.N.I 6.0 (or SCID-I in one of the sub studies). Current selective serotonin reuptake 

inhibitor (SSRI) use was evaluated through a semi-structured interview. Individuals with a 

history of neurological disorders and MRI contraindications (for the MRI-sample) were 

excluded. The study was approved by the Regional Ethical Committee of South-Eastern 

Norway (REK Sør-Øst) and all participants provided informed consent prior to enrolment. 

 

Table 1. Demographics for the total sample 

 Individuals with 

no history of 

depression  

(n = 437) 

 Individuals with a 

history of 

depression  

(n = 605) 

  

        

 M SD  M SD  p   
       

Gender (female) n = 287   n = 468   <.001  

Age 33.90  13.35  39.45  12.92   

Depression symptoms       <.001  

 BDI-II 4.45  5.50  14.09  11.22   

Anxiety symptoms       <.001 

 BAI 3.15 4.11  8.68  8.36   

Other       <.001  

 History of anxiety disorder  n = 7   n = 153   <.001 

 History of (hypo)mania n = 0   n = 63   <.001 

 No. of depressive episodes 0   4.12   6.49  <.001 

 Currently medicated (SSRI) n = 0   n = 164   <.001 

 Currently unmedicated (SSRI) n = 0   n = 383   <.001 

An additional 42 cases were left out from the table because it could not be determined from the records to what 

extent they have had a depressive episode but were included in the symptom-based clustering. For the presented 

numbers, 25 (50 in total) cases for age were missing. For sex, 2 (27 in total) cases were missing. For no. of 

MDEs, 36 cases were missing. The current SSRI status of 57 subjects in the patient group was not recorded. 

 

Clinical inventories 

All participants completed  the BDI-II20 and BAI21 during recruitment and within 1-2 weeks 

of the MRI-sessions, comprising 21 items assessing current symptoms. The originally 

proposed somatic-affective and cognitive factor subscales were used in further analyses. 

Summary statistics for each item by group are shown in Supplemental Table S1, and a 

correlation plot with a dendrogram based on hierarchical clustering across all items are 

shown in Supplemental Figure S1. Largest scores across groups were observed for lack of 
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energy (BDI15), changes in sleeping pattern (BDI16), tiredness or fatigue (BDI20), nervous 

(BAI10) and indigestion (BAI18). 

 

HDDC 

BDI-II and BAI symptom scores were z-normalized and submitted to HDDC  in the R 

package HDclassif22 using standard parameters. HDDC is an unsupervised model-based 

clustering method based on the Gaussian Mixture Model, and has been shown to outperform 

similar methods in the R package mclust23 in terms of accuracy22. HDDC also calculates the 

probability of each subject belonging to each of the clusters, which were used in subsequent 

analyses. We established the optimal number of clusters using the Bayesian Information 

Criterion (BIC)22, and performed various analyses to assess the robustness and stability of the 

clustering (see the Supplemental Results) using the clusteval R package24. To further examine 

the symptom profiles of each subgroup, based on the full correlation matrix, we assessed the 

eigenvector centrality of each symptom using the eigenvector_centrality_und.m function in 

the Brain Connectivity Toolbox25 in MATLAB R2016B (The MathWorks), yielding a graph-

based metric reflecting symptom centrality or importance. 
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Table 2. Demographics of the MRI-subsample 
 Individuals with 

no history of 

depression 

(n = 72) 

 Individuals with a 

history of 

depression  

(n = 178) 

  

        

 M SD  M SD  p  
       

Gender (female) n = 48   n = 127   0.450 

Age 42.50 13.58  38.94 13.42  0.098  

Education level (ISCED) 6.00 1.02  5.93 1.22  0.625  

Depressive symptoms        

 Ham-D 2.89 2.11  8.03 5.78  <.001  

 BDI-II 1.61 2.94  11.84 10.36  <.001  

Anxiety symptoms        

 BAI 1.65 2.80  8.22 8.09  <.001  

Other        

 AUDIT 4.76 3.30  6.32 5.18  0.050  

 DUDIT 0.48 1.87  0.89 2.70  0.180  

 Handedness (left) 7   6    

 History of anxiety disorder  n = 1   n = 53   <.001 

 History of (hypo)mania n = 0   n = 30    

 No. of depressive episodes 0   4.34 5.76  <.001 

 Currently medicated (SSRI) n = 0   n = 55   <.001 

 Currently unmedicated (SSRI) n = 0   n = 123   <.001 

2 cases not reported here do not fulfil MDE criteria but have generalized anxiety disorder, but are used in the 

MRI analysis. 

