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Abstract

Due to the complexity of biological systems, their heterogeneity, and the internal regulation of
each cell and its surrounding, mathematical models that take into account cell signalling, cell
population behaviour and the extracellular environment are particularly helpful to understand
such complex systems. However, very few of these tools, freely available and computationally
efficient, are currently available. To fill this gap, we present here our open-source software,
PhysiBoSS, which is built on two available software packages that focus on different scales:
intracellular signalling using continuous-time markovian Boolean modelling (MaBoSS) and
multicellular behaviour using agent-based modelling (PhysiCell).

The multi-scale feature of PhysiBoSS — its agent-based structure and the possibility to
integrate any Boolean network to it — provide a flexible and computationally efficient
framework to study heterogeneous cell population growth in diverse experimental set-ups. This
tool allows one to explore the effect of environmental and genetic alterations of individual cells
at the population level, bridging the critical gap from genotype to phenotype. PhysiBoSS thus
becomes very useful when studying population response to treatment, mutations effects, cell
modes of invasion or isomorphic morphogenesis events.

To illustrate potential use of PhysiBoSS, we studied heterogeneous cell fate decisions in
response to TNF treatment in a 2-D cell population and in a tumour cell 3-D spheroid. We
explored the effect of different treatment regimes and the behaviour and selection of several
resistant mutants. We highlighted the importance of spatial information on the population
dynamics by considering the effect of competition for resources like oxygen. PhysiBoSS is freely
available on GitHub (https://github.com/gletort/PhysiBoSS), and is distributed open source
under the BSD 3-clause license. It is compatible with most Unix systems, and a Docker package
(https://hub.docker.com/r/gletort/physiboss/) is provided to ease its deployment in other
systems.

1

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2018. ; https://doi.org/10.1101/267070doi: bioRxiv preprint 

https://doi.org/10.1101/267070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction

Mathematical modelling is widely used to address questions such as tumour progression and
tackle the complexity of biological systems [1–3]. Simple and focused models of individual cells
can already be very informative to answer a biological question and may be preferable to very
detailed models [1, 4] in order to handle cancer complexity and heterogeneity [5]. However, due
to the high inter-dependency of the different biological scales driving the development of a
tumour, models that explore the interplay between cells and how they relate to the environment
are needed to better describe tumourigenesis [5–8]. As a result, multi-scale modelling is being
recognized as an important contribution to build a comprehensive mechanistic view of
cancer [7, 8].

Several formalisms can be used to model both the individual cell and the population levels
(e.g. discrete, continuous, hybrid, etc.) [8–10]. The choice for the appropriate formalism depends
on the modelling scope (see for example the summary of different models used in shape
homoeostasis in [11]). Some previous modelling efforts have been done with models of cellular
automata [12], with the development of Potts models [13, 14], or agent-based models [15, 16], but
these approaches have typically focused on the emergent multicellular dynamics after assigning
simple, microenvironment-driven single-cell phenotypes, rather than including both the
intracellular events and how individual cellular alterations might affect the tumour.

Nevertheless, some attempts have used differential equations to bridge intracellular and
population dynamics, but to overcome computational problems, such models need to be kept
simple. A model of partial differential equations has been used to explore the transition from
one cell cycle phase to another at the population level [17]. Another model uses ordinary
differential equations to explore population dynamics [18]. Similarly, other tools have been
developed to include Boolean models in a lattice representing the epithelium [19].

Agent-based models are particularly suitable methods for a multi-scale approach, allowing
modelers to integrate multiple scales as well as spatial considerations, and providing a mostly
intuitive representation of biological systems [20]. Also importantly, these models are very
flexible, allowing the simulation of a wide range of situations with minor adaptations. Different
multi-scale models have been developed to answer specific questions in the last few years
(e.g. [16, 21–24]), but they are usually implemented specifically tailored to a given problem, and
they can be difficult to adapt in a straightforward manner to new questions. Additionally, very
few of the software packages that allow modelers to combine internal cell signalling with cell
mechanics and interactions with its environment are available as open source.

Recently, a promising and open-source software, MecaGen [25], demonstrated the power of
combining mechanical behaviour and gene regulation to understand embryogenesis and could be
used to study other developmental problems. However, its representation of gene regulatory
network as ordinary differential equations (ODE) makes it restricted to small signalling networks.
Moreover, due to its morphogenesis scope, MecaGen does not consider cell division dynamics
(cell volume growth, cell proliferation, death, etc.), or issues such as clonality (groups of cells
within the population with different genetic profiles), which are important in tumorigenesis.

The dynamics study of the cell population is a crucial aspect to improve prognosis or
treatment efficiency [6]: knowing the rules governing the behaviour of each separated component
in a cell is not enough to predict the emergent behaviour of such a complex system, and similarly
the understanding of the processes deregulated in an individual cell is not enough to predict the
behaviour of the cell population. The most famous cellular automaton, Conway’s game of life,
demonstrates how simple rules that are perfectly known generate unpredictable and complex
behaviours at the system level. Moreover, geometry, at the level of a single cell or of the colony,
has been shown to have an important effect in the regulation of cell growth [26]. Some studies
have demonstrated that genotypically identical cells can adopt different phenotypes according to
their environment [27] or tumourigenic factors [28]. Notably, the interplay between spatial
position and signalling is critical in development, for example in morphogenesis [29], in cell
competition [30] and in cell-fate decision through Notch signalling patterning [31,32]. Computer
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modelling is therefore increasingly necessary to tackle such complex problems [33]. The
interaction between all these different factors is also crucial to explore the diverse modes of cell
motility [34,35] and is thus a core question in understanding cancer invasion.

