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Mutation signatures in cancer genomes reflect endogenous and exogenous mutational pro-

cesses, offering insights into tumour etiology, features for prognostic and biologic stratifica-

tion and vulnerabilities to be exploited therapeutically. We present a novel machine learning

formalism for improved signature inference, based on multi-modal correlated topic models

(MMCTM) which can at once infer signatures from both single nucleotide and structural

variation counts derived from cancer genome sequencing data. We exemplify the utility

of our approach on two hormone driven, DNA repair deficient cancers: breast and ovary

(n=755 cases total). Our results illuminate a new age-associated structural variation sig-

nature in breast cancer, and an independently identified substructure within homologous

recombination deficient (HRD) tumours in breast and ovarian cancer. Together, our study

emphasizes the importance of integrating multiple mutation modes for signature discovery

and patient stratification, with biological and clinical implications for DNA repair deficient

cancers.
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Patterns of mutation in cancer genomes reflect both endogenous and exogenous mutagenic

processes1, allowing inference of causative mechanisms, prognostic associations2, and clinically

actionable3–6 vulnerabilities in tumors. Many mutational processes leave distinct genomic “foot-

prints”, measurable via nucleotide substitution patterns1, localised mutation densities, and patterns

of structural variation. As such, each mutagenic source (whether exogenous or endogenous) changes

DNA in a characteristic manner, at genomic locations with preferred chemical and structural charac-

teristics. Exogenous insults such as ultra-violet radiation and tobacco smoke associated mutagens

(e.g. benzo[a]pyrene) induce single nucleotide variants (SNVs) with characteristic C→T (at CC

or TC dinucleotides)7 and C→A mutation patterns8, respectively; endogenous APOBEC3A me-

diates enzymatic 5-methylcytosine deamination, resulting in C→T substitution patterns at TC

dinucleotides7.

Cancer cells can also acquire an endogenous mutator phenotype, accumulating large numbers

of mutations7 due to DNA repair deficiencies. Defective DNA repair processes induce both point

mutations and structural variations9, and include several mechanistic classes such as mismatch

repair deficiency, homologous recombination deficiency, microhomology mediated end-joining, and

breakage fusion bridge processes. Defective DNA repair has been exploited in therapeutic regimes,

including immune checkpoint blockade for mismatch repair deficiency6, and synthetic lethal

approaches for homologous recombination deficiency4, 5, underscoring their clinical importance.

Both point mutation signatures10 and structural variation signatures11 have been studied exten-

sively as independent features of cancer genomes, mostly through non-negative matrix factorization
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(NMF) approaches1, 3, 12–15. As increasing numbers of whole genomes are generated from tumors

in international consortia and focused investigator research, the need for robust signature infer-

ence methods is acute. Additional computational methods have been proposed16–19, however no

approaches jointly infer signatures from both point mutation and structural variations. We contend

that systematic, integrative analysis of point mutation and structural variation processes enhances

ability to exploit signatures for subgroup discovery, prognostic and therapeutic stratification, clinical

prediction, and driver gene association.

Latent dirichlet allocation (LDA)20, a popular and effective approach for natural language

document analysis, is well suited to the task of mutation signature inference. Appropriate conceptual

mappings applied to mutation signature analysis can be described as follows: signatures (topics) are

represented as distributions over a mutation (word) vocabulary, and sample mutation catalogues are

represented as distributions over mutation signatures. In this paper we introduce the correlated topic

model (CTM)21, an extension of LDA which incorporates signature correlation, and a multi-modal

correlated topic model (MMCTM)22 which jointly infers signatures from multiple mutation types,

such as SNVs and SVs. Signature activities can be correlated among some groups of patients,

motivating the use of this class of methods. For example, homologous recombination deficiency

induces patterns of both SNVs and SVs in breast13 and high grade serous ovarian cancers2. We

show how integrating SNV and SV count distributions improves inference of signatures relative to

NMF and standard topic modeling methods.

Motivated by the need to better understand mutation signatures in the context of DNA repair
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deficiency, we applied the MMCTM to SNV and SV somatic mutations derived from publically

available breast13 and ovarian2 whole genomes (755 cases total), performing joint statistical inference

of signatures. Our results reveal correlated topic models as an important analytic advance over

standard approaches. Rigorous benchmarking over mutation signatures inferred from previously

published mutation corpora was used to establish metrics for comparison. In addition, we report

novel strata using MMCTM-derived signatures, including patient groups exhibiting combined whole

genome SNV and SV signature profiles from breast and ovary cancers. We also automatically

recovered BRCA1-like and BRCA2-like homologous recombination repair deficient breast and

ovarian cancers, where the tumors bearing the well known SNV HRD signature were reproducibly

split on the basis of SVs. We further uncovered prognostically relevant strata in ovarian cancer,

identifying important patient subgroups for further clinical and biologic study. In aggregate, our

study reveals the importance of simultaneously considering multiple classes of genomic disruption

as a route to expanding mutation signature discovery, and their downstream impact on novel

stratification across human cancers.

