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Abstract 
Prior experience shapes sensory perception by enabling the formation of expectations with            
regards to the occurrence of upcoming sensory events. Especially in the visual modality, an              
increasing number of studies show that prediction-related neural signals carry          
feature-specific information about the stimulus. This is less established in the auditory            
modality, in particular without bottom-up signals driving neural activity. We studied whether            
auditory predictions are sharply tuned to even carry tonotopic specific information. For this             
purpose, we conducted a Magnetoencephalography (MEG) experiment in which participants          
passively listened to sound sequences of varying regularity (i.e. entropy). Importantly, sound            
presentation was occasionally omitted. This allowed us to assess whether and how carrier             
frequency specific information in the MEG signal is modulated according to the entropy level,              
especially during the silent (omission) periods. Using multivariate decoding analysis, our           
main finding is that only during an ordered (most predictable) sensory context does neural              
activity during omission periods contain carrier frequency specific information that can be            
used to classify neural activity elicited by genuine sounds. This shows that tonotopically             
specific patterns can be activated by top-down processes and supports the notion that             
predictions in the human auditory system can be sharply tuned. 

Introduction 
Our capacity to constantly predict incoming sensory inputs based on past experiences is             
fundamental to adapting our behavior in complex environments. A core enabling process is             
the identification of statistical regularities in sensory input, which does not require any             
voluntary allocation of processing resources (e.g. selective attention) and occurs more or            
less automatically in healthy brains1. Analogous to other sensory modalities2,3, auditory           
cortical information processing takes place in hierarchically organized streams along putative           
ventral and dorsal pathways4. These streams reciprocally connect different portions of           
auditory cortex with frontal and parietal regions4,5. This hierarchical anatomical architecture           
yields auditory cortical processing regions sensitive to top-down modulations, thereby          
enabling modulatory effects of predictions. In this context, a relevant question is to what              
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extent do prediction-related top-down modulations (pre-)activate the same or similar neural           
ensembles as established for genuine sensory stimulation. 
 
Such fine-tuning of neural activity would be suggested by frameworks that propose the             
existence of internal generative models6–9, inferring causal structure of sensory events in our             
environment and the sensory consequences of our actions. A relevant process of validating             
and optimizing these internal models is the prediction of incoming stimulus events, by             
influencing activity of corresponding neural ensembles in respective sensory areas.          
Deviations from these predictions putatively lead to (prediction) error signals, which are            
passed on in a bottom-up manner to adapt the internal model, thereby continuously             
improving predictions7 (for an alternative predictive coding architecture see 10). According to           
this line of reasoning, predicted input should lead to weaker neural activation than input that               
was not predicted, which has been illustrated previously in the visual 11 and the auditory              
modality12. Support for the idea that predictions engage neurons specifically tuned to            
(expected) stimulus features has been more challenging to address and has come mainly             
from the visual modality (for review see 13). In an fMRI study Smith and Muckli 14 showed that                
early visual cortical regions (V1 and V2), which process occluded parts of a scene, carry               
sufficient information to decode above chance different visual scenes. Importantly, activity           
patterns in the occlusion condition are generalized to a non-occlusion control condition,            
implying context-related top-down feedback or input via lateral connections to modulate           
visual cortex in a feature specific manner. In a similar vein, it has been shown that mental                 
replay of a visual stimulus sequence is accompanied by V1 activity that resembles activity              
patterns driven in a feedforward manner by the real sequence 1. Beyond more or less              
automatically generated predictions, explicit attentional focus to specific visual stimulus          
categories also goes along with similar feature-specific modifications in early and higher            
visual cortices even in the absence of visual stimulation 15. Overall, for the visual modality,              
these studies underline that top-down processes lead to sharper tuning of neural activity to              
contain more information about the predicted and / or attended stimulus (feature). 
 
Studies as to whether predictions in the auditory domain (pre-)activate specific sensory            
representations in a sharply tuned manner are scarce especially in humans (for animal             
works see e.g.16,17). Sharpened tuning curves of neurons in A1 during selective auditory             
attention have been established in animal experiments18, even though this does not            
necessarily generalize to automatically formed predictions. A line of evidence could be            
drawn from research in marmoset monkeys, in which a reduction of auditory activity is seen               
during vocalization 19. This effect is abolished when fed back vocal utterances are pitch             
shifted 20. A recent work suggests that even inner speech may be sufficient to produce              
reduced neural activity, but only when the presented sounds matched those internally            
verbalized 21. Using invasive recordings in a small set of human epilepsy patients, it was              
shown that masked speech is restored by specific activity patterns in bilateral auditory             
cortices22, an effect reminiscent of a report in the visual modality1 (for other studies              
investigating similar auditory continuity illusion phenomena see 23–25). Albeit being feature          
specific, this “filling-in” type of activity pattern observed during phoneme restoration cannot            
clarify conclusively whether they require top-down input. In principle these results could also             
be largely generated via bottom-up thalamocortical input driving feature relevant neural           
ensembles via lateral or feedforward connections. To resolve this issue, putative sharp            
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tuning via predictions needs to be shown absent of feedforward input (i.e. silence).             
Furthermore, the exact timing of the effects could provide important evidence on whether             
predictions come along with feature-specific preactivations of relevant neural ensembles13. 
 