Our goal was to develop an open source flexible simulation framework that combines
individual cell with intercellular modelling and environment representation, as well as their
interaction.

To explore the whole cell population dynamics, the cellular signalling mechanisms and the
interplay between cells and their surrounding (i.e., other cells or the microenvironment), we
propose to combine an agent-based approach with a Boolean representation of biochemical
events taking place in each cell. For that purpose, we have developed a new software,
PhysiBoSS, that combines and extends two well-established tools: a signalling pathway
modelling tool, MaBoSS [36,37], which performs stochastic simulations of the signalling pathway
inside each cell, is integrated in an agent-based modelling tool, PhysiCell [38], that represents
each individual cell as a physical dynamical entity.

We will hereby detail our implementation of PhysiBoSS and present its use with a model of
cell-fate decision in response to Tumour Necrosis Factor (TNF) to illustrate the importance of
considering cell-cell communication in homogeneous as well as heterogeneous cell population.
With this cancer example, we will showcase the use of PhysiBoSS to numerically study the effect
of treatment regimes on an heterogeneous cell population and its effects on clonality and tumour
growth.

Design and implementation

To address the issue of including individual cell description into an agent-based model, we
adapted, merged and expanded two existing open source software. The first, PhysiCell [38],
focuses on the evolution of a tumour by simulating the dynamics of a population of cells under
specific constraints, in 2D or in 3D. The second one, MaBoSS [36,37], defines a contiuous-time
Markov process on the state transition graph of a Boolean model and allows the quantification
of probability of visiting some selected model states. The two software were merged so that the
conditions for the tumour growth depends on the status of individual cells and the behaviour of
individual cells is influenced by its environment.

PhysiCell

The purpose of present work was to simulate not only populations of isolated cells but also
organised groups of cells (tissue, spheroid, etc.). Thus, cell-centred, off-lattice models seemed an
appropriate choice of agent-based models to be used [9, 39,40]. Among the available tools
implementing cell-centred agent-based models, CellSys [15], Chaste [41] and PhysiCell [38, 42]
were particularly interesting.

The implementation of physical laws in CellSys reproduced multi-cellular phenomena quite
accurately [43–45]. However, the multi-scale model developed in [45,46] was restricted to a
particular scenario and thus difficult to adapt to other biological questions. Unfortunately,
CellSys is not yet distributed as an open-source software that can be easily shared within the
community.

Chaste provides an environment to implement different kinds of modelling approaches
(agent-based, cellular automaton, vertex model, etc.) within the same framework [41,47].
Importantly, its implementation allows the direct comparison of outputs from the different
modelling techniques and outlines their advantages and limits [40]. However, due to all these
possibilities, it is a more complex environment than other agent-based tools. Therefore, to
combine it with a network modelling software, we chose to start from an agent-based-dedicated
software.
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We used PhysiCell source code as a basis for our agent-based model part of our software
because of its open-sourced development and its overall simplicity. PhysiCell is a freely available,
open-source C++ software (physicell.mathcancer.org, [38]). Cells are approximated as
spheres which allows for cheaper computation and simpler description than more realistic
frameworks. The code is parallelised using OpenMP when possible, allowing the simulation of
thousands of cells for several days in a reasonable time (few hours), and simulations of 105 to
106 cells can be run over several days. An efficient implementation of the diffusion of
environmental entities (oxygen, glucose, growth factors, etc.) and their interaction with the cells
(uptake, secretion, etc.) is also provided by PhysiCell’s BioFVM module [48]. Beyond secretion
and uptake of diffusing substrates, PhysiCell has implemeted key phenotypic behaviors needed
for our target problems in multicellular systems biology: cell volumetric growth, adhesion,
“repulsion”, directed and random motility, cell cycle progression, and apoptotic and necrotic
death processes. PhysiCell allows users to attach tailored C++ functions and data structures to
each individual cell, which can then modify the cell agents’ phenotypes dynamically throughout
a simulation. We use this functionality to add MaBoSS’s signalling model to each individual cell
agent, and then to link each agent’s signalling state to its phenotypic behavior.

MaBoSS

MaBoSS [36,37] is an open-source C++simulator of Boolean models of signaling pathways. In
this logical modelling framework, variables (genes, proteins or specific protein functions) can
take two values, 0 or 1, mimicking their activity. Each variable is updated according to the
status of its regulating variables, connected by logical connectors AND, OR and NOT. Variable
state transition are stochastically calculated from parametrisable rates. One MaBoSS model is
thus a Boolean network representation of eventually interlinked signalling pathways. Inputs can
be upstream events such as receptor activation and outputs are cell responses to the signalling
cascade as cell death, proliferation, migration, etc. The optimized implementation of this
formalism allows for computation of a high number of variables in the network (up to 100
variables).

PhysiBoSS

PhysiBoSS integrates these two software frameworks to obtain a detailed description of each
cell’s behaviour and how an alteration in a cell can affect the whole population. There are three
main parts in the PhysiBoSS structure:

• BioFVM, a module of PhysiCell software that handles the simulation of one or more
diffusing environmental entities [48]. It simulates diffusion, degradation and source of
diffusible entities in the extra-cellular matrix (ECM) (Fig 1, green). Space is discretised in
a voxel mesh containing information of the local density of a given entity (oxygen, glucose,
growth factors, etc.).

