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The distribution of fitness effects for mutations is often believed to be key to predicting microbial
evolution. However, fitness effects alone may be insufficient to predict evolutionary dynamics if
mutations produce nontrivial ecological effects which depend on the composition of the population.
Here we show that variation in multiple growth traits, such as lag times and growth rates, creates
higher-order effects such the relative competition between two strains is fundamentally altered by
the presence of a third strain. These effects produce a range of ecological phenomena: an unlimited
number of strains can coexist, potentially with a single keystone strain stabilizing the community;
strains that coexist in pairs do not coexist all together; and the champion of all pairwise competi-
tions may not dominate in a mixed community. This occurs with competition for only a single finite
resource and no other interactions. Since variation in multiple growth traits is ubiquitous in mi-
crobial populations due to pleiotropy and non-genetic variation, these higher-order effects may also
be widespread, especially in laboratory ecology and evolution experiments. Our results underscore
the importance of considering the distribution of ecological effects from mutations in predicting
microbial evolution.
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I. INTRODUCTION

The relative simplicity and experimental tractability
of microbes make them convenient for studying funda-
mental ecological and evolutionary questions. One such
question concerns the distribution of fitness effects across
mutations [1], which has been measured in various micro-
bial systems [2–6]. The ultimate goal is to use this dis-
tribution to predict the evolutionary dynamics of a pop-
ulation, such as microbes evolving resistance to an an-
tibiotic. This approach assumes mutants are fully char-
acterized by selection coefficients relative to a wild-type,
which can be used to predict the population dynamics of
any number of segregating mutants. However, ecologists
have long recognized the possibility that the selection
coefficients between pairs of strains can be altered by
the presence of additional strains [7–11]. These “higher-
order” effects may cause a community to be fundamen-
tally different than the sum of its pairwise interactions
and may play an important role in stabilizing coexist-
ing communities [12, 13]. Therefore the distribution of
ecological effects, rather than mere fitness effects, may be
essential to accurately predict the evolutionary dynamics
of a population.

Most well-known ecological effects in microbes are me-
diated by cross-feeding interactions or the consumption
of multiple resources [14]. For example, long-term co-
existence of distinct strains is often believed to depend
on the existence of at least as many resource types as
coexisting strains, according to the “principle of compet-
itive exclusion” [15, 16]. However, theoretical and ex-
perimental work has demonstrated that tradeoffs in life-
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history traits alone — for example, growing quickly at
low concentration of a resource versus growing quickly
at high concentrations, but with only a single resource
type and no other interactions — are sufficient to pro-
duce not only stable coexistence of two strains [17–20]
but also non-transitive selection [21], in which pairwise
competitions of strains can exhibit “rock-paper-scissors”
behaviors [22].

Variation in multiple growth traits, such as lag time,
exponential growth rate, and yield (resource efficiency),
is pervasive in microbial populations [23–25]. Not only
are single mutations known to be pleiotropic with respect
to these traits [26, 27], but even genetically-identical lin-
eages may demonstrate significant variation [28, 29]. The
ecological effects of such variation, however, are unknown
in large populations with many distinct strains simulta-
neously competing, as is generally the case for microbes.

Here we study a model that shows how covariation
in growth traits can produce complex microbial com-
munities without any direct interactions among cells be-
yond competition for a single limiting resource. We focus
on variation in lag times, exponential growth rates, and
yields since they are the traits most easily measured by
growth curves of individual strains [30]. We show that co-
variation in these traits creates higher-order effects such
that the magnitude and even the sign of the selection
coefficient between a pair of strains may be changed by
the presence of a third strain. These higher-order effects
can produce nontrivial ecological phenomena: an unlim-
ited number of strains can coexist, potentially with a sin-
gle “keystone” strain stabilizing the community [31, 32];
strains that coexist in pairs do not coexist in a commu-
nity all together; and the champion of all pairwise com-
petitions may not dominate in a mixed community. Our
model can be combined with high-throughput measure-
ments of microbial growth traits across mutants to make

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 16, 2018. ; https://doi.org/10.1101/266569doi: bioRxiv preprint 

mailto:shakhnovich@chemistry.harvard.edu
https://doi.org/10.1101/266569


2

0 300 600 900 1200 1500

Time t

103

104

105

106

107

P
o
p

u
la

ti
o
n

 s
iz

e
 N

(t
)