 

 

MRI acquisition protocol 

For fMRI analysis a T2* weighted single-shot gradient echo EPI sequence was acquired with 

the following parameters: repetition time (TR)/echo time (TE)/ flip angle (FA) = 

2.500ms/30ms/80°; voxel size, 3.00 × 3.00 × 3.00 mm; 45 transverse slices, 200 volumes; 

scan time ≈ 8.5 min. Participants were instructed to have their eyes open, and refrain from 

falling asleep. Scanner noise and subject motion were reduced by using cushions and 

headphones. For co-registration, we collected a T1-weighted 3D turbo field echo (TFE) scan 

with SENSE using the following parameters: acceleration factor = 2; TR/TE/FA: 3000 

ms/3.61 ms/8°; scan duration: 3 min 16 s, 1 mm isotropic voxels. Due to technical reasons 

during the time of acquisition, 64 of the individuals were scanned with the initial sagittal 

phase-encoding (PE) direction and the remaining 186 were scanned with an axial PE 

direction for the fMRI data. 
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Image processing  

The FMRI Expert Analysis Tool (FEAT) from the FMRIB Software Library (FSL)26 was 

used for fMRI data processing. This involved brain extraction, motion correction 

(MCFLIRT),27 spatial smoothing (Gaussian kernel, full-width at half-maximum = 6 mm), 

high pass filtering (100s) and single-session ICA (MELODIC). Estimated mean relative in-

scanner head motion (volume-to-volume displacement) was computed with FSL’s 

MCFLIRT. FMRIB’S ICA-based Xnoiseifier (FIX)28,29 was used to automatically classify 

noise components and regress them out from the main signal, with a threshold of 60. FIX has 

been shown to substantially improve the temporal signal to noise ratio (tSNR),30,31 which was 

computed before and after FIX.32 

 T1-weighted volumes were skull-stripped using FreeSurfer 5.333 and used for 

standard space (MNI-152) registration with FLIRT, refining the process with boundary-based 

registration (BBR)34 and FNIRT.  

 

Group ICA on fMRI data 

To avoid bias due to unequal group sizes group-level ICA was performed on a balanced 

subset of patients and controls (N = 72 in each group).35 Model order was fixed at 40, which 

provides a reasonable trade-off between anatomical sensitivity and specificity.36 IC spatial 

maps and corresponding time-series were estimated using dual regression.37 We assessed the 

spatial maps as well as the frequency profiles following previous recommendations.38 We 

identified and regressed out the time series of 15 noise components, and an additional 6 

components (see Supplemental Figure S2) were discarded from further analyses since their 

spatial maps did not conform with any established resting-state networks or were a mixture 

between signal and noise, leaving 19 ICs for connectivity analyses.  
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Local functional connectivity: sFC and dFC 

For sFC, a node-by-node connectivity matrix was created using partial correlations between 

the time-series, resulting in 171 unique edges. These partial correlations were L1-regularized, 

with estimated regularization strength (lambda) at the subject level.35,39,40  

For dFC, the degree of coupling and de-coupling between pairs of brain nodes is 

conceptualised as the coefficient of variation of delta phi, which is the normalized differences 

in their wave phases. First, each of the 19 node time-series was narrow-band filtered within 

0.04-0.07 Hz, which is required to obtain meaningful phases.41 Next, we applied the Hilbert 

transform, creating an analytic signal, in which we computed the instantaneous phase values 

for each of the 19 ICs. Lastly, we estimated the Kuramoto order, an index of oscillation 

between regions at every instant.42 

 

Global-brain level FC 

For each individual sFC-connectome we calculated global efficiency, a graph-based measure 

of topological organization defined as the average inverse shortest path length in a network, 

using the efficiency_wei.m function in the Brain Connectivity Toolbox.25 Metastability, a 

measure of dynamic flexibility whereby the brain transitions through different states, was 

computed as the standard deviation of the Kuramoto order parameter.43,44 Higher 

metastability is a potential marker for cognitive and behavioural functioning.43,45,46 47 

Synchrony, a measure of general coherence,48 was computed as the mean of the Kuramoto 

order parameter. It is hypothesized that such coherence allows for the exchange of 

information within the brain.49 
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Statistical analyses 

Differences between subgroups in between-node (“edge-wise”) sFC and dFC were tested by 

means of analysis of covariance (ANCOVA) including subgroup, sex, age, PE direction, and 

mean relative motion. For inference, we used network-based statistics (NBS)50 (10000 

permutations, α = 0.05), providing control of the family-wise error (FWE) rate on the 

network-level. Here we tested for main effects of subgroup and the probability of belonging 

to a specific subgroup on FC. To assess the relative importance of each node, we computed 

the sum of the test-statistic across all edges. We used a similar approach to test for 

associations between the BDI-II and BAI sum and factor scores with FC.  