• PhysiCell core, that handles the representation of the cells’ mechanics [38] and key
phenotypic behaviors. A cell is represented as a sphere with two radii, cellular and nuclear.
It can move and interact with neighbouring objects, divide and change its properties
according to specific conditions (Fig 1, blue).

• MaBoSS core computes the solutions of a logical model representing the dynamics of a
network of intra-cellular events [36]. This module gathers its inputs conditions from the
PhysiCell core evaluation (e.g. if a cell has neighbours or if there is presence of growth
factors) and retrieves outputs that correspond to cell fates to PhysiCell core (e.g. cell form
adhesion, start migrating, dying...). The logical model and parameters description are
defined in two files following MaBoSS standard, so any MaBoSS model can be directly
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used in PhysiBoSS, provided that its inputs and outputs are properly defined and
integrated in the agent-based part (Fig 1, orange).

More PhysiBoSS details and specifications can be found in the Supplementary informations (S1
File.

Fig 1. PhysiBoSS structure. Schematic representation of PhysiBoSS: Three main parts are
interconnected: the microenvironment representation (green), allowing simulation of diffusing
entities; the physical representation of cells as dynamic spheres (blue); and the signalling
modelling of each cell (orange).

Numerical implementation

The main core of the software is adapted from PhysiCell and the MaBoSS module is compiled as
a linked external library. PhysiBoSS is written in C++ with minimal external dependencies (all
necessary code is provided within the GitHub repository but the compiler needs OpenMP
support). PhysiBoSS is compatible with most Unix operating systems and a Docker container
(https://hub.docker.com/r/gletort/physiboss/) is provided to ease its deployment in other
systems.

PhysiBoSS uses one executable file that calls an associated case-specific parameter file. This
structure is convenient to generate numerous simulations with different
parameters/configurations without having to change the code. Moreover, a graphical interface to
make the software user-friendly will be developed in the future.

Three executables are provided with present release:

• PhysiBoSS, the main executable requires four files: a case-specific parameter file, the
two Boolean model files and an initial conditions file. If the simulation is going to take
into account extra-cellular matrix, then a matrix-specific initial conditions file is needed.

• PhysiBoSS CreateInitTxtFile generates automatically an initial conditions file that
specifies initial position of the cells, their volumes and Boolean states for a variety of

5

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2018. ; https://doi.org/10.1101/267070doi: bioRxiv preprint 

https://hub.docker.com/r/gletort/physiboss/
https://doi.org/10.1101/267070
http://creativecommons.org/licenses/by-nc-nd/4.0/


classic geometries (e.g. sphere, cylinder, rectangle., etc.). For more complex geometries
(e.g. Hello World example on PhysiBoSS GitHub documentation
https://github.com/gletort/PhysiBoSS/wiki), initial configuration file can be created from
binary image of the desired shape by placing cells on the positive areas (script available on
GitHub).

• PhysiBoSS Plot generates an .svg output snapshot of the simulation at a given time
point (more info on GitHub wiki). Options for this plotting are still limited, as the
development of visualization and a graphical interface are in scope of future releases of
PhysiBoSS.

The preparation, execution and visualization of simulations can be found in detail in S1 File
and scripts are provided on the GitHub repository to automate these, along with step-by-step
examples with all the necessary files. Time required for one individual run is strongly sensitive
to its parameters, such as time/space steps, number of cells, diffusing entities, etc. A Linux
cluster to run simulations with OpenMP parallelization was used, but it can also be run locally.
Examples of time it required are given in S1 Table.

Time scales

Because the system involves a broad range of events at different biological scales, different time
scales need to be considered. In particular, reaction-diffusion of biochemical densities in the
microenvironment occurs at a very small time scale compared to cell movement, cells gaining
volume or cell division (Fig 1). To take these differences into account and avoid unnecessary
computation of all scales at all time steps, PhysiBoSS uses PhysiCell’s three time scales (∆tdiff
for diffusion, around 0.01 min, ∆tmech for cell mechanics, around 0.1 min and ∆tcells for cell
processes, around 6 min; [38]) and adds a fourth one: ∆tBN (∆tBN ≥ ∆tcells, around 10 min)
that determines when the intra-cellular Boolean model is updated.

The frequency of the model update ∆tBN and the length of MaBoSS running time at each
update tmaxBN are parameters that need to be carefully studied and set in a case-specific way.
As was discussed in MaBoSS paper [36], it is possible to evaluate the network until it reaches
one of the stable states, or for a shorter amount of time to take into account transient states.
Thus, the MaBoSS evaluation time tmaxBN depends on the biological question of interest and
the necessity or not to look at transient events. More details on the interplay of tmaxBN and
∆tBN can be found in Supplementary informations (S1 File).

PhysiBoSS simulations’ features

PhysiBoSS works with spherical cells that represent the living cells that can grow/shrink, divide,
move, interact with its environment or with other cells, and die. These cells progress through the
cell cycle and change their physical properties, have a front-rear cell polarity and can be part
of cell strains, where each cell shares a set of common physical and genetic parameters. Again,
PhysiBoSS details and specifications can be found in the Supplementary informations (S1 File.

Simulation of different cell strains – Using PhysiBoSS parameter file, users can
simulate heterogeneous populations of genetically and/or physically different cells. The
parameter file must take into account all physical parameters of each strain type, as well as the
transition rate of mutated genes of genetically-different strains. PhysiBoSS implements mutation
by modifying the variable on-off transition rates, not changing the Boolean network structure.
For example, over-expression of a gene will be implemented as a node with very high activation
rate and a zero deactivation rate. These transition rate need to be assigned a variable in
MaBoSS configuration files and their values need to be specified for each cell strain in the
parameter file. Details on how to define all these variants can be found in the GitHub repository
together with more examples.