A

Lag (λ)

E
xp

on
en

ti
al

 g
ro

w
th

 (
τ)

Saturation (Y)

0 1000 2000 3000 4000 5000 6000

Time t

100

101

102

103

104

105

106

107

108

P
o
p

u
la

ti
o
n

 s
iz

e
 N

i(
t)

B 0 1 2 3 4

Competition round r

FIG. 1. Model of growth and selection. (A) Approxi-
mation of a hypothetical growth curve (orange points) by the
minimal three-phase model (green). Each phase is character-
ized by a quantitative trait: lag time λ, growth time τ (re-
ciprocal growth rate), and yield Y at saturation. (B) Growth
curves of two competing strains over multiple rounds of com-
petition in the model. Vertical dashed lines mark the begin-
ning of each round, where the population is diluted down to
the same initial population size with new resources.

more accurate predictions of the distribution of ecological
effects and, in turn, evolutionary dynamics. Altogether
these results show how fundamental properties of micro-
bial growth are sufficient to generate complex ecological
behavior, underscoring the necessity of considering ecol-
ogy in studies of microbial evolution.

II. METHODS

We consider a microbial population consisting of multi-
ple strains with distinct growth traits, all competing for a
single limiting resource. These strains may represent dif-
ferent microbial species living in a community, mutants of
the same species, or even genetically-identical cells with
purely phenotypic variation. We approximate the growth
of each strain i by the minimal model in Fig. 1A, defined
by a lag time λi, exponential growth time τi (reciprocal
growth rate, or time for the strain to grow e-fold), and
yield Yi, which is the population size supported per unit
resource (Supplementary Methods Sec. S1) [33]. There-
fore the amount of resources strain i has consumed by
time t is Ni(t)/Yi, where Ni(t) is the population size of
strain i. Growth stops when the amount of resources
consumed by all strains equals the initial amount of re-
sources; we define the initial density of resources per cell
as ρ. Although it is possible to consider additional growth
traits such as a death rate or consumption of a secondary
resource, here we focus on the growth traits λi, τi, and
Yi since they are most often reported in microbial pheno-
typing experiments [24, 34]. See Table I for a summary
of all key notation.

The selection coefficient between a pair of strains i
and j measures their relative ability to compete for re-
sources [35, 36]:

Definition Notation

Lag time of strain i λi

Exponential growth time (reciprocal
growth rate) of strain i

τi

Yield (cells per resource) of strain i Yi

Density of strain i at beginning of
competition round

xi

Density of resources per cell at
beginning of competition round

ρ

Effective exponential growth time of
whole population (harmonic mean)

τ̄ =

∑
k
xk
Yk∑

k
xk
Ykτk

Effective yield of whole population
(harmonic mean)

Ȳ = 1∑
k
xk
Yk

Growth-lag tradeoff c = −
(
λi−λj
τi−τj

)
TABLE I. Summary of key notation.

sij = log

(
x′i
x′j

)
− log

(
xi
xj

)
, (1)

where xi is the density (fraction of the whole popula-
tion) of strain i at the beginning of the competition and
x′i is the density at the end. If new resources periodically
become available, as occur in both laboratory evolution
experiments and natural “seasonal” environments [33],
then the population will undergo cycles of lag, growth,
and saturation (Fig. 1B). We assume each round of com-
petition begins with the same initial density of resources
ρ; the population grows until all the resources are con-
sumed, and then it is diluted down to the original size
again. We also assume the growth traits λk, τk, Yk of
each strain remain the same over multiple competition
rounds. The selection coefficients in Eq. 1 measure the
rate of change of a strain’s density xi over many rounds
of these competitions (Supplementary Methods Sec. S2).