We used ANCOVA in R51 to independently test for association between subgroup and 

global efficiency, metastability and synchrony respectively, controlling for mean sex, age, PE 

direction and mean relative motion. We used the same model to assess the association 

between the BDI-II and BAI sum and subscale scores with global efficiency, metastability 

and synchrony independently.  

We used Kruskal-Wallis rank sum tests to assess subgroup differences in 

demographic and clinical variables. 

 

Results     

Individual clustering using HDDC 

HDDC yielded five symptom-based subgroups with differing symptom profiles. Figure 1 

shows the mean scores of each symptom for each of the subgroups and the sum scores for the 

BDI-II and BAI, while Supplemental Figure S3 shows the BDI-II and BAI subscale sum 

scores. Overall, the subgroups seemed to differ by total severity. However, several other 

patterns should be noted, especially in terms of symptom centrality (Figure 2). Unable to 

relax (BAI4) was among the most severe symptoms in subgroup 1. Feelings of dislike 
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(BDI7), worthlessness (BDI14), and loss in interest (BDI12) showed highest centrality in 

subgroup 1, with low centrality for the BAI-symptoms. Fear of worst happening (BAI5) was 

among the most severe in subgroup 2. Sadness (BDI1), feelings of guilt (BDI5) and tiredness 

or fatigue (BDI20) showed highest centrality in subgroup 2, and the centrality was higher 

across BAI-symptoms. Feelings of guilt (BDI5) was more severe in subgroup 3. Tiredness or 

fatigue (BDI20), lack of energy (BDI15) and loss of pleasure (BDI4) showed high centrality 

in subgroup 3. Notably, although the overall symptom severity in subgroup 5 was lower than 

in subgroup 3, several symptoms were more severe in subgroup 5, and there was an absence 

of 27 of the total 42 symptoms. Across all subgroups, change in sleeping pattern (BDI16) 

was among the most severe, and was the only symptom present in subgroup 4. Healthy 

controls and patients were present in all subgroups (Supplemental Figure S4), yet the 

proportion of patients was higher in subgroups with highest severity scores, specifically 

subgroups 2 and 1 (X2 = 109.69, df = 1, p = 2.2x10-16). The stability analyses suggest that the 

clusters were robust, with ≈ 0.75 Jaccard index being the most common for every pair of 

iterations (Supplemental Figure S5 and S6).  

 There were no significant differences in sex (X2 = 1.42, df = 1, p = 0.234) or age (X2 

= 58.15, df = 53, p = 0.291) between the subgroups in the total sample. For the individuals 

with a history of depression, there were no significant differences in current SSRI medication 

status (X2 = 0.21, df = 1, p = 0.649), comorbidity (X2 = 0.32, df = 1, p = 0.572), or number of 

MDEs (X2 = 18.72, df = 19, p = 0.475) between the subgroups in the total sample. For the 

MRI subsample, there were no significant differences in sex (X2 = 1.04, df = 1, p = 0.309), 

age (X2 = 53.41, df = 48, p = 0.274), head motion (X2 = 252, df = 251, p = 0.470), tSNR 

before FIX (X2 = 252, df = 251, p = 0.4704), or tSNR after FIX (X2 = 252, df = 251, p = 

0.488) between the subgroups. For the individuals with a history of depression, there were no 

significant differences in current SSRI medication status (X2 = 0.66, df = 1, p = 0.416), 
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comorbidity (X2 = 0.16, df = 1, p = 0.685), or number of MDEs (X2 = 17.57, df = 13, p = 

0.174) between the subgroups in the MRI subsample. 

 

 

Figure 1. Symptom profiles of the subgroups from HDDC clustering.(A) Mean symptom score of each item of 

each subgroup. (B) Total BDI (left) and BAI (right) scores for each subgroup. 
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Figure 2. Eigenvector centrality of symptoms for subgroups 1, 2 and 3. 