6

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2018. ; https://doi.org/10.1101/267070doi: bioRxiv preprint 

https://github.com/gletort/PhysiBoSS/wiki
https://doi.org/10.1101/267070
http://creativecommons.org/licenses/by-nc-nd/4.0/


Extra-cellular matrix representation – As PhysiBoSS aims to integrate environmental,
multi-cellular and intra-cellular descriptions of biology, the representation of the ECM was
addressed in present framework. In previous theoretical works, ECM has been represented by a
fibrous matrix in a chemomechanical model [49], as cells of a Cellular Potts Model [14,50], as
linear elastic medium [51], as a network of Hookean springs [52], as (non-)deformable objects
composed of networks of springs [53], or as passive spheres [15]. The choice for these different
representations is strongly dependent on the biological question: a discrete ECM representation
can be enough, while in other cases it is necessary to model the deformation, softening,
hardening or degradation of the ECM. It is also often a compromise between computational cost
and level of precision.

PhysiBoSS proposes two ways of implementing ECM modelling: the first representation is to
use ECM as passive spheres (Fig 2A) that can be pushed by other spheres or active cells
depending on a friction coefficient. Cells can also degrade (or reinforce) these passive spheres
upon contact with user-defined rates reducing (or increasing) their radius. The advantage of this
implementation is that it integrates well within PhysiCell code structure and is not in general
highly computationally expensive. It can be used, for example, to reproduce the capacity of cells
to create tracks in the ECM or to simulate steric hindrance due to Dextran presence in a
medium [54]. However, its precision is poor and not very well suited for simulations of
filamentous environment, as it’s often the case with ECM. Moreover, if the simulating space is
large (or spheres are small), the high amount of necessary passive spheres can drastically
increase the computational cost.

Fig 2. Examples of PhysiBoSS features. A: Snapshots at initial point (t=0) and final
point (t=24h) of a simulation of active cells spheroid inside a core of passive cells (grey) with
low resistance (can be pushed). B: Snapshots at initial point (t=0) and final point (t=24 h) of a
simulation of active cells inside a fixed ECM field (black). C: Snapshots at initial point (t=0)
and final point (t=24 h) of a simulation of mechanical cell sorting: the first cell line (blue) forms
strong junctions while the other cell line (red) is poorly adhesive, if cells do not adhere to ECM
(top) or if the first cell line can attach to the matrix (passive spheres, bottom). A-B: active cells
colour are: green, Proliferative cells; red, Apoptotic cells; black, Necrotic cells. A-C: grey:
passive spheres representing ECM.

The second representation uses the BioFVM module by considering ECM as a not-diffusing
density (Fig 2B). Cells can interact with the matrix surrounding them with adherence, repulsion,
degradation, deposition of ECM (see details in S1 File), but cannot push it. This allows for a
finer spatial ECM definition with small mesh sizes. This representation is very convenient to
describe a non-deformable matrix and could be used for example to study cell population growth
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on restricted areas, as micro-patterns (Fig 2B). However, its non-elastic constraint can be a
major drawback for other studies.

Cell-cell and cell-matrix adhesions – The core modelling of cell-cell and cell-matrix
interactions as presented in [42] are maintained in PhysiBoSS, but with slight modifications
allowing dynamic evolution of homotypic, heterotypic [55, 56] and matrix adhesions. Notably, a
coefficient of cadherins/integrins density involved in the adhesion was included to respond to the
(de-)activation of the Boolean network’s adhesion pathway, so that this coefficient varies
accordingly to reflect the different protein recruitment (S1 File).

It has been described that differences in strength between those diverse adhesions can be
sufficient to drive specific cell sorting [57–59]. To validate our implementation, we verified that
our framework reproduced the sorting behaviour explored in [58]. The results of this can be seen
in Fig 2C where the test was limited to a purely mechanical-driven sorting, but having in mind
that PhysiBoSS could be used to further explore cell sorting by taking into account cell
proliferation and differences in motility, that have been seen to impact the sorting mode or
efficiency [60].

Results

We hereby showcase three examples of scientific problems that PhysiBoSS can address, using a
cell fate model upon TNF injection as a case study. This Boolean model started with naive
proliferative cells and focused on pathways leading to cellular fates in response to TNF receptor
activation, such as survival (read-out of proliferative cells), apoptosis and non-apoptotic cell
death (NonACD) [61]. Earlier simulations of this model using MaBoSS predicted that isolated
cells in a fixed system lead to heterogeneous fate commitment [61] and this heterogeneity can be
interpreted as the limited efficiency of TNF treatment on tumours.

The model used here has been slightly modified to include mRNAs (S1 FigA) of some of the
components and adding delays in translation and transcription time-frames [62]. Delays are
relevant as they can generate oscillations observed experimentally or differentiation in
developing tissue in the case of Notch signalling [63]. Taking advantage of MaBoSS capacity to
use time-related parameters, a slower rate on transcription events was imposed and the effects
this had on the resulting model behaviour were tested (S2 FigC).

Understanding not only individual cell response but also the dynamics of the collective and
environmental interactions is crucial. Thus, we expanded the original set-up from [61] to address
important questions on collective behaviours (such as homogeneous or heterogeneous
population), spatial (diffusion and consumption of TNF, paracrine secretion of TNF from
neighbouring cell, etc.) and dynamical behaviours (continuous or discontinuous presence of TNF,
cell proliferation and death, autocrine secretion of TNF through NFκB’s feedback loop, etc.).
Moreover, the late appearance of resistant clones within a population justifies the integration of
time evolution on the simulation set-up. PhysiBoSS allowed us to address all these questions,
drastically increasing agent-based model predictive capabilities.