The goal of the present study was to investigate in healthy human participants whether              
predictions in the auditory modality are exerted in a carrier frequency (i.e. tonotopic) specific              
manner. For this purpose, we merged an omission paradigm with a regularity modulation             
paradigm (for overview see 26, and see Figure 1 for the specific details). So-called omission              
responses occur when an expected tone is replaced by silence. Frequently this response             
has been investigated in the context of Mismatch Negativity (MMN27) paradigms, which            
undoubtedly have been the most common approach of studying the processing of statistical             
regularities in human auditory processing 28–30. This evoked response occurs upon a           
deviance from a “standard” stimulus sequence, that is, a sequence characterized by a rule              
endowing it with a certain degree of order. For omission responses (e.g.31), this order is               
usually established in a temporal sense, that is, allowing precise predictions when a tone will               
occur32 (for a study using a repetition suppression design see 33). The neural responses              
during these silent periods are of outstanding interest since they cannot be explained by any               
feedforward propagation of activity elicited by a physical stimulus. Thus, omission of an             
acoustic stimulation will lead to a neural response, as long as this omission violates a regular                
sequence of acoustic stimuli, that is, it occurs unexpectedly. Previous works have identified             
auditory cortical contributions to the omission response (e.g.33). Interestingly, and underlining           
the importance of a top-down input driving the omission response, a recent DCM study by               
Chennu et al.34 illustrates that it can be best explained when assuming top-down driving              
inputs into higher order cortical areas (e.g. frontal cortex). While establishing temporal            
predictions via a constant stimulation rate, we varied the regularity of the sound sequence by               
parametrically modulating its entropy level (see e.g. 35,36). Using different carrier frequencies,            
sound sequences varied between random (high entropy; transition probabilities from one           
sound to all others at chance level) and ordered (low entropy; transition probability from one               
sound to another one above chance). Our reasoning was that omission-related neural            
responses should contain carrier frequency specific information that is modulated by the            
entropy level of the contextual sound sequence. Using a time generalization decoding            
approach 37, we find evidence that particularly during the low entropy (highly ordered)            
sequence, neural activity in the omission period contains carrier frequency specific           
information similar to activity observed during real sound presentation. This work shows that             
prediction-related neural activity in the auditory system are sharply tuned even down to the              
tonotopic level. 
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Figure 1 
Experimental design. A) Transition matrices used to generate sound sequences according           
to the different conditions (RND, MM, MP and OR). B) Schematic examples of different              
sound sequences generated across time. 10% of sound stimuli were randomly replaced by             
omission trials (absence of sound) in each context.  

Results 

Sound and omission evoked responses show differential 
relationship with entropy 
We found clear sound- and omission-related cortical evoked responses at the grand average             
level. Disregarding the specific entropy level as well as carrier frequency, during a time              
period of 50-200 ms post event onset, striking overlaps between sound and omission evoked              
generators were observed in the right primary auditory cortex (A1; see Figure 2A, left              
panel). Despite this spatial overlap, the temporal dynamics in right A1 showed a faster peak               
when an actual sound was presented as compared to when an omission occurred (see              
Figure 2A, right panel). Outside of right A1, pronounced evoked responses were also             
observed for sounds and omissions in an idiosyncratic manner: while left A1 was also              
strongly activated by sounds, omissions went along with strong evoked activity in the primary              
visual cortex (V1; see Figure 2A, left panel). The latter may be associated with the fact that                 
unexpected omissions may involuntarily lead to an orientation response, which involves           
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visual exploration. Since this issue was not relevant to the research focus it was not further                
followed up. 
 
To assess the relationship between evoked activity and the entropy level, we performed a              
regression analysis in time-windows 100-200 ms and 200-300 ms post-event onset. For the             
early (100-200 ms) time-window, no effect at the cluster corrected level was observed (all p               
’s > .1). In the later (200-300 ms) time-window, lower entropy (more regularity) was reflected               
in weaker evoked responses (negative cluster: p = .007). This effect showed maxima at 263               
and 297 ms after sound onset and was localized to precuneus and right striatum for both                
time points (Figure 2B, left panel). Right A1 was also implicated, but only for the later period                 
(Figure 2B, left and right panel). No effect at a cluster-corrected level was obtained for               
omissions (p ’s > .19). Given our hypothesis that contrary to sound evoked responses,              
omission evoked responses should increase with decreasing entropy, we applied a           
regression test to a normalized contrast restricted to left and right A1 (Figure 2A). This               
measure normalized each condition with respect to the highest entropy (random) condition            
and the difference between sound and omission within each entropy level was entered into              
the statistic. For the left A1 a significant cluster corrected effect was obtained at later time                
points (250-300 ms; right A1: n.s.; see Figure 2C, left panel), which was driven by a                
differential relationship with entropy level for sounds and omissions. 
 