Results

Datasets and feature construction We studied mutation signatures in 560 breast13 and 195

ovarian2, 23 cancer genomes (Supplementary Table 1). Each dataset was analyzed separately to avoid

biases from differences in sample sequencing, data-processing or annotation.

We constructed SNV features using the 6 types of pyrimidine-centric substitutions (C→A,

C→G, C→T, T→A, T→C, C→G), and their flanking nucleotides. SNV signature analyses have
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traditionally focused on the variant and two flanking nucleotides (one 5′ and one 3′ to the variant)10, 24.

Here, we used four flanking nucleotides (two 5′ and two 3′ to the variant) for identifying SNV

context bias. We defined SV features by rearrangement type (deletion, tandem duplication, inversion,

fold-back inversion (FBI), translocation), number of homologous nucleotides around the breakpoints

(0–1, 2–5, >5), and breakpoint distance (<10kbp, 10–100kbp, 100kb–1Mbp, 1–10Mbp, >10Mbp,

except for translocations).

We implemented several “dependent” feature methods (LDA, CTM, MMCTM, Supplementary

Table 2) which, like NMF, accept counts of mutation “words” that incorporate the mutation type

itself, and contextual information. For example, a C→T SNV with an upstream A and downstream

G can be represented as the item “A[C→T]G”. In addition, we implemented “independent” feature

models16 (ILDA, ICTM, IMMCTM, Fig. 1a, Supplementary Table 2) which treat each mutation as

a collection of features, rather than as a single vocabulary item. That is, one feature for the mutation

itself (say, C→T), and features for each piece of contextual information (e.g. 5′ A and 3′ G in the

previous example). Assuming 6 SNV types, and 4 flanking nucleotides (two 5′ and two 3′ to the

variant), the number of features is reduced from 6 ∗ 44 = 1536 for dependent feature models, to

6 + 4 ∗ 4 = 22.

Model specifications and implementation details for all methods are provided in the Supple-

mentary Materials and Methods sections.

Correlated topic models provide improved signature inference We compared NMF to LDA,

CTM, MMCTM, and the independent feature models ILDA, ICTM, and IMMCTM (Fig. 1a). As
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NMF is commonly given normalized mutation counts, we also included a normalised input to NMF

(NMF-NORM). We performed 5-fold cross validation, repeated 10 times, on the breast cancer

dataset described above. For each comparison, we fit SNV and SV signatures to four folds and

computed the average per-mutation predictive log-likelihood on the held out fold (112 samples). We

split mutation counts from each test sample into two parts, inferred sample-signature activities with

one portion, and computed log-likelihood values with the other portion. This evaluation procedure

required mutation signatures and sample-signature activities from each method.

We first compared performance as a function of the number of signatures, fitting models

over a range of 2–12 SNV and SV signatures (Fig. 1b, Supplementary Fig. 1a, Supplementary

Data 1). For SV signatures, NMF performance degraded with >5 signatures, while the probabilistic

topic models’ performance improved until a plateau was reached. The dependent and independent

feature correlated models performed comparably at inferring SV signatures, while NMF-NORM

performed worse than NMF. For SNV signatures, LDA, CTM, and MMCTM all performed best.

ILDA, ICTM, and IMMCTM performed much worse than other methods, but their performance

continually improved over the range of tested signature counts, eventually matching NMF.

Correlated topic models performed better than their non-correlated analogues at inferring SV

signatures, possibly due to relatively low input counts for SNV and SV features. To explore this

further, we compared performance over a range of mutation count fractions (Fig. 1c, Supplementary

Fig. 1b, Supplementary Data 2). With fewer SV counts, MMCTM outperformed CTM, which

outperformed LDA. When subsetting SNV counts, LDA, CTM, and MMCTM performed roughly

equally until only 1% of mutation counts were retained, at which point LDA performance became
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worse than the CTM and MMCTM. Importantly, correlated topic models were the least affected by

reducing mutation counts, whereas NMF exhibited the worst performance decline, indicating that

correlated models were in general more robust to data sparsity.

We next compared the quality of patient stratification, where the input features were computed

by the respective methods (Fig. 1d, Supplementary Fig. 1c, Supplementary Data 3). We trained

each method 10 times with random initializations on the full breast cancer dataset. We then trained

a logistic regression classifier with the per-sample signature activities from each run, and published

HRDetect-derived HRD labels3. HRD prediction accuracy scores were computed using 5-fold

cross-validation. When the classifier was trained on only SNV signature activities, the CTM and

MMCTM performed equally well. NMF-NORM generally did at least as well as the CTM and

MMCTM in this comparison, but NMF with raw counts performed worse. With SV signature

activities, the correlated topic models converged to a similar performance, and generally provided

better average accuracy than the other methods. When the classifier was trained on both SNV

and SV signature activities, the CTM and MMCTM performed better than other methods, and the

CTM performed somewhat better for signatures ≥ 6. NMF-NORM also had slightly worse, but

comparable performance to the MMCTM, in this comparison.