Different TNF dose regimes in homogeneous cell populations were first simulated using as
initial conditions proliferating and healthy functioning cells (S2 File). At frequent intervals, each
cell’s internal signalling model was updated according to its current environment (TNF
internalization or not) and its current signalling state (resulting from MaBoSS previous
iterations). This determined the cell (de-)activation of TNF-α secretion, through NFκB
feedback, and the cell fate decision (either to Survival, to Apoptosis or to NonACD, S1 FigB).

In our implementation, cells start as proliferative cells and can evolve to three stable states:
Survival (proliferative cells that have activated their NFκB pathway), Apoptosis or NonACD.
The internal signalling network of cells committed to Apoptosis or NonACD was not further
evaluated, in order to better simulate a dying cell as an irreversible commitment.
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Model validation

To validate our model, two studies focusing on different TNF treatment regimes using 3T3
mouse fibroblast cells in microfluidic chambers were found [64,65]. These works show that cells’
response to TNF injection is highly heterogeneous. The proportion of cells that responded to
TNF injection within the first 8 hours on average (reported in their experiments as transient
relocation of NFκB to the nucleus) depended on the dose concentration and the duration of the
injection, referred by the authors as ’stimulus area’ (figure 1b of [64]). The fraction of
responding cells varied from 0, for a dose area smaller than 102 ng.s/mL, to a total response
when dose area was around 104 ng.s/mL, with a Hill-like dependency on the stimulus area: Hill
coefficient being around 1.5 and with a response time from 20 to 50 min [65].

We first calibrated our model to simulate growth dynamics of 3T3 cells. In the absence of
TNF, the population grows without constraints (Fig 3A), with a doubling time of
approximatively 16 hours [66]. We then explored the response of the population when TNF was
injected in the medium (refer to S2 File for details on TNF dynamics). Upon limited TNF
injection, only a partial response of the population was observed, in accordance with
experimental observations (Fig 3B). We then varied both the TNF concentrations and the
injection durations and obtained a similar Hill-like dependency of the fraction of active cells to
injection area (Fig 3C). Parameters of TNF dynamics were chosen to have similar range of
response to similar injections’ doses of experimental data: no response under 102 ng.s/mL to a
”total” response above 103 ng.s/mL, Hill coefficient of 4.8 and a response time between 40 to 60
min.

We measured the activated fraction of cells present at the end of the simulation (i.e. when
NFκB got activated at least transiently) as done in the experiments. However, in our simulations,
20% of cells internalized TNF and committed to Apoptosis without activating NFκB pathway.
In fact, authors showed that after 8 hours of high TNF concentration (10 ng/mL) cells started
to express less anti-apoptotic genes and more pro-apoptotic genes (figure 2a of [64]).

The simulated response was stiffer than the experimental one, but reproduced qualitatively
the observed behaviour within the same range of values. This suggests that our model can be
used to predict qualitatively the cell population response to TNF in other conditions and that
the simulations can retrieve a range of TNF concentration values and percentage of cells that
responded, but researchers should be cautious using these as exact values.

Multicellular spheroid response to TNF treatment

In vitro multi-cell spheroid models are now widely used in tumourigenesis [8, 67], due to their
similarity with in vivo conditions allowing for a good compromise between system complexity
and clinical relevance [68]. Therefore, our model was used to investigate how a multi-cell
spheroid would respond to TNF injection, and showed that it could be used to test the effect of
injection frequency, clonality or complex heterogeneous scenarios.

In the absence of TNF, the spheroid grew as cells doubled their volumes and divided (Fig 4A).
In this simulation, the focus was only on the TNF effect and oxygen and nutrient diffusion were
not taken into account, which could limit the spheroid growth [69], as we will see in next section.

Continuous injection of a low dose of TNF drastically reduced the expansion of the
population (from 4.5 fold increase in cell numbers after 24h in the non-treated simulation to only
1.8 in the treated one) as around 50 % of the initial population committed to Apoptosis or
NonACD in response to TNF (Fig4B). However, cells that activated the survival NFκB pathway
became resistant to TNF (Survival stable state) and transmitted this resistance to the daughter
cells, as these inherit their mother cell’s signalling network state. This sub-population continued
to grow independently of the TNF presence: discontinuing the TNF injection or increasing
10-fold the TNF concentration after 600 min did not affect the overall behaviour (Fig 4C). In
the first 600 min, these cells received a constant external input (TNF activation) and reached a
stable state (as could be predicted from a MaBoSS simulation of an individual cell [61]). In the
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Fig 3. Population response to TNF injection. A: Simulation without TNF. Snapshots of
a simulation (left) at t = 0, 4, 8, and 12h. Time evolution of the number of cells in each cell fate
(right) for 5 simulations. B: Simulation for a low-dose injection of TNF (1 ng/mL during 5 min).
Snapshots of a simulation (left) at t = 0, 4, 8, and 12 h. Evolution of the number of cells in each
cell fate during time (right) for 5 simulations. Grey shading represents the time of TNF
injection (right), in this case 5 min starting at t = 0. C: Cell population response to TNF
stimulus area (concentration time duration of injection). Fraction of ”activated” cells (transient
NFκB activation) compared to the initial number of cells according to TNF stimulus area (left).
The dotted line represents the Hill-function fit (coefficient 4.8). Final number of cell in each fate
according to the stimulus area (right). A-C: Green, Proliferative cells; Red, cells committed to
Apoptosis; Black, cells committed to NonACD. Simulation time is 12h, initial disk radius is 400
µm, which accounts for roughly 1000 cells.

first scenario, increasing the TNF dose did not affect the signalling network of these already
activated cells or their stable state. In the second scenario proliferative cells were still present as,
due to the absence of TNF, cells switched from a NFκB pathway-activated proliferative stable
state to an un-activated proliferative stable state.