III. RESULTS

A. Contribution of multiple growth traits to
selection

We can solve for the selection coefficients in Eq. 1 in
terms of the strains’ traits {λk, τk, Yk}, the initial strain
densities {xk}, and the initial density of resources per
cell ρ (Supplementary Methods Sec. S3):

sij ≈ slagij + sgrowth
ij +

∑
k

scouplingijk , (2a)
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FIG. 2. Selection in growth-lag trait space. (A) Di-
agram of selection on growth and lag for strain i relative to
strain j. Trait values of strain j are marked by a black dot in
the center. If the traits of strain i lie in the blue region, i is
positively selected over strain j, while if strain i lies in the red
region, it is negatively selected. If strain i lies in the green
region, it is conditionally neutral with j (positively selected
at some densities and negatively selected at others). (B) Dia-
gram of growth and lag times for strain k relative to two other
strains i (blue) and j (red). If the traits of strain k lie in the
orange region (above the straight line joining i and j), then

its coupling term scouplingijk (Eq. 2b) increases the total selec-
tion coefficient of i over j, while if k lies in the violet region
(below the straight line), then it decreases the selection of i
over j.

where

slagij = − τ̄

τiτj
∆λij ,

sgrowth
ij = − τ̄

τiτj
∆τij log

(
ρȲ
)
, (2b)

scouplingijk = − τ̄ Ȳ
τiτj

xk
τkYk

(∆τik∆λkj −∆λik∆τkj) .

Here ∆λij = λi − λj and ∆τij = τi − τj denote the
pairwise differences in lag and growth times, while

τ̄ =

∑
k
xk
Yk∑

k
xk
τkYk

, Ȳ =
1∑
k
xk
Yk

(3)

are, respectively, the effective exponential growth time
(reciprocal growth rate) and effective yield for the whole
population (Supplementary Methods Sec. S4). Since both
of these quantities are harmonic means over the popula-
tion, they are dominated by the smallest trait values.
Therefore the effective growth time τ̄ for the whole pop-
ulation will be close to the growth time of the fastest-
growing strain (smallest τk), while the effective yield Ȳ
will generally be close to the yield of the least-efficient
strain (smallest Yk).

As Eq. 2 indicates, selection consists of three distinct
additive components. The first is selection on the lag

phase slagij , which is nonzero only if i and j have unequal
lag times. The second is selection on the growth phase

sgrowth
ij , which is similarly nonzero only if i and j have

unequal growth times. The relative magnitude of selec-
tion on growth versus lag is modulated by the density of
resources ρ and the effective population yield Ȳ :

sgrowth
ij

slagij
=

∆τij
∆λij

log
(
ρȲ
)
. (4)

In particular, increasing the resources ρ leads to an in-
crease in the magnitude of relative selection on growth
versus lag, since it means the growth phase occupies a
greater portion of the total competition time.

If i and j are the only two strains present, then the
total selection on strain i relative to j is the net effect

of selection on the lag and growth phases: sij = slagij +

sgrowth
ij [21]. Figure 2A qualitatively shows this selection

coefficient as a function of strain i’s lag and growth traits
relative to those of strain j. If strain i’s traits fall in the
blue region, the overall selection on it relative to strain
j will be positive, while if strain i’s traits fall in the red
region, it will be negatively selected relative to strain j.
Between these two regions lies a “conditionally-neutral”
region (green), where strain i will be positively selected
at some densities and negatively selected at others [21].
The slope of the conditionally-neutral region is log

(
ρȲ
)

according to Eq. 4.

B. Pairwise selection coefficients are modified by
additional strains through higher-order effects

If more than two distinct strains are present, then se-
lection between i and j is modified by higher-order ef-
fects from the other strains. These modifications occur
through three mechanisms, all fundamentally a conse-
quence of having a finite resource. The first mechanism is
through changes to the effective population growth time
τ̄ , which rescales all selection coefficients (Eq. 2b). For
example, the addition of a strain with much faster growth
will reduce the time all strains have to grow (Eq. 3),
and thereby decrease the magnitude of all selection coef-
ficients. The second modification is through the effective
population yield Ȳ . Like τ̄ , Ȳ is a harmonic mean over
strains, and similarly it will be significantly reduced if
a strain with very low yield is added. This may change
even the signs of some selection coefficients since changes
in Ȳ modify the relative selection on growth versus lag
between strains (Eq. 4).