Overall, correlated topic models produced superior predictive mutation signature distributions

and low-dimensional representations of samples. This was especially true when each sample had

few mutations, as for SVs. This may suggest that they would perform better with exome data

than other types of models. We found similar patterns in log-likelihood comparisons using the

smaller ovarian cancer dataset, except we detected no differences between the CTM and MMCTM,
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and the independent feature models performed best with 1% SNV counts (Supplementary Fig. 2).

Performance of probabilistic topic models was stable across a range of topic hyperparameter values

(Supplementary Fig. 1d).

Integrated SNV and SV signatures in breast cancer We next analysed the 560 breast cancer

genomes13 with the MMCTM (Supplementary Fig. 3a) for stratification analysis. We simultaneously

fit 8 SNV and 8 SV signatures to counts of SNVs and SVs (Fig. 2a,b, Supplementary Fig. 4,

Supplementary Data 4, see Methods for signature count selection). We found signatures similar to

those identified previously13, including the age-related (SNV-7, COSMIC 1, Supplementary Fig. 5),

APOBEC (SNV-4 & SNV-6, COSMIC 2 & 13), deletion (SV-5), and tandem duplication (SV-4,

SV-6, SV-8) signatures.

Some signatures were more likely to co-occur in the same tumour, possibly reflecting common

etiology. For example, the two APOBEC signatures were positively correlated (Pearson’s r=0.38)

(Fig. 2d, Supplementary Data 5), and the HRD SNV signature was positively correlated with the

small tandem duplication signature (r=0.59), as expected. The age-related signature (SNV-7) was

positively correlated with signatures of intrachromosomal SVs 1–10Mbp (SV-1, r=0.6) and>10Mbp

in size (SV-2, r=0.51).

We next performed unsupervised clustering over tumours on joint per-tumour SNV and SV

signature activities (Fig. 2c, Supplementary Figs. 3b, 6, Supplementary Data 6, 7, see Methods).

The resulting 9 groups included two (clusters 1 & 2, n=148 & 115) enriched for the age-associated

signature (SNV-7, see Supplementary Fig. 7a, Supplementary Data 8 for significant cluster-signature
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associations). Cluster 2 was distinguished from cluster 1 in part due to enrichment of SNV-3. Cluster

1 had the highest relative activity of SV-7 (translocations), while both clusters 1 & 2 had enriched

activity of large intra-chromosomal rearrangements (SV-1 & SV-2), especially cluster 2. While

SNV-7 was most correlated with age (r=0.23), SV-1 was second most correlated (r=0.17). Cluster 1

was associated with Luminal A cancers, and both clusters 1 and 2 contain tumours from generally

older patients with relatively fewer SNVs (see Fig. 2e, Supplementary Data 9 for significant cluster-

annotation associations). This implies that older patients may be more likely to have accumulated

SVs in their cancers’ etiology as function of background rates, indicating a putative SV-related age

signature for breast cancer.

We also observed clusters with BRCA1/BRCA2 mutations and methylation (clusters 3 & 7,

n=73 & 37), as previously described13. These tumours typically exhibited an HRD phenotype, and

had elevated activity of the HRD-associated SNV signature (SNV-1). Cluster 3 was associated with

SV-4 and SV-6 (tandem duplications), and more BRCA1 and PTEN driver mutations than expected

by chance. In contrast to clusters 1&2, patients in cluster 3 also tended to be younger than patients

in other clusters. As expected, cluster 3 patients were predominantly from the Basal PAM50 class.

Cluster 7 was associated with SV-5 (small deletions), loss of BRCA2, and Luminal B cancers. The

majority (76%) of BRCA1/2 cases fell into clusters 3&7, although BRCA1/2 mutant tumours that

fell outside these clusters often showed similar patterns of HRD-associated signature activities,

albeit with increased activity of unrelated signatures (e.g. SV-3 in cluster 4). Of patients predicted

by HRDetect3 to harbour HRD, 85% fell within the BRCA1/2 (cluster 3&7) groups, demonstrating

that the MMCTM output provides a substrate upon which known biological clusters are recovered,
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with further stratification as a result of SNV and SV integration.

Cluster 4 (n=67) had the highest activity of SV-3 (deletions and small inversions) and also

contained more TP53 mutant tumours than expected by chance alone. As this group contained

examples of Her2, luminal A, luminal B and Basal PAM50 expression classes, we suggest cluster 4

represents an important group of 12% of breast cancers which transcend known molecular subtypes.