From these results, we hypothesized that varying the injections of TNF instead of having a
continuous regime could sensitise the cells to TNF. To test that idea, we simulated pulses of
TNF injections at given frequencies and found out that transient exposure did affect strongly
the population’s response (Fig 4D). This is important to consider as in-vivo tissue cells are
subjected to bursts of TNF expression from neighbouring immune response cells, while they
might be under continuous injection in in-vitro trials. Cells that were proliferative after the first
injection were still responding to TNF in the following injections and the proportion of dying
cells was much higher than with a continuous treatment, showing the importance of considering
non-steady regimes. Accordingly, the difference between transient and continuous exposures had
been observed in a recent in vitro study [70]. This suggests that PhysiBoSS can be used to
screen frequencies and concentrations of treatment injections, narrowing in vitro investigations.

Notably, cells activated apoptotic pathway in response to the first injection whereas later
injections committed cells mostly to NonACD (Fig 4D), which highlighted the importance of
dynamics in cell’s response. This was consistent with the construction of our network, with
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Fig 4. Spheroid response to TNF injection. A: Simulation in the spheroid model without
TNF. Snapshots of a simulation (left) at t = 0, 8, 16, and 24h. Time evolution of the number of
cells in each cell fate (right) for 5 simulations. B: Cell fates’ simulation for a continuous low-dose
injection of TNF (0.5 ng/mL, continuously). Snapshots of a simulation (left) at 0, 8, 16, and
24h. Time evolution of the number of cells in each cell fate during time (right) for 5 simulations.
C: Simulation when TNF injection (0.5 ng/mL) is discontinued (left) or drastically increased (5
ng/mL, right) after 600 min. Time evolution of the number of cells in each cell fate for 5
simulations under each condition. D: Effect of pulse injection frequencies in the model
simulations. Time evolution of the number of cells in each cell fate for 5 simulations when pulsed
injections (0.5 ng/mL during 10 min) are repeated every 150 (left), 300 (middle) and 600 (right)
min. A-D: Green, Proliferative cells; Red, Apoptosis; Black, NonACD. Grey shading represents
the time of TNF injection. Initial spheroid radius is 100 µm, roughly accounting for 1100 cells.

faster apoptosis commitment (S2 File. Moreover, changing the transcription rate in the model
affected the type of cell fate decision, as increasing it favoured necrosis (NonACD) (S2 FigC).
Indeed, faster transcription caused faster mXIAP activation that caused Apoptosis inhibition
and benefited NonACD cell fate (S2 File).

Furthermore, PhysiBoSS can be used to test the system’s response in different cell types,
that have different TNF secretion rates in response to NFκB activation, which would affect the
overall sensitivity to TNF concentrations (S2 FigA). This tool could also be used to test the
effect of the initial size of the spheroid on the TNF availability for cells, and how this would
affect the global behaviour, although initial tests using different ranges did not yield different
results (S2 FigB).
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Response to TNF treatment of heterogeneous multi-cellular spheroids

One major challenge in tumour treatment is the high level of heterogeneity, spatial and
temporal [71], within the population, notably the presence of different clones, which will respond
differently to the same conditions. To illustrate the effect of treatment on a genetically
heterogeneous population, we simulated a spheroid initially composed of 75% of wild type strain
(non mutated, WT) and 25% of mutated cells with IKK and cFLIP over-expressed(+) (Fig 5A).
This double mutation was found to drastically promote cell survival (Fig 5B and S2 File) using
our pipeline on computational tools for logical models exploration [72]. As expected, part of the
WT population died under TNF treatment while the mutant population survived and
proliferated. Importantly, the presence of the mutated population did not impact the response
of the WT population: the final ratio of surviving WT cells compared to their initial number
was similar to the one in a WT-only population (S3 FigC, no significant difference under
Kolmogorov-Smirnov test). This observation was also valid with two other mutations promoting
either apoptosis or NonACD (S3 FigA-C), or with different initial proportion of WT cells in the
total population (S3 FigD,E).

Fig 5. Genetically heterogeneous population under TNF treatment. Simulations of
heterogeneous population composed of 75% of WT cells (orange) and 25% of IKK+ and cFLIP+
mutated cells (purple). A: Snapshots of a genetically heterogeneous population simulation at
initial and final time (24 h), with cells coloured by cell type (left and middle) or by cell fate
(right). B: Time evolution of the number of cells in each strain (WT and mutated) for 10
simulations. Grey shading indicates presence of TNF in continuous injection at 0.5 ng/mL. C:
Same as A with oxygen dynamics taken into account. D: Same as B for simulations with oxygen
diffusion. A-D: Cell fate colours: green, Proliferative cells; red, Apoptotic; black, NonACD.
Initial spheroid radius is 200 µm, which accounts for roughly 9000 cells, + stands for
over-expression.