Overall, the analysis of evoked responses establishes common generators for omissions           
and genuine sounds in right A1. This region and a set of non-auditory regions (precuneus               
and right striatum) show decreasing sound evoked responses with increasing regularity of            
the sound sequence. Increasing omission evoked activity was observed with increasing           
regularity of the sound sequence in left A1. 
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Figure 2 
Sound and omission evoked response modulation according to entropy level. (A)           
Source localization of evoked brain activity in response to sound or omission between 50              
and 200 ms (left panel) and time-course of source activity in right Heschl’s gyrus (right               
panel). Brain source clusters are masked at 85% maximum activity. All trials were averaged              
separately for sounds and omission disregarding entropy level and tone frequency. For            
visualization purposes, a baseline between -50 ms to sound / omission onset was subtracted              
to the averaged time-course depiction. (B) Linear regression analysis over different           
contextual regularity conditions (4 entropy levels) for time period between 200 and 300 ms.              
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(C) Linear regression analysis on normalized differential contrast between sound and           
omission trials contrast restricted to left and right Heschl’s gyri (see methods section). Time              
course of the effect statistics is shown on left panel. Left Heschl’s gyrus normalized              
difference with respect to higher entropy level (RND) for each entropy level (MM, MP and               
OR) and stimulation type (sound and omission) 

Single-trial neural activity during sound contains information 
about entropy level 
The results in the previous step were obtained after trial averaging, which leaves the              
question open as to what information is contained in the signal on a single trial level. To                 
validate our decoding approach, we first followed up on the strong evoked effect showing              
differential sound evoked response amplitudes for the different entropy levels. Using all            
magnetometers (i.e. discarding the spatial pattern) and a time-generalization decoding          
approach showed that the entropy level of the condition in which the sound was embedded               
into could be decoded above chance from virtually any time point and generalized to any               
other time point. Only the on-diagonal result is depicted in Figure 3 (left panel; the               
off-diagonal patterns will be part of a separate manuscript), showing globally above chance             
level decoding accuracy. This finding of temporally generalizable non-specific neural          
patterns fits well with the fact that conditions were presented in blocks. A transient increase               
following ~100-200 ms post-stimulus onset can be observed, which is somewhat earlier than             
the evoked response effect described above. This underlines that the outcome of this             
decoding analysis is not merely an alternative depiction of the evoked response analysis. In              
order to identify potential neural generators that drive the described effect, the            
time-generalization analysis was followed up by a searchlight analysis in source space.            
Since sensor level analysis suggested a temporally stable (in the sense of almost always              
significant) neural pattern, the entire 0-300 ms time period was used for this purpose. The               
analysis revealed above chance decoding accuracy spread throughout almost the entire           
brain. In order to identify potential “hot-spots” a 10% of maximum decoding accuracy             
threshold was introduced, showing that the largest effect was obtained in the right             
hemisphere, encompassing large portions of the temporal cortex. Based on this analysis, we             
can state that information about the regularity of the sound sequence is contained also at the                
single-trial level in a temporally stable manner and the right temporal cortex may play a               
pronounced role in representing the regularity of sound sequences. 
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Figure 3 
Decoding of entropy level. Outcome of decoding accuracy of the on-diagonal shows            
temporally stable above chance scores, with a transient increase following ~100-200 ms            
post-stimulus onset (left panel). Searchlight analysis on source level using a wide temporal             
window (0-300 ms) shows a widely distributed pattern with a maximum in right temporal              
regions (image thresholded at 10% of maximum). 
 
 

Single-trial neural activity during sound contains information 
about tone frequency 
Prior to addressing the more challenging question of whether silent periods (i.e. omissions)             
contain carrier frequency specific information (omission-to-sound decoding), we first tested          
whether this was in general possible using neural activity to actual sound presentation             
(sound-to-sound decoding). In an analogous approach to the one previously described, we            
derived time-generalized carrier frequency decoding performance separately for the different          
entropy levels. Sound frequency could be decoded high above chance from MEG activity,             
disregarding the regularity of the sound sequence (Figure 4A). For all entropy levels, a              
temporally relatively stable pattern emerges between 100 to 300 ms, with the highest             
accuracy clustering along the diagonal. The off-diagonal pattern becomes descriptively more           
pronounced with increasing regularity of the sound sequence. This impression is confirmed            
by statistically testing a linear trend (Figure 4B; left) showing a significant neural pattern at               
~200 ms training time generalizing for ~100 ms. This effect is observed in spite of sound                
evoked responses showing overall decreased amplitudes with increasing regularity of the           
sequence (Figure 2B). We investigated potential generators for this significant neural           
pattern with a source-level searchlight decoding analysis performed within this significant           
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time window from the time-generalization matrix. This analysis shows a large pattern            
involving mainly left superior temporal regions, left inferior frontal and left inferior and             
superior parietal regions. Furthermore, occipital and deep regions are also visible such as:             
left middle occipital gyrus, left calcarine sulcus, precuneus and anterior cingulate gyrus. 
 