Two clusters (clusters 5 & 6, n=53 & 41) were enriched for APOBEC signature activity (SNV-4

& SNV-6). Both of these APOBEC clusters were also enriched for HER2-positive tumours, and

cluster 6 was enriched for PIK3CA driver mutations, relating Her2-amplification and APOBEC

deamination processes for approximately 17% (cluster 5 + cluster 6) of breast cancers, as previously

reported25. Additional small groups (Cluster 8 (n=18) and Cluster 9 (n=8)) contained tumours

enriched for tandem duplications (SV-8) and association with defective DNA mismatch repair

(MMRD, see COSMIC 6, 15, 20, 26), and SV-3 (deletions and small inversions), respectively, and

consistent with previous reports26.

SNV and SV signature activity segregates ovarian cancer cases into prognostically distinct

groups A recent analysis of ovarian tumours revealed a novel high-grade serous carcinoma (HGSC)

sub-group with relatively worse prognosis, characterized by increased frequency of fold-back

inversions (FBI)2. Their analysis combined NMF-based SNV signature analysis with ad-hoc SV

and copy number variant (CNV) features. Here we expanded on some of their findings using the

MMCTM on a merged data set consisting of 133 cases from Wang et al.2 and 62 cases from the

ICGC ovarian cancer whole genome dataset27.
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We fit 6 SNV and 7 SV signatures to mutation counts from the 195 ovarian cancer genomes

(Fig. 3a,b, Supplementary Fig. 8, Supplementary Data 4, see Methods for signature count selection),

including endometrioid carcinomas (ENOC), clear cell carcinomas (CCOC), granulosa cell tumours

(GCT), and HGSC (Supplemental Table 1). Amongst the resultant SNV signatures were the

previously described HRD (SNV-1, COSMIC 3), MMRD (SNV-2 & SNV-4, COSMIC 6, 15,

20, 26), APOBEC (SNV-3, COSMIC 2 & 13), POLE (SNV-5, COSMIC 10), and age-related

signatures ((SNV-6, COSMIC 1), Supplementary Fig. 5, see also for a comparison to the breast SNV

signatures). The SVs included signatures for tandem duplications (SV-1, SV-3, SV-6), translocations

(SV-2), small deletions (SV-4), intra-chromosomal SVs generally >1Mbp (SV-5), and FBI and

deletions (SV-7). The association of deletions with FBI can be understood in terms of the underlying

cause of FBI: breakage-fusion-bridge cycles. After the loss of a telomere, sister chromatids fuse

and are then pulled apart during mitosis, producing one chromosome with a foldback-inversion and

another with a terminal deletion.

We clustered the tumours according to their joint SNV and SV signature prevalences, which

resulted in 10 groups (Fig. 3c, Supplementary Data 6, 7). Cluster 1 (n=36) contained mainly CCOC

and ENOC tumours enriched for the age-associated signature (SNV-6), translocations (SV-2),

and duplications (SV-6, see Supplementary Fig. 7, Supplementary Data 8 for cluster-signature

associations). While the original study identified one HRD signature (SNV-1) group2, our analysis

here produced two major HRD clusters (2 & 4, n=33 & 27), roughly defined by tumours with

tandem duplications (SV-1 & SV-3) coupled with loss of BRCA1 (see Fig. 3d, Supplementary

Data 9 for cluster-annotation assocations), and small deletions (SV-4) coupled with loss of BRCA2,
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respectively. Cluster 2 also had greater activity of SVs compared to other ovarian tumours. Cluster

8 (n=9) included some BRCA1 mutated tumours, and is distinct from cluster 2 due to greater

enrichment of tandem duplication signature SV-1. The association of BRCA1/2 status with tandem

duplication and deletion SV signatures has been reported in breast cancer tumours13, and was

reflected in our analysis of the 560 breast cancer dataset (Fig. 2, described above), providing strong

evidence for BRCA1-like and BRCA2-like HRD sub-strata crossing tumour types.

Cluster 3 (n=32) was associated with enrichment of FBI (SV-7), cluster 5 (n=19) with

translocations (SV-2), and cluster 6 (n=13) with large intra-chromosomal rearrangements (SV-5).

Cluster 5 & 6 also included low-level FBI signature activity. Cluster 7 (n=10) was associated with

higher activity of the duplication signature SV-6, and CDK12 mutations, an association supported

by a previous study28. Clusters 2–8 comprised mainly HGSC tumours, although each of these

clusters also included tumours of other histotypes. For example, clusters 4–6 include GCT tumours.

Cluster 9 (n=9) includes all microsatellite instable (MSI) ENOC tumours, and was associated with a

mismatch repair deficient signature (SNV-2), the age-related signature (SNV-6), and higher numbers

of SNVs. Cluster 10 (n=7) included 7 tumours highly enriched for APOBEC signature (SNV-3)

activity.