Subgroup 4 could not be included because only one symptom, changes in sleep, was present. Subgroup 5 was 

excluded because of the absence of many symptoms (27 of 42) which would change the underlying centrality 

weighting. 

 

fMRI-based static FC  

NBS revealed a 22-edge subnetwork with significant main effect of subgroup (p = 0.033, 

corrected using permutation testing; Figure 3A). The uncorrected edge level test statistics for 

this subnetwork are shown in Supplemental Table S2. The strongest differences were seen in 

edges connecting a default mode network (DMN) component and the fronto-temporal 

network (IC5-IC16) and between the precuneus and the fronto-temporal network (IC7-IC16; 

Figure 3B). Figure 3C shows the sum of the test statistics of each node, with largest 

cumulative effects seen in two default mode network (DMN) components (IC5 and IC6), 

precuneus (IC7), fronto-temporal network (IC16), cerebellum (IC31) and thalamus (IC39). 
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 NBS revealed a 30-edge subnetwork with significant association with the probability 

of belonging to subgroup 1 (p = 0.015; Figure 3D) and a 24-edge subnetwork with significant 

association with the probability of belonging to subgroup 3 (p = 0.042; Figure 3D). Figure 3E 

shows the nodes with the largest cumulative effect on the statistical significance of these two 

subnetworks. 

We found no significant associations between BDI-II and BAI sum or subscale scores 

with sFC (Supplemental Table S3). 

 

 

Figure 3. Results from the sFC associations using NBS. (A) subgroup main effect. (B) boxplot of the raw sFC 

values of the two edges that show the largest main effect of subgroup; between a DMN-component and the 

fronto-temporal network, and between the precuneus and the fronto-temporal network. Fig. 3C: Sum of test 

statistic (f-stat) showing the cumulative effect of an IC node on the subgroup main effect. (D) SFC association 

with the probability of belonging to subgroup 1 (blue) and subgroup 3 (red). (E) Sum of test statistic (f-stat) 

showing the cumulative effect of an IC node with the association of the probability of belonging to subgroup 1 

(upper row) and subgroup 3 (bottom row). 
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Dynamic FC 

NBS revealed no significant main effect of subgroup on dFC. We found no significant 

association between BDI-II and BAI sum or subscale scores with dFC (Supplemental Table 

S4).  

 

Global-brain level analyses 

There was no significant association between subgroup or BDI-II and BAI sum or subscale 

scores with global efficiency, synchrony or metastability (Supplemental Table S3).  

 

Discussion 

Using high-dimensional clustering of individuals based on current symptoms of depression 

and anxiety, we have identified five subgroups cutting across diagnostic boundaries in 1083 

subjects with a history or no history of depression. Subsequent analysis in a fMRI-subsample 

revealed a brain sFC pattern with main effect of subgroup, with the fronto-temporal network 

as a major node. There were no significant associations with conventional symptom domains, 

supporting that the data-driven clustering provides a more biologically sensitive grouping. 

 Previous studies have used similar methods to provide data-driven symptom-based 

stratifications of depression. One study identified a melancholic and a separate atypical 

subgroup 52 which is in line with the DSM-V 53. However, this is not a consistent finding 

across such studies where the most common pattern is total severity differences 54 which 

provides support for a dimensional symptom-based approach. Despite this, the subgroups in 

the current study exhibit unique symptom profiles both in the pattern of severity and 

especially in centrality. Notably, subgroup 5 has an absence of many symptoms while the 

only symptom in subgroup 4 was change in sleeping pattern, showing a high degree of 

specificity. Interestingly, at least one of the three main symptoms that must be present for an 
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MDE in the DSM-V, have different centralities in the subgroups: sadness and loss in interest 

have higher centrality in subgroup 1, whereas loss of pleasure has higher centrality in 

subgroup 3. Additionally, subgroup 3 is distinct in that tiredness or fatigue and lack of energy 

seem to have much higher centrality than the other subgroups. Incidentally, these two 

symptoms are grouped together in hierarchical clustering (Supplemental Figure S1).  