Prior to this effect, a further pattern of increasing accuracy emerges as a function of entropy                
levels between ~-100 to ~120 ms, yielding a significant linear trend (Figure 4B; left). This               
pattern consists of a strong on-diagonal part, monotonously decreasing in strength as a             
function of temporal distance. In principle, it could contain some prediction-related           
preactivations. However, given the setup of the experiment, the effect is likely generated in              
large part by carry-over neural activity of the previous tone, that is exploited by the classifier                
in decoding the present tone frequency. However, another pattern within this time frame is              
an increasing off-diagonal decoding accuracy emerging ~80-100 ms post-stimulus and          
extending from pre-sound periods to almost 200 ms (see Figure 4B; left). The time almost               
coincides with the overall onset on-diagonal increase in decoding accuracy, but the 45°             
orientation of this effect with respect to the diagonal makes it unlikely that it is artifactual. The                 
pattern for the pre-sound period indicates that while carry-over is certainly a part, some parts               
are similar to neural patterns driven by the new sound. To test this impression more formally,                
we averaged decoding accuracy within selected slices from the time generalization matrix            
that reflected how strongly a pre-sound neural pattern generalizes over time (see Figure 4C,              
left). Assuming that the influence of the preceding sound (and thereby the carry-over) should              
be strongest at earliest intervals and subsequently become weaker, temporal decoding           
accuracy profiles between -70 and 150 ms were modeled by linear regression (see Figure              
4C, middle). For every time point, deviations from the carry-over model were assessed by              
calculating the residuals from the linear fit for every time point in this window. Within the                
aforementioned time-window of 80-100 ms, residuals appeared to increase as a function of             
the entropy level. Statistically significant deviations were only obtained for non-random           
sound sequences, being particularly pronounced in the ordered condition at 80 to 90 ms.              
Altogether the results from this analysis are difficult to reconcile with carry-over neural             
activity from the previous tone (i.e. neural patterns elicited by a tone ~80-100 ms being the                
same as the pattern to a previous tone of a different frequency), but instead are more                
parsimoniously explained by test-tone carrier-frequency specific effects that are already          
present prior to actual stimulus onset. This would speak in favor not only of the predictability                
of the sound sequence to affect sound processing in tonotopically specific manners, but also              
that this manipulation could instantiate tonotopically specific preactivations. 
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Figure 4 
Sound-to-sound decoding results. (A) Time-generalization analysis on sensor data         
(magnetometers) for each entropy level. Time-by-time decoding was performed on data           
restricted to sound trials. Classifiers were trained at different time points to decode             
tone-frequency (4 classes). Each matrix presents the result of decoding for each entropy             
level where classifier accuracy was significantly above chance level (25%) masked at            
pcorrected<0.005. (B) Linear trend analysis between entropy levels. On the left panel, the time              
generalization matrix represents significant linear trend for decoding accuracy values over           
the group (masked at pcorrected<0.05). The significant time-by-time points inside the black            
square depiction are used to investigate source level decoding searchlight linear-trend           
analysis on right panel (masked at pcorrected<0.05). (C) Pre-activation pattern analysis for each             
entropy level. Training time points from -100 ms to 0 ms were averaged over the testing time                 
course (see dashed black rectangle in left panel). A regression linear fit was used to remove                
previous stimulation carry-over activity (middle panel). One can observe a residual accuracy            
increase around 90 ms in testing time for all context but random (RND) speaking in favor of                 
pre-stimulation activation patterns related to tone-frequency prediction. 
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Frequency of expected but omitted tones can be decoded only 
during regular sound sequences 
Our analyses so far show that regularity of the sound sequence affects neural responses to               
sounds and even influences the performance of a classifier to decode tone frequencies.             
However the putative effects of predictions up to this point (except of the omission evoked               
response; see Figure 1C) have been obtained in the presence of a sound. This is not                
sufficient to address our main question of whether prediction-mediated neural processes are            
of sufficient granularity to contain information also about what sound was predicted in             
absence of any acoustic information. Pursuing an analogous time-generalized decoding          
approach as previously described, we tested whether neural patterns around omissions           
(training set) can be found during genuine tones (test set). Indeed activity ~150-250 ms              
following onset of the omission could classify significantly above chance level sound            
frequency in the test data set. However, this was only the case for the ordered condition                
(Figure 5A). 
 
Testing a linear trend across the time-generalization decoding results confirms this general            
pattern (Figure 5B, left). Using a searchlight analysis on source level data (thresholded at              
pcorrected < .01), we followed up on probable generators of the sensor level effect. For this                
purpose we focused on the late significant effect, that is, between ~100 and 200 ms training                
time (from omissions) tested on neural patterns ~250 ms following sound onset. This             
analysis shows a right hemispheric dominant pattern encompassing particular regions of the            
auditory cortex, but also motor and premotor regions (Figure 5B, right). Furthermore, a             
strong linear trend was also identified in anterior cingulate cortex and subcortical structures             
such as hippocampus and thalamus.  
 