By inspecting the signature correlations output by the MMCTM model (Fig. 3g, Supplemen-

tary Data 5), we saw that the HRD SNV signature (SNV-1) was positively correlated with the small

tandem duplication signature SV-1 (r=0.29), as may be expected from the underlying biology of

these signatures. The age-related signature (SNV-6) is positively correlated with SV signatures

SV-5 (r=0.31) & SV-6 (r=0.41), which represent large intra-chromosomal SVs and duplications,
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respectively. The age-related and large intra-chromosomal SV signatures were also correlated in

the breast cancer dataset analysis above. SNV-2 (MMRD-associated) is also positively correlated

(r=0.59) with SV-5.

HGSC patient groups, defined by their mutation signature prevalences, differed in survival

rates. We defined 4 HGSC super-clusters (see Methods), representing BRCA1-mutant (clusters 2

& 8, n=38), BRCA2-mutant (cluster 4, n=20), FBI (clusters 3, 5, 6, n=49), and tandem-duplicator

tumours (cluster 7, n=9). We compared overall-survival amongst the HGSC super-clusters using the

Kaplan-Meier method (Fig. 3e,f). The BRCA2/deletion cluster had the highest survival rate, while

the tandem-duplicator group had the worst. Comparing the HGSC clusters in a pairwise fashion, the

tandem-duplicator group had worse survival than the BRCA1 group (adjusted log-rank p-value <

0.05) and the BRCA2 group (adjusted log-rank p-value < 0.01). The FBI group had worse survival

than the BRCA2 group (adjusted log-rank p-value < 0.05). The BRCA1/tandem-duplication group

had an intermediate survival rate, but the survival curve was not significantly different than those

of the FBI or BRCA2 groups (adjusted log-rank p > 0.05). While FBI was previously identified

as a marker for poor prognosis2, activity of a mutational process linked with loss of CDK12 and

producing 100kbp–1Mbp tandem duplications appears to indicate even worse outcomes. Overall,

the MMCTM analysis represented a refinement of signature-based prognostic stratification in HGSC

indicating BRCA2-like HRD as the best performing group of patients, followed by BRCA1-like

HRD, FBI and tandem duplicators.
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Discussion

Our results uncover a new landscape of mutational signatures in breast and ovarian cancers. Through

principled, integrated inference and analysis of SNV and SV mutation signatures, our results reveal

at once correlated signatures and novel disease sub-groups within DNA repair deficient tumours.

Our findings have several implications for the field. The use of structural variations in signature

analysis is less common than for point mutations, in part due to the relative paucity of whole-genome

sequencing datasets. Here, we show the significant new value from their joint-interpretation, and set

the framework for their simultaneous consideration across a broad range of tumour types.

This is evident through joint SNV & SV signatures-based subgroup identification in breast

and ovary cancers, reproducing the association of tandem duplications within BRCA1-like and

interstitial deletions within BRCA2-like cancers in two independent cancer types, with data from

two independent studies. In the ovarian cancer cohort, this represents an important refinement in

signatures-based tumour stratification, and furthermore we show how this has prognostic implication,

superceding what could be derived from gene-based biomarkers (i.e. if only BRCA1 and BRCA2

mutation status were considered).

We have introduced a new formalism for mutation signature analysis in cancer genomes. Our

approach models the correlation between signature activities, which improves method performance.

Correlated topic models are significantly more robust to reduced mutation burden, which can occur

in a number of scenarios. We have already described that signature extraction from SVs, at the

level detected in the breast and ovarian datasets analysed here, benefits from correlated signature
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modeling. Analysis of other low-count mutation types may also benefit, for example mutations

called from exome or single-cell sequencing experiments. Importantly, the statistical framework

of the MMCTM is flexible and extensible. While here we show the advantage of integrated SNV

and SV analysis, the MMCTM can seamlessly integrate other count-based features such as copy

number events, double strand breaks, and telomeric insertions. As the field develops, we suggest a

robust and extensible framework will be required to encode and integrate multiple feature types of

the genome as they relate to mutational processes. The advantage of our relatively simple SNV and

SV integration is evident and motivates further advances through multi-modal statistical modelling

leading to richer biological interpretations of endogenous and potentially exogenous processes. In

conclusion, our findings reinforce the importance of an integrated, holistic view of multiple classes

of genomic scarring to drive discovery and characterization of mutation processes across human

cancers.

Methods

Mutation data processing Nucleotides flanking SNVs were extracted from human reference

GRCh37. The number of each type of SNV (e.g. C→ T) with a particular flanking sequence was

counted. SV calls were split according to type (deletion, tandem duplication, inversion, foldback-

inversion, translocation), the level of homology (0–1, 2–5,>5 bp), and breakpoint distance (<10kbp,

10–100kbp, 100 kbp–1Mbp, 1–10Mbp, >10Mbp), then counted. Foldback inversion calls were

not included in the breast cancer dataset. Breakpoint distance bins are those used in a previous

study on SV signatures13. Breakpoint distance was not calculated for translocations, as the concept
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is not applicable for this class of SVs. SNV and SV counts per sample were computed from the

mutations counts used for signature analysis. Additional ovary sample gene mutation annotations

were computed from SNV and indel calls according to the original paper.