In this simulation, cell communication was limited to TNF consumption/secretion and
physical interaction. However, it is known that in crowded environment such as tumours, there
is cell competition for resources, e.g. oxygen, nutrients or growth factors. To study the impact of
resource competition among cell strains, we included oxygen diffusion and its cell consumption
in the 3D spheroid set-up. A threshold under which cell commits to necrosis (NonACD) due to
lack of oxygen was fixed (S2 File, Parameter table). As a consequence, in an homogeneous WT
population without TNF, a necrotic core formed with a thin proliferative rim around it (S4
FigA), as described for large spheroids [67,73]. Under TNF treatment, the homogeneous
population growth was strongly limited by the combination of TNF- and oxygen-mediated death
(S4 FigB).

When mixed with the IKK+ and cFLIP+ mutated population, WT cells had to compete
with proliferating mutants cells apart to having to survive to TNF signalling. Thus, majority of
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the WT cells that did not commit to Apoptosis or NonACD by TNF signal, committed to
NonACD by lack of access to oxygen (Fig 5C-D). WT strain growth was considerably reduced
compared to its growth in the homogeneous spheroid (S4 FigE). Similarly, when mixed with
pro-apoptotic or pro-NonACD mutants, WT cells gained access to oxygen and proliferated more
than in an homogeneous spheroid (S4 FigC-E). This competition among strain was still valid for
other ratio of WT/mutated population tested (S4 FigF).

The resulting tumour is the consequence of the different adaptive abilities of these strains to
the environmental conditions and to the TNF treatment. As illustrated here, this may result in
the growth of resistant clones that gain access to nutrients. Importantly, it was recently shown
that the tumour spatial structure strongly impacts the adaptive therapy efficiency [74]. Hence,
use of tools such as PhysiBoSS that include both spatial distribution and signalling networks are
necessary to explore and predict the best clinical adaptive therapy strategies [75].

PhysiBoSS performs genotype-to-phenotype simulations

PhysiBoSS bridges gene perturbations to cell population dynamics taking into account
environmental perturbations. It is thus a unique tool to address issues as clonality in tumours,
taking into account both intra-clonal (through stochasticity within MaBoSS and PhysiCell) and
inter-clonal heterogeneity, their interaction with the environment (TNF, oxygen, etc.), and their
temporal evolution [71]. In particular, PhysiBoSS allowed us to showcase a strong difference of
the population’s response to perturbations in TNF availability, which showed to be dependent
on the signalling pathway dynamics (see also [70]). Our results also illustrated differences
between experimental and in silico 2D (≈ microfluidic system) and 3D (≈ spheroid culture)
systems, due to differences in access to chemicals, such as oxygen, nutrients or injected drugs.
This suggests that conclusions drawn in a 2D set-up could be different from the ones drawn in a
3D environment.

Multi-scale models have a great potential to study morphogenetic events [25,76] by
combining biochemical patterning with cell signalling and mechanics. Indeed, the overall
population organisation can be influenced both by cell differentiating in response to external
signals (e.g. growth factor access) and cell organisation by mechanical clues (e.g. differences in
adhesion or motility). Computational tools such as PhysiBoSS can be used to predict the
resulting organisation of such interplay between genetic and phenotype factors under
environmental perturbations, and thus reduce experimental exploration [33].

Availability and Future Directions

PhysiBoSS is available on GitHub (https://github.com/gletort/PhysiBoSS), under the BSD
3-clause license. A Docker image has been created to allow users to run PhysiBoSS even if their
system is not compatible with it. We provide in the repository the source code of PhysiBoSS,
scripts to use it and analyse results, and extended documentation on its Wiki for installation,
usage, and step-by-step examples. We provided in particular detailed examples (with all
necessary files) to simulate cell sorting by differential adhesion, spheroid growth under TNF
treatment, cell population growth under TNF treatment for an customized initial state (here in
shape of Hello World), cells embedded in an ECM field and a cell population composed of three
different mutants.

One limitation of PhysiBoSS is its representation of cell constraint to a spherical shape. In
the next version of PhysiBoSS, we plan to propose an ellipsoidal shape (for more or less
elongated cells), as presented in two recent multi-scale models [25,76]. We also plan to extend
the representation of the extracellular matrix, so that users could choose different modes of
implementation according to the biological questions. Indeed, PhysiBoSS will be modified so as
to offer different levels of representations from a very abstract representation (as currently
possible as a field or passive spheres), to a more realistic representation (e.g. filamentous
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environment, which could be done by introducing a finite element mesh for the ECM, as
suggested in [38]).

Some further extensions of PhysiBoSS will include: (1) the development of the interface
between the agent-based part and the Boolean network by adding more possible input or output
(IO) nodes (S1 File); (2) the creation of binary output files (instead of txt) with an executable
that read, plot and analyse the files within PhysiBoSS; (3) some modifications of MaBoSS
implementation to simulate multiple instances at the same time and thus have the possibility to
run the network updates in parallel; and (4) a graphical interface to launch simulations in a
more user-friendly way (it is currently developed for command line usage only).

Finally, another direction could be to combine MaBoSS with other agent-based modelling
software, to allow for choice between different frameworks (e.g. Cellular Potts, Vertex Model)
according to the biological question of interest.

Any contributions to PhysiBoSS development are welcomed.
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Supporting Information

S1 Fig. A: Boolean network used. Pathway related to Survival (green), related to Apoptosis
(red) and related to NonACD (black). Green arrows represent activation, red arrows inhibitions.
B: Schematic representation of how cell cycle is simulated. Cells are initially in Proliferative
state (growing and dividing; green). At frequent interval, their internal signalling network is
updated by running MaBoSS (orange) given its environmental conditions (internalization of
TNF). This decides of the fate of the cell, to continue proliferating or commit to Apoptosis (red)
or NonACD (black).