Also, at the 90 ms testing time period, the activity bears similarities to the one recorded in                 
the pre-omission period. This effect is reminiscent of the one reported above (see Figure 4 )               
and we followed up on the question of whether this is a trivial carry-over effect or one                 
indicating a test-tone frequency specific preactivation effect using the same approach.           
However, here we used only the time-generalization slice that contains information as to             
whether pre-omission neural patterns can be found during tone presentation. As previously            
reported, deviations from a linear regression fit were most pronounced at 90 ms (see Figure               
5C, middle), which is significant albeit at a non-Bonferroni-corrected level (see Figure 5C,             
right). In light of the more strongly powered analysis in the previous section, we take this as                 
corroborating evidence that neural patterns in the frequency of the test tone are already              
present prior to the presentation of the actual sound underlining the proactive nature of              
predictions. Most importantly, however, the results in this section unequivocally show that            
regularity of the sound sequence - putatively modulating predictions - lead to tonotopically             
neural activity patterns during omission periods. 
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Figure 5 
Omission-to-sound decoding results. (A) Time-generalization analysis on sensor data         
(magnetometers) for each entropy level. Omission trials were used as training data and             
sound trials as testing data. Classifiers were trained at different time points to decode              
tone-frequency (4 classes). Each matrix presents the result of decoding for each entropy             
level where classifier accuracy was significantly above chance level (25%) masked at            
pcorrected<0.005. Only MP and OR entropy conditions show significant decoding at the group             
level. (B) Linear trend analysis between entropy levels. In the left panel, the time              
generalization matrix represents a significant linear trend for decoding accuracy values over            
the group (masked at pcorrected<0.05). The significant time-by-time points inside the black            
square depiction are used to investigate source level decoding searchlight linear-trend           
analysis on the right panel (masked at pcorrected<0.01). (C) Pre-activation pattern analysis for             
ordered context. Training time points from -100 ms to 0 ms were averaged over the testing                
time course (see dashed black rectangle in left panel). A regression linear fit was used to                
remove previous stimulation carry-over activity (middle panel). One can observe a residual            
accuracy increase around 90 ms in testing time speaking in favor of pre-stimulation             
activation patterns related to tone-frequency prediction. 
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Discussion 
In this study, we investigate neural activity during passive listening to auditory tone             
sequences by manipulating respective entropy levels and thereby the predictability of an            
upcoming sound. We used MVPA applied to MEG data to show that, next to more abstract                
features such as the entropy level, neural responses contain sufficient information to decode             
the carrier frequency of tones. Our main result reveals that single-trial brain responses to              
unexpected omissions in a predictable (low entropy) context can be used to decode carrier              
frequency when a sound is presented. This study provides strong support that top-down             
prediction related processes are sharply tuned to contain tonotopically specific information.           
While the finding of sharp tuning of neural activity is not surprising, given in particular               
invasive recordings from the animal auditory cortex (e.g. during vocalizations, see 19,20; or            
shift of tuning curves following explicit manipulations of attention to specific tone frequencies,             
see 18,38), our work is a critical extension of previous human studies for which a tonotopically               
tuned effect of predictions has not been shown so far. Critically, given that omission              
responses have been considered as pure prediction signals26,39, our work illustrates that            
sharp tuning via predictions does not require bottom-up thalamocortical drive. 

Sound-evoked activity decreases with increasing regularity, 
omission-evoked activity increases 
As a general test of our data quality, we first focused on evoked responses to pursue some                 
previously reported findings31,32,40,41. Both omissions and sounds elicit the largest evoked           
responses in the right primary auditory cortex independently from tone-frequency and           
entropy level. Interestingly, in contrast to sounds, expected but omitted sounds appear to             
elicit marked evoked activity in the visual cortex. We speculate that unexpected omissions             
constitute salient events that require reorienting 42, thereby phase resetting visual activity (for            
general evidence for audiovisual phase resetting in humans see e.g.43,44). This potentially            
interesting question is, however, outside the scope of this manuscript and would require             
further follow-up studies. Most importantly, sounds and omissions show differential evoked           
response patterns depending on the contextual entropy level, in particular during later            
periods of the evoked response (>200 ms). For sound-evoked brain responses amplitude            
increases with entropy, whereas for omission-evoked brain responses amplitude decrease          
with entropy. While the omission evoked effect was maximal in left A1, the sound evoked               
effect was more widespread involving also the striatum and precuneus. The fact that the              
latter effect goes beyond auditory regions is not surprising given that activity in these regions               
has been reported to be modulated based on manipulations of regularity in previous studies              
45,46. For example Rauschecker47 ascribes the basal ganglia along with other dorsal stream             
auditory regions a role in matching sounds with expectations formed by previous            
presentations. Overall, our analysis of evoked responses are fully consistent with previous            
works36 and notions of precision based predictive coding 26, which suggests that neural            
responses decrease to expected events whereas they increase to unexpected events.  
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Single-trial MEG activity contains low- and high-level auditory 
information 
To pursue our main research question, we relied on MVPA applied to MEG data 37,48. In               
particular, prior to addressing whether neural activity during omissions contains          
carrier-frequency specific information, it was important to illustrate the decoding analysis           
performance when a sound was actually presented. A priori, this is not a trivial undertaking               
given that the small spatial extent of the auditory cortex49 likely produces highly correlated              
topographical patterns for different pure tones and the fact that mapping tonotopic            
organization using noninvasive electrophysiological tools has had mixed success (for critical           
overview see e.g.50). Considering this challenging background it is remarkable that all            
participants showed a stable pattern with marked post-stimulus onset decoding increases           
after ~90 ms. This pattern was observed for all entropy levels and encompassed an              
on-diagonal increase fading out after ~300 ms and a temporally stable off-diagonal increase             
indicating a generalizable pattern emerging after ~100 ms and remaining elevated for            
~100-200 ms. While this analysis included all sensors and was therefore spatially agnostic, it              
hints at a rich dynamic that goes beyond a transient activation of a circumscribed brain               
region (e.g. A1; see also below). Overall, this finding underlines that noninvasive            
electrophysiological methods such as MEG can be used to decode low-level auditory            
features such as the carrier frequency of tones. This corroborates and extends findings from              
the visual modality for which successful decoding of low-level stimulus features such as             
contrast edge orientation have been demonstrated previously51.  
 