Independent multi-modal correlated topic models The independent-feature multi-modal corre-

lated topic model is based on a previously described independent mutation feature model16, as well

as the multi-modal/field topic model extension to correlated topic models21, 22 (Fig. 1a). This model

incorporates mutation types with contextual features unique to that type. The generative process is

as follows:

Let

• D denote the number of documents

• M denote the number of modalities

• K denote the number of topics

• N denote the number of words in a document modality

• I denote the number of features in a modality’s words

• J denote the number of values in a feature

Then,

1. for each feature, i, in each topic, k, in each modality, m, draw φmki ∼ Dir(αm)

2. for each document, d, draw ηd ∼ N(µ,Σ), where ηd is the concatenation of ηdm for all

modalities, i.e. ηd = ηd1, . . . , ηdM
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3. for each word, n, in each modality, m, draw word topic, zdmn ∼ Cat(f(ηdm)), where

f(η) = eη∑K
k′ e

ηk′

4. for each feature, i, in each word, n, above, draw xdmni ∼ Cat(φm
zdmn i

)

For simplicity, assume the number of topics, K, features, I , words, N , are the same across

modalities and documents. Then the model likelihood is

p(X,Z | µ,Σ, α) =
M∏
m=1

K∏
k=1

I∏
i=1

p(φmki | αm)

×
D∏
d=1

p(ηd | µ,Σ)

×
D∏
d=1

M∏
m=1

N∏
n=1

p(zdmn | ηm)

×
D∏
d=1

M∏
m=1

N∏
n=1

I∏
i=1

p(xdmni | φzdmn i)

(1)

Inference in topic models and NMF For LDA and ILDA, parameters were inferred using mean-

field variational bayes. For CTM, MMCTM, ICTM and IMMCTM, parameter inference was

performed using mean-field variational EM. The MMCTM updates can be found in Salomatin

et al.22. IMMCTM updates are similar, with modifications to allow for the independent feature

construction of the mutation words.

The factorized mean-field variational Bayesian approximation for the IMMCTM is

q(η, φ, Z | λ, ν, θ, γ) =
M∏
m=1

K∏
k=1

I∏
i=1

q(φmki | γmki)

×
D∏
d=1

M∏
m=1

K∏
k=1

q(ηdmk | λdmk , νdmk )

×
D∏
d=1

M∏
m=1

N∏
n=1

q(zdmn | θdmn )

(2)
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where

• φmki ∼ Dir(γmki)

• ηdmk ∼ N(λdmk , νdmk )

• zdmn ∼ Cat(θdmn )

The update for γmkij is

γmkij = αm +
D∑
d=1

N∑
n=1

θdmnk I(xdmni = j) (3)

And the update for θdmnk is

θdmnk ∝ e
λdmk +

∑I
i=1E q [log φm

kixdm
ni

]
(4)

Single-modal correlated model parameters (CTM, ICTM) were inferred using MMCTM and

IMMCTM, but with counts from a single mutation type. The probabilistic topic models were

implemented similarly using the Julia language29. NMF models were fit using the coordinate

descent solver implementation in the Scikit-learn library30 v0.18.1.

Method comparison NMF was run on both raw and normalized mutation counts. Normalization

was performed by dividing mutation counts by sample totals, for each mutation type.

For log-likelihood-based comparisons, mutation counts were split according to a stratified

10 × 5 cross validation scheme; For each histotype, cases were split into 5 training and test sets.

The splitting procedure was performed 10 times, resulting in 50 training and test sets.

Each method was run on each training set and evaluated on each corresponding test set, using
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random initialization. Evaluation was performed by randomly splitting the mutations in each test

case into observed and hidden sets. Signature proportions for each test case were estimated using

the observed test mutation counts, then the per-word log predictive likelihood was computed using

the hidden test mutation counts. Methods were tested over a range of 2–12 signatures, as well as

over a range of count subsets. Multi-modal topic models were given the same number of signatures

for SNVs and SVs.

Count subset comparisons were performed by removing mutations from each genome, re-

taining only a given fraction. Mutations were randomly selected according to their type (e.g.

AC(C→T)TT) and relative type proportions. These mutations were removed and the genome

mutation counts updated. The updated mutation counts were then input to the compared methods.

SNVs were subset to 1, 5, 10%, while keeping SVs at 100%. SVs were subset to 10, 15, 20%, while

keeping SNVs at 100%. For the breast cancer dataset, the number of SNV and SV signatures was

fixed at 5, the optimal number of SV signatures for NMF, and an SNV signature plateau-point for

NMF run on raw counts.