Data-driven subtyping may have clinical relevance. In a two-year follow up study,55 

the group with persistent depression had higher centrality in fatigue or loss of energy at 

baseline compared to the remitted group. This symptom specificity could suggest that such 

subgroups have different underlying mechanisms and environmental triggers. For instance, 

life stress has been shown to have a substantial impact on interest56 whereas romantic 

breakup was strongly associated with guilt.57 Change in sleeping pattern is the most severe 

symptom across all the subgroups, implying that it is more prominent than expected in terms 

of traditional diagnostic criteria. Recently, different sleep profiles were independently 

associated with specific patterns of depression comorbidity,58 and distinct abnormalities in 

DMN functioning.59 

 The subgroups showed differential sFC in a range of brain networks, especially 

involving the fronto-temporal node (IC16). The brain regions encompassing this node are 

involved with executive functions60,61 and external information processing.62 The largest edge 

difference in sFC was between a DMN sub-component and fronto-temporal node (IC5-IC16), 

which is one of the most consistent FC finding in depression9 and can indicate negative self-

referential processes.63,64 Another edge that exhibited strong sFC differences was between the 

precuneus and a fronto-temporal node (IC7-IC16). Activity within the precuneus has been 

associated with increased number of depressive episode65 and rumination 66. Two other 

implicated nodes were the cerebellum (IC31) and the thalamus (IC39). Lower cerebellar 

volume has been associated with decreased emotional memory 67, whereas thalamic volume 
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reduction has been associated with deficits in top-down regulation of negative emotions in 

depression 68.Intriguingly, we observed unique sFC patterns associated with the probability of 

belonging to subgroups 1 and 3, with only a 5-edge overlap. Here, subgroup 3 was uniquely 

associated with sFC in the supramarginal (IC18), motor (IC21), cerebellar (IC31) and 

thalamic (IC39) nodes, while subgroup 1 was associated with a higher cumulative effect of 

the inferior-midfrontal node (IC15).  

We found no differences in dFC, global efficiency, metastability or synchrony 

between the subgroups. We found no significant association between any of the symptom 

scores with any of the FC measures. Taking these findings together, the sFC associations with 

the subgroups are partly explained by specificity of symptom profiles beyond total severity 

differences. Therefore, we argue that a symptom rather than a syndrome-based approach is 

better suited for elucidating depression symptom heterogeneity.   

 Two recent studies have identified “biotypes” of depression based on sFC. Drysdale 

and colleagues69 identified four biotypes, whereby biotypes 1 and 2 are similar to subgroup 3 

in terms of fatigue, biotype 3 is similar to subgroup 1 in terms of interest, while biotype 4 is 

similar to subgroup 2 in that anxiety is prominent. The most important features in these 

biotypes were frontostriatal network dysfunction coupled with anhedonia, and limbic network 

dysfunction coupled with anxiety. Intriguingly, these subgroups responded differentially to an 

experimental transcranial magnetic stimulation treatment, showing the potential clinical 

utility of such subgroups.  Price, Gates, Kraynak, Thase and Siegle70 identified one biotype 

characterized by typical DMN connectivity, and a second biotype with increased dorsal 

anterior cingulate connectivity with higher rates of anxiety and consisted predominantly of 

females. Both studies and the current study highlight the importance of anxiety in depression, 

suggesting some convergence across FC and symptom-based clustering. However, FC-based 
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clustering methods are novel, needing validation and replication in independent studies. A 

strength of the current study is a more detailed range of symptoms.  

 One limitation of this study is that we included few severely depressed patients, which 

may have biased the results towards the less severe end of the spectrum. Further, the patient 

group was clinically heterogenous, with differing history of (hypo)mania, current SSRI 

medication use and number of depressive episodes. However, there were no significant 

subgroup differences on any of these factors. Moreover, a recent large-scale meta-analysis of 

depression studies6 found no differences in fMRI results when accounting for such factors.  

 Methodological variability may account for the discrepancy in previous fMRI 

findings,16,71,72 e.g. related to the definition of the nodes (e.g. ICA vs. ROI-based) and edges 

(e.g. full vs partial correlations). Based on graph-theoretical accuracy, ICA has been shown to 

outperform ROI-based node definition, and ROIs may not conform well with functional and 

anatomical boundaries.73,74 Sliding-window analyses are the most common method of 

analysing dFC, but one issue is unsuitability for fMRI sequences that are less than 10 

minutes.75 Head motion is a major confounder in FC studies,76,77 but this was taken into 

account in the analyses.  

 

Conclusion 

We identified five robust subgroups with specific clinical symptom profiles. FMRI analysis 

revealed that these subgroups were characterized by distinct static brain connectivity patterns, 

in particular implicating a fronto-temporal node. These neurobiologically sensitive subgroups 

based on a dimensional and symptom-based approach may help move the field towards 

precision and individualized treatment of depression.   
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