S2 Fig. Effects of simulation parameters. A: Variation of secretion rate value. Time
evolution of the number of cells in each fate (left) for a secretion rate of: 0 (1st graphic), 0.1
(2nd) and 10 (3rd). TNF was injected at the beginning of the simulation during 5 min at a dose
of 1 ng/mL. Final number of cells in each fate according to the secretion rate used for individual
simulations (right). Simulation time is 12h, initial disk radius is 400 µm, which accounts for
roughly 1000 cells. B: Variation of the initial spheroid radius. Time evolution of the number of
cells in each cell fate for an initial population radius of 50 (left), 150 (middle) and 200 (right)
µm. TNF is injected continuously during the simulations at a concentration of 0.5 ng/mL.
Simulation time is 12h, note that Y-axis is different for the three graphs. C: Variation of the
transcription rate used in the Boolean network transitions. Time evolution of the number of cell
in each fate for a transcription rate of 1/48 (left), 1/12 (middle) and 1 (right). Other transitions

15

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 17, 2018. ; https://doi.org/10.1101/267070doi: bioRxiv preprint 

https://doi.org/10.1101/267070
http://creativecommons.org/licenses/by-nc-nd/4.0/


rate are 1. Simulation time is 12h, initial disk radius is 400 µm, which accounts for roughly 1000
cells.A-C: Colour code: green, Proliferative cells; red, cells committed to Apoptosis; black, cells
committed to NonACD. Grey shading indicates TNF presence. Except in panel A, right graph,
5 simulations are presented for each condition.

S3 Fig. Genetically heterogeneous population under TNF treatment. Simulations
of heterogeneous population composed of 75% of WT cells (orange) and 25% of mROS+ and
cIAP- mutated cells (blue) or with CASP3+ and Cytc+ mutated cells (light blue). A: Snapshots
of a simulation for each case at initial and final time (24 h), with cells coloured by cell type (left
and middle) or by cell fate commitment (right). B: Time evolution of the number of cells of each
strain (WT and mutated) for 10 simulations. C: Ratio of final number of surviving cells against
initial number of cells for each cell line (WT or mutated). D: Time evolution of the number of
cells in each strain (WT and mutated) for 10 simulations for the 3 different mutants with
different initial proportion of WT cells compared to the total population: 25% (top) and 50%
(bottom). A-C: Cell fate commitment colours: green, Proliferative cells; red, Apoptosis; black,
NonACD. Grey shading indicates presence of TNF in continuous injection at 0.5 ng/mL. Initial
spheroid radius is 200 µm, which accounts for roughly 9000 cells, + stands for over-expression
and - stands for knock-out.
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S4 Fig. Genetically heterogeneous population under TNF treatment and
oxygen-limited regime. A: Simulation of WT-only population without TNF. Snapshots of a
simulation (left) and oxygen levels (middle) at 24 h. Time evolution of the number of cells in
each cell fate (right). B: Simulation of homogeneous population for a low-dose injection of TNF.
Snapshots of a simulation (left) and oxygen levels (middle) at 24 h. Time evolution of the
number of cells in each cell fate (right). C-E: Simulations of heterogeneous population and TNF
treatment composed of 75% of WT cells (orange) and 25% of mROS+ and cIAP- mutated cells
(blue) or with CASP3+ and Cytc+ mutated cells (light blue). C: Snapshots of a simulation for
each case at initial and final time (24 h), with cells coloured by cell type (left and middle) or by
cell fate commitment (right). D: Time evolution of the number of cells in each strain (WT and
mutated) for 10 simulations. E: Ratio of final number of surviving cells against initial number of
cells for each cell line (WT or mutated). F: Time evolution of the number of cells in each strain
(WT and mutated) for 10 simulations for the 3 different mutants with different initial proportion
of WT cells compared to the total population: 25% (top) and 50% (bottom). A-F: Oxygen
levels, represented from dark blue (injected level) to white (lowest level), are measured in the
z=0 plane of the simulated space. Cell fate commitment colours: green, Proliferative cells; red,
Apoptosis; black, NonACD. Grey level background in graphs indicates presence of TNF in
continuous injection at 0.5 ng/mL. All simulations are in oxygen-limited regime, initial spheroid
radius is 200 µm, which accounts for roughly 9000 cells, + stands for over-expression and -
stands for knock-out.
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S1 File. Supplementary information of PhysiBoSS implementation. Additional
details of PhysiBoSS usage, its implementation, and how the interface between the agent-based
part and Boolean network part is handled are presented in this file.

S2 File. Supplementary information of the cell fate simulations. Additional details
on cell fate study part. Description of the Boolean network used, short description of the
pipeline used to identify interesting mutants, description of how TNF injection are simulated
and parameters used in the simulations are presented in this file.

S1 Table. Simulation run time. Representative examples of simulation run time necessary
for different kind of simulations. Simulations were run on one node of a Linux cluster (with 16
openMP threads).
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Cell number (init-final) Simulated time Remark Run time

1022 - 1969 720 min no TNF 2 min

1024 - 1443 720 min cont. TNF 1.5 min

1131 - 4772 1440 min no TNF 10.5 min

1134 - 2211 1440 min cont. TNF 25.75 min

1136 - 3544 1440 min one pulse injection 9 min

3843 - 7284 1440 min cont. TNF 42 min

16297 - 23227 1440 min 7192 passive cells 45.5 min
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