Log predictive likelihoods were computed on test sets with signatures for SNVs and SVs

separately. The likelihood computation involves the signature-mutation proportions fit with the

training data, case-signature proportions estimated using the observed test counts, and the hidden

test counts. The average per-word predictive log likelihood for a particular mutation type is given in

20

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 18, 2018. ; https://doi.org/10.1101/267500doi: bioRxiv preprint 

https://doi.org/10.1101/267500
http://creativecommons.org/licenses/by-nc-nd/4.0/


equation 5.

l =

∑D
d

∑Nd
n log

(∑K
k p(X

d
n | φk)p(Zd

n = k | θd)
)

∑D
d Nd

(5)

where D is the number of cases, Nd is the number of mutations in case d, K is the number of

signatures, X is the mutations in case d, Z is the mutation-signature indicators, φk is the signature-

mutation distribution, and θd is the document-signature distribution.

For the logistic regression classifier-based comparisons, each signature detection method was

trained 10 times with 2–10 signatures, using the full 560 breast cancer dataset. For multi-modal

methods, the same number of SNV and SV signatures was given. The sample-signature distributions

were used as training data for the classifier along with previously published HRDetect-derived

labels. Three types of tests were performed: using only SNV, only SV, or both SNV and SV sample-

signature distributions. Stratified 5-fold cross-validation was performed for each test, resulting in

5× 10 = 50 scores for each method, training data type, and setting of the number of signatures. The

output score of cross validation is the mean accuracy of the logistic regression classifier. Parameter

inference was performed using the Scikit-learn30 v0.18.1 implementation with the liblinear solver

and maximum 10,000 iterations.

Choosing the number of signatures The number of signatures to estimate was selected using

the cross validation scheme described in the method comparison. Log-likelihood values were

plotted across 2–20 signatures and the elbow method was used to select the number of signatures

(Supplementary Fig. 10).
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Fitting MMCTM to cancer datasets for downstream analysis The model was initially fit to

each dataset 1000 times for a limited number of iterations. α hyper-parameters were set to 0.1.

Each restart is run until the relative difference in log predictive likelihood on the training data was

< 10−4 between iterations. The restart with the best mean rank of the SNV and SV log predictive

likelihoods was selected for fitting to convergence with a tolerance of 10−5.

Case hierarchical clustering Cases were clustered using case-signature proportions for SNV

and SV signatures together. Proportion values were converted to Z-scores for each signature

across cases. By standardizing the proportion values, the inter-case differences of low-prevalence

signatures are given increased emphasis relative to higher-prevalence signatures. Hierarchical

agglomerative clustering was performed using the euclidean metric, and Ward linkage. Discrete

clusters were formed using the R dynamicTreeCut package31 v1.63 with method="hybrid",

deepSplit=FALSE, and minClusterSize=3.

Sample cluster enrichment and depletion tests. Enrichment of a sample cluster’s signature

activity was tested using an unequal variance one-sided t-test against the signature activities of other

clusters.

For the breast cancer dataset, cluster associations with ER, PR, HER2, MMRD, and PAM50

status were performed with a two-tailed Fisher’s exact test. Differences in Age or the number of

SNVs and SVs were tested with two-tailed unequal variance t-tests. Driver gene mutation and

HRDetect prediction associations were computed using a blocked permutation test.

The permutation tests were performed as follows: For each cluster, “new” clusters were
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generated by sampling cases without replacement from the full dataset. New clusters maintained the

same ER, PR, and HER2 status composition as the original cluster. The difference in proportions

of cases with the annotation of interest between the new cluster and all other cases was computed.

Two-tailed p-values were calculated using equation 6:

p =
1 +

∑N
n I(abs(s′) ≥ abs(s))

1 +N
(6)

where N is the number of permutations (generated clusters), and s is the statistic of interest

for the original cluster (e.g. difference in proportions of samples with loss of TP53), and s′ is the

same statistic for a generated cluster. This procedure attempts to correct for correlations between

the tested annotations and ER, PR, and HER2 status.

Gene mutation status and MSI cluster associations in ovarian cancer were tested with the

blocked permutation test described above, accounting for histotype rather than ER, PR, and HER2

status. Differences in SNV and SV counts were performed with two-tailed unequal variance t-tests.

Due to the presence of a POLE mutant sample with a very high number of SNVs, t-tests for this

statistic were performed on count ranks. The unequal variance t-test on ranked data is a robust

alternative to Student’s t-test and the Mann-Whitney U test when assumptions are violated32.

Cluster-signature and cluster-annotation p-values within each dataset were corrected using the

Benjamini & Hochberg method33.
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Survival analysis HGSC cases grouped according to the hierarchical clustering were compared

by estimating overall-survival Kaplan-Meier curves for each cluster, using the R survival package.