Going beyond this low-level information, we also addressed whether a representation of a             
more abstract feature such as the sequence’s entropy level could also be decoded from the               
noninvasive data. Functionally, extracting regularities requires an integration over a longer           
time period and previous MEG works focussing on evoked responses have identified in             
particular slow (DC) shifts to reflect transitions from random to regular sound sequences36.             
This fits with our result showing that the entropy level of a sound sequence can be decoded                 
above chance at virtually any time point, implying an ongoing (slow) process tracking             
regularities that is transiently increased following the presentation of a sound. Taken            
together, the successful decoding of low- and high-level auditory information underlines the            
significant potential of applying MVPA tools to noninvasive electrophysiological data to           
address research questions in auditory cognitive neuroscience that would be difficult to            
pursue using conventional approaches22,52. 

Predictions can be formed in spectrally sharply-tuned manner 
Using an MVPA approach with time generalization allowed us to assess whether beyond the              
level of differential evoked responses, carrier frequency related neural activity during sound            
or omission is systematically modulated by the entropy level. In both cases, a clear              
post-stimulus onset activity pattern was obtained that exhibited a linear relationship to            
entropy level across participants in the sense that increasing regularity (i.e. lower entropy)             
went along with improved decoding accuracy. In particular, when training and testing on             
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sounds, a pattern emerged after ~150 ms that generalized until ~300 ms and putatively              
involved left-dominant auditory and non-auditory regions. Note that this effect for           
sound-to-sound decoding was obtained while overall evoked response strength decreased          
with increasing regularity. This effect is reminiscent of findings in the visual modality,             
suggesting a sharpening of the neural response profile by expectations, that is, a reduction              
of neural responses in the visual cortex, while at the same time representational information              
is enhanced 53. Via our time-generalized omission-to-sound MVPA, we can assert that           
predictions can sharply tune relevant neural ensembles in a purely top-down manner,            
without any confounding influence of a sound. In this case an increasing regularity of the               
sound sequence went along with better decoding for a time period ~100-250 ms training time               
generalizing to ~200-300 ms testing time. This finding supports and extends a previous             
experiment by Sanmiguel et al.28 showing omission responses are sensitive not only to             
timing, but also to the precise features of the stimulus. Interestingly, the informative time              
period during the omission is clearly earlier than the omission-evoked response peak and             
also the period yielding a relationship to entropy level. Also with regards to the latter               
omission-evoked effect, which was mainly pronounced in left A1, the time-generalized MVPA            
effect showed a right hemispheric dominance. Altogether, the results underline the fact that             
our decoding approach uncovers patterns in the data that are not immediately available from              
looking at the evoked responses. It is worth noting that conforming to the general pattern in                
this study, the omission-to-sound decoding effect is not confined strictly to auditory regions,             
but also encompasses (pre-)motor and frontal regions as well as subcortical regions such as              
the thalamus and hippocampus. This conforms to previous studies in the visual modality             
implying an involvement of medial temporal and prefrontal regions in the generation of             
predictions based on the statistical regularity of sensory input54–56. The differential           
lateralization patterns for the sound-to-sound and omission-to-sound linear trend effects may           
be surprising at first sight, especially for the auditory cortex, if one assumes them to reflect                
pure prediction responses as suggested previously by some authors57. However, differential           
patterns could make sense considering that the absence of an expected stimulation will             
create a greater amount of surprise than when a sound is presented as expected. This               
difference could in principle involve a non-overlapping set of brain regions. In any case, this               
aspect does not change the fact that the late omission-to-sound time-generalized MVPA            
effect is driven exclusively by top-down processes, illustrating for the first time in humans              
that prediction-related processes in the auditory system can be tonotopically tuned. 
 
While later latencies could in principle contain a complex mix of prediction and surprise              
related processes, the act of predicting usually contains a notion of pre-activating relevant             
neural ensembles, a pattern that has been previously illustrated in the visual modality (e.g.              
1,58). For the omission response, this was put forward by Bendixen et al.39 even though the                
reported evoked response effects cannot be directly seen as signatures of preactivation. We             
found neural patterns ~90 ms following sound onset to generalize to pre-sound periods that              
could not be explained by a simple linear carry-over effect from the previous sound. It is thus                 
most parsimonious to assume that next to the activity related to the carrier frequency of the                
previous tone, pre-sound periods contain relevant information about the carrier frequency of            
the upcoming tone. However, future studies will need to study this in greater detail since the                
current design cannot, for example, completely exclude a reactivation of patterns of previous             
neural activity by a new sound, even though this is not the most parsimonious assumption               
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for the described regression residual effects. Next to this caveat, overall decoding accuracy             
was in absolute terms not high especially for the critical analysis (i.e. Omission-to-sound             
decoding). However, it should be noted that we refrained from a widespread practice of              
subaveraging trials48,51, which boosts classification accuracies significantly. When compared         
to cognitive neuroscientific M/EEG studies that perform decoding on the genuine single trials             
and a focus on group level effects (rather than feature-optimizing on individual level as in               
BCI applications), the strength of our effects are comparable (e.g.59,60). 
 

Methods 

Participants 
A total of 34 volunteers (16 females) took part in the experiment, giving written informed               
consent. At the time of the experiment, the average age was 26.6 ± 5.6 SD years. All                 
participants reported no previous neurological or psychiatric disorder, and reported normal or            
corrected-to-normal vision. The experimental protocol was approved by the ethics committee           
of the University of Salzburg and has been carried out in accordance with the Declaration of                
Helsinki. 