Clusters 3, 5, and 6 were grouped as they are related in the hierarchical clustering, and had no

significant difference in survival outcome. We call this the “FBI” group, due to higher activity of the

FBI signature among HGSC cases. Similarly, clusters 2 and 8 form the “BRCA1” group. P-values

were calculated using the log-rank test. Pairwise survival curve comparison p-values were adjusted

using the Benjamini & Hochberg method33 implemented in the R p.adjust function.

Code availability Topic model code is available in a GitHub repository:

https://github.com/funnell/MultiModalMuSig.jl

Data availability Mutations and sample annotations for the 560 breast cancer landscape study13

were downloaded from the ICGC DCC (project BRCA-EU, https://dcc.icgc.org/releases). Additional

sample annotations were obtained from related study supplementary files3, 13, 26. Ovary mutation

calls and sample annotations were obtained from Wang et al.2.
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Figure 1: IMMCTM graphical model and comparison of methods using the 560 breast cancer

dataset. Figure legend on next page.
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Figure 1: IMMCTM graphical model and comparison of methods using the 560 breast cancer

dataset. a IMMCTM graphical model and variable descriptions. SV signature log likelihood means

± standard error for: b 2–12 signatures, and c a range of SV mutation count fractions. d Logistic

regression accuracy means ± standard error for predicting HRD labels using per-sample signature

mixture proportions across a range of 2–10 signatures (each for SNV and SV). Accuracy is displayed

for training with SV (top) and both SNV and SV (bottom) signature proportions. NMF: applied

to raw counts, NMF-norm: applied to normalized counts. Vertices and error bars for all plots are

dodged slightly to reduce overplotting.
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Figure 2: BRCA-EU mutation signature analysis. Figure legend on next page.
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Figure 2: BRCA-EU mutation signature analysis. a SNV mutation signatures. SNVs are organized

according to the SNV type (color). Within each type, SNVs are further organized into the pattern of

flanking nucleotides (AA–AA, AA–AC, . . . TT–TG, TT–TT). b SV mutation signatures. SVs are

grouped by type (DEL: deletion, DUP: tandem duplication, INV: inversion, TR: translocation). c

Heatmap of relative signature activities in BRCA-EU samples. Each heatmap column represents a

single case, and is composed of the proportions of SNV and SV signatures output from the MMCTM

model. The values for each signature (row) have been standardized. Heatmap display has been

truncated to ±3. Cases have been heirarchically clustered according to these transformed signature

prevalences and cluster labels are indicated with colors underneath the dendrogram. The number of

cases in each cluster is indicated in paretheses in the cluster legend. ER, PR, and HER2 positive

status, gene driver mutation status, HRDetect prediction, and MMRD status is indicated with black

bars. Grey cells represent missing data for annotation tracks. Samples with zero mutations for a

mutation type also have greyed mutation signature activity cells. d Correlation heatmap between

SNV and SV signatures. e Annotation associations for sample clusters. Upward- and downward-

pointing triangles indicate enrichment and depletion, respectively. Colors correspond to cluster

colors indicated in the heatmap.
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Figure 3: Ovarian cancer mutation signature analysis. Figure legend on next page.
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Figure 3: Ovarian cancer mutation signature analysis. a SNV mutation signatures. SNVs are

organized according to the SNV type (color). Within each type, SNVs are further organized

into the pattern of flanking nucleotides (AA–AA, AA–AC, . . . TT–TG, TT–TT). b SV mutation

signatures. SVs are grouped by type (DEL: deletion, DUP: tandem duplication, INV: inversion,

FBI: foldback inversion, TR: translocation). c Heatmap of relative signature activities in ovarian

cancer samples. Each heatmap column represents a single case, and is composed of the proportions

of SNV and SV signatures output from the MMCTM model. The values for each signature (row)

have been standardized. Heatmap display has been truncated to ±3. Cases have been heirarchically

clustered according to these transformed signature prevalences and cluster labels are indicated with

colors underneath the dendrogram. The number of cases in each cluster is indicated in paretheses

in the cluster legend. Cases from the ICGC OV-AU project are indicated with black bars, as

is microsatellite instability (MSI) and gene mutation status. Samples with zero mutations for a

mutation type also have greyed mutation signature activity cells. The number of SNVs for the

POLE mutant case has been truncated to 40k in the barplot; The actual number is 596,135. d

Annotation associations for sample clusters. Upward- and downward-pointing triangles indicate

enrichment and depletion, respectively. Colors correspond to cluster colors indicated in the heatmap.

e Kaplan-Meier curves for HGSC samples only. f Risk table for HGSC samples only. Kaplan-Meier

curve plots and risk tables share x-axes. g Correlation heatmap between SNV and SV signatures.
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