Stimuli and experimental procedure 
Before entering the Magnetoencephalography (MEG) cabin, five head position indicator          
(HPI) coils were applied on the scalp. Anatomical landmarks (nasion and left/right            
pre-auricular points), the HPI locations, and around 300 headshape points were sampled            
using a Polhemus FASTTRAK digitizer. After a 5 min resting state session (not reported in               
this study), the actual experimental paradigm started. The subjects watched a movie (Cirque             
du Soleil: Worlds Away) while passively listening to tone sequences. Auditory stimuli were             
presented binaurally using MEG-compatible tubal in-ear headphones (SOUNDPixx, VPixx         
technologies, Canada). This particular movie was chosen for the absence of speech and             
dialogue, and the soundtrack was substituted with the sound stimulation sequences. These            
sequences were composed of four different pure (sinusoidal) tones, ranging from 200 to             
2000 Hz, logarithmically spaced (that is: 200 Hz, 431 Hz, 928 Hz, 2000 Hz) each lasting 100                 
ms (5 ms linear fade in / out). Tines were presented at a rate of 3 Hz. Overall the participants                    
were exposed to four blocks, each containing 4000 stimuli, with every block lasting about 22               
mins. Each block was balanced with respect to the number of presentations per tone              
frequency. Within the block, 10% of the stimuli were omitted, thus yielding 400 omission              
trials (100 per omitted sound frequency). While within each block, the overall amount of trials               
per sound frequency was set to be equal, blocks differed in the order of the tones, which                 
were parametrically modulated in their entropy level using different transition matrices61. In            
more detail, the random condition (RND; see Figure 1 ) was characterized by equal transition              
probability from one sound to another, thereby preventing any possibility of accurately            
predicting an upcoming stimulus (high entropy). In the ordered condition (OR), presentation            
of one sound was followed with high (75%) probability by another sound (low entropy).              
Furthermore, two intermediate conditions were included (MM and MP). The probability on            
the diagonal was set to be equiprobable (25%) across all entropy conditions, thereby             
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controlling for the influence of self-repetitions. The experiment was programmed in MATLAB            
9.1 (The MathWorks, Natick, Massachusetts, U.S.A) using the open source Psychophysics           
Toolbox62. 
 
 

MEG data acquisition and preprocessing 
The magnetic signal was recorded at 1000 Hz (hardware filters: 0.1 - 330 Hz) in a standard                 
passive magnetically shielded room (AK3b, Vacuumschmelze, Germany) using a whole          
head MEG (Elekta Neuromag Triux, Elekta Oy, Finland). Signals were sampled with 102             
magnetometers and 204 orthogonally placed planar gradiometers at 102 different positions.           
We use a signal space separation algorithm implemented in the Maxfilter program (version             
2.2.15) provided by the MEG manufacturer to remove external noise from the MEG signal              
(mainly 16.6Hz, and 50Hz plus harmonics) and realign data to a common standard head              
position (-trans default Maxfilter parameter) across different blocks based on the measured            
head position at the beginning of each block63. 
 
Data analysis was done using the Fieldtrip toolbox64 (git version 20170919) and in-house             
built scripts. First, a high-pass filter at 0.1 Hz (6 th order zero-phase Butterworth filter) was               
applied to the continuous data. Then the data were segmented from 600 ms before to 600                
ms after target stimulation onset and down-sampled to 256 Hz for the ERF analysis, and to                
100 Hz for the decoding part. Trials containing physiological or acquisition artifacts were             
rejected. A semi-automatic artifact detection routine identified statistical outliers of trials in            
the datasets using a set of summary statistics (variance, maximum absolute amplitude,            
maximum z-value). These trials were removed from each dataset. Across subjects, an            
average of 721 ± 266 SD (4.5 ± 1.7 SD %) of trials were rejected. In all further analyses for                    
each subject, the number of trials for the different carrier frequencies was balanced to              
prevent any bias across conditions65. Finally, the epoched data was 30 Hz lowpass-filtered             
(6 th order zero-phase Butterworth filter) prior to further analysis.  

Source level analysis 
Preprocessed data was projected to source-level using an LCMV beamformer analysis66. For            
each participant, realistically shaped, single-shell headmodels67 were computed by         
co-registering the participants’ headshapes either with their structural MRI (15 participants)           
or – when no individual MRI was available (19 participants) – with a standard brain from the                 
Montreal Neurological Institute (MNI, Montreal, Canada), warped to the individual          
headshape. A grid with 1 cm resolution based on an MNI template brain was morphed to fit                 
the brain volume of each participant. A common spatial filter (for each grid point and each                
participant) was computed using the leadfields and the common covariance matrix, taking            
into account the data from all trials (i.e. including sound and omission trials from all               
conditions). The covariance window for the beamformer filter calculation was based on 200             
ms pre-stimulus to 500 ms post-stimulus. Using this common filter, the sensor level             
single-trial time-series were projected onto the 3D grid. For the evoked response, the             
resulting sound and omission trials were averaged relative to the stimulus onset and the              
absolute value was calculated. This yields for each condition a sound- or omission-related             
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amplitude time series. Baseline normalization was performed only for visualization purposes           
(subtraction of 50-ms pre-stimulus activity). 

Multivariate Pattern Analysis (MVPA) 
We used multivariate pattern analysis as implemented in CoSMoMVPA68 (git version           
20170505). MVPA decoding was first performed using a time-generalized decoding analysis           
that included all magnetometers. Specific time slices from the time-generalization matrix           
were followed up by a spatial-searchlight decoding at source level (see below). We             
performed decoding analysis based on single trial sensor-level data and single trial            
normalized (z-scored) source data.  
 
Overall, three decoding approaches were taken: 
• Entropy-level decoding: In a first step, we kept only trials with sound presentation             

(removing omission trials) to investigate brain activity modulated by different          
experimental contexts. For this purpose, we defined four decoding targets (classes)           
based on block type (4 contexts: RND, MM, MP, OR). 

• Sound-to-sound decoding: To test whether we could classify carrier frequency in           
general, we defined four targets (classes) for the decoding related to the carrier             
frequency of the sound presented on each trial (4 carrier frequencies).  

• Omission-to-sound decoding: To test whether omission periods contain carrier         
frequency specific neural activity, omission trials were labeled according to the carrier            
frequency of the sound which would have been presented. These trials were used to              
train the classifier, which was subsequently applied to a test set of trials during which               
sounds were presented. 

 
Using a Linear Discriminant Analysis (LDA) classifier, we performed a decoding analysis at             
each time point around stimulus / omission onset. A two-fold cross-validation scheme was             
applied for entropy-level and sound-to-sound decoding, using two randomly assigned sets of            
single trials. For the omission-to-sound decoding analysis, the training set was restricted to             
omission trials and the testing set contained only sound trials. Trials were balanced in the               
training and testing sets by using a random subset of trials in which the number of trials was                  
equalized between the four conditions (i.e. 4 target classes: 4 entropy levels or 4 carrier               
frequencies depending on the decoding analysis). In all cases, training and testing partitions             
always contained different sets of data. 
 
Classification accuracy for each subject was averaged at the group level and reported to              
depict the classifier’s ability to decode over time (i.e. time-generalization analysis at sensor             
level) and over spatial dimension (i.e. searchlight analysis at source level). The time             
generalization method was used to study the ability of each LDA classifier across different              
time points in the training set to generalize to every time point in the testing set37. For the                  
sound-to-sound and omission-to-sound decoding, time generalization was calculated for         
each entropy level separately, resulting in four generalization matrices, one for each entropy             
level. This was necessary to assess whether the contextual sound sequence influences            
classification accuracy on a systematic level. Significant clusters of time points were followed             
up by a searchlight analysis across brain sources. In this analysis we used local              
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neighborhood features in source space (source radius of 1.5 cm). All significant searchlight             
accuracy results were averaged over time cluster and reported on brain maps.  

Statistical analysis 
For the evoked responses, we tested the dependence on entropy level using a regression              
test (depsamplesregT in Fieldtrip). Results for sounds and omissions were sorted from            
random to ordered respectively. Testing sound- and omission-evoked responses separately          
on a whole brain level first, we defined an early (100-200 ms) and late time window (200-300                 
ms) based on previous studies in this domain (for an overview see 26,69). In order to account                
for multiple comparisons, we used a nonparametric cluster permutation test70 as           
implemented in Fieldtrip using 1000 permutations and a p < .025 to threshold the clusters.               
Neighboring grid points were clustered (minimum number of grid points in a cluster when              
their distance was below 1.5 cm). Given previous works 11,12 and also theoretical reasoning 13,              
we hypothesized decreasing evoked responses to sounds the more ordered the sound            
sequence became. On the other hand, for omissions, we expected evoked responses to             
increase the more ordered the sequences became, since within these sequences           
expectations and violations thereof should be stronger28 This latter prediction was not            
evident at a whole brain cluster corrected level. In order to target this differential prediction               
for sound and omission evoked responses in a more direct manner, we implemented a              
normalized contrast and focused on the left and right auditory cortex (as given by the grand                
average; see Figure 2A). In this procedure, we first normalized each condition (i.e. sound /               
omission x entropy level) by the evoked response of the random sequence (e.g. ORnorm =               
[OR – RND] / [OR + RND]). For the regression analysis, we entered the difference of the                 
normalized contrasts between omission and sound (e.g. ORdiff = [ORnorm (omission) -            
ORnorm (sound)]). According to our hypothesis, the differential relationship to entropy level            
for sound and omission evoked responses should be reflected in a monotonically increasing             
difference. 
 
The multivariate analysis results were tested at the group level by comparing the resulting              
individual accuracy maps against chance level (25% with 4 classes) using a non-parametric             
approach implemented in CoSMoMVPA68 adopting 10,000 permutations to generate a null           
distribution. P-values were set at p < 0.005 for cluster level correction to control for multiple                
comparisons using a threshold-free method for clustering 71, which has been used and            
validated for MEG/EEG data 72,73. The time generalization results and searchlight brain maps            
at the group level were thresholded using a mask with corrected z-score > 2.58 (or p                
corrected < 0.005). We also tested the dependence of classification results on entropy level              
using a regression test (depsamplesregT in Fieldtrip) following analogous statistical method           
as evoked response analysis. Only the significant time-by-time points identified on sensor            
level time-generalization where used to test source level dependence of searchlight           
decoding results on entropy level using a similar regression test. 
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Life Sciences Reporting Summary 
Further information on experimental design is available in the Life Sciences Reporting 
Summary. 

Data and Code Availability 
Further information and requests for resources or data should be directed to and will be 
fulfilled by the corresponding author. 
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