Higher-order effects in τ̄ and Ȳ are non-specific in the
sense that these parameters are shared by all pairs of
strains in the population. In contrast, the third type of

modification is through the terms scouplingijk , which couple
the relative growth and lag traits of a pair i and j with a
third strain k (Eq. 2b). This effect is specific, since each
additional strain k modifies the competition between i
and j differently, depending on its growth traits and den-
sity xk. We can interpret this effect graphically by con-
sidering the space of growth and lag times for strains i,
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j, and k (Fig. 2B). If strain k lies above the straight line
connecting strains i and j in growth-lag trait space, then
the coupling term will increase selection on whichever
strain between i and j has faster growth (assumed to be
strain i in the figure). This is because strain k has rela-
tively slow growth or long lag compared to i and j, thus
using fewer resources than expected. This then leaves
more resources for i and j, which effectively increases
the selection on growth rate between the two strains be-

yond the sgrowth
ij term. If strain k instead lies below the

straight line, then it increases selection on the strain with
slower growth, since k uses more resources than expected.
For example, even if strain i has both better growth and
better lag compared to strain j, a third strain k could ac-
tually reduce this advantage by having sufficiently short
lag. Note that the coupling term is zero if all three strains
have equal growth times or equal lag times. These cou-
pling effects will furthermore be small if the relative dif-

ferences in growth and lag traits are small, since scouplingijk

is quadratic in ∆τ and ∆λ while slagij and sgrowth
ij are lin-

ear. In the following sections, we will demonstrate how
these three higher-order mechanisms lead to nontrivial
ecological dynamics.

C. Growth tradeoffs produce stable communities of
multiple strains on a single resource

Selection is frequency-dependent since each sij in Eq. 2
depends on the densities {xk} [21]. It is therefore possible
for a community of strains to be stable at certain com-
binations of densities (Supplementary Methods Sec. S5,
Fig. S1). The strains must have a linear tradeoff between
lag and growth times (Fig. 3A):

λi = −cτi + constant (5)

for all i and some parameter c > 0, which we define as
the growth-lag tradeoff. The resource density ρ must also
fall in the range (Fig. 3B)

ec

maxk Yk
< ρ <

ec

mink Yk
. (6)

Note that ρ > 1/mink Yk is necessary as well, since if
ρ is below this limit there will be insufficient resources
for some strains to grow at all. Since this limit is always
lower than the upper bound in Eq. 6 (because c > 0),
there will always be some range of ρ at which all strains
coexist. While real strains will not exactly obey Eq. 5,
even noisy tradeoffs cause effective coexistence over a fi-
nite time scale (Supplementary Methods Sec. S5, Fig. S2).

Intuitively, coexistence occurs because strains consume
resources in such a way to exactly balance selection on lag
and growth for all pairs of strains. The linear growth-lag
tradeoff across all strains from Eq. 5 causes the higher-

order coupling terms scouplingijk of the selection coefficient

to be zero (Fig. 2B). It also means there is some value of

the effective yield Ȳ that will enable sgrowth
ij +slagij = 0 for

all pairs i and j; this critical value of the effective yield
is Ȳ = ec/ρ (Eq. 4, Supplementary Methods Sec. S5).
The constraint on resource density ρ (Eq. 6) ensures that
the population can actually achieve this required effective
yield given the yield values of the individual strains.

D. Community stability may hinge on a single
keystone strain

Coexistence will be stable against small density fluc-
tuations if there is also a tradeoff in growth and yield
(Supplementary Methods Sec. S6, Fig. S3), in addition to
the growth-lag tradeoff (Eq. 5). An even stronger pertur-
bation is to remove one strain entirely. The stability of
ecosystems in response to removal of a strain or species
has long been an important problem in ecology; in partic-
ular, species whose removal leads to community collapse
are known as “keystone” species due to their importance
in stabilizing the community [31, 32].

Coexisting communities in our model will have a key-
stone strain for a certain range of resource density ρ. Fig-
ure 3B shows a diagram of competition outcomes across ρ
values for four hypothetical strains (blue, red, green, or-
ange): if ρ is in the orange or blue ranges, then removal
of the strain of corresponding color (orange or blue) will
cause collapse of the community (all remaining strains
but one will go extinct), since ρ will no longer satisfy
Eq. 6 for the remaining strains. Therefore the orange or
blue strain is the keystone. However, if ρ is within the
gray region, then the community is robust to removal
of any single strain. This shows that the keystone must
always be the least- or most-efficient strain (smallest or
highest yield Yk) in the community. Figure 3C shows
the population dynamics with each strain removed from
a coexisting community where the orange strain is the
keystone.

Besides removal of an existing strain, another impor-
tant perturbation to a community is invasion of a new
strain, either by migration or from a mutation. If the
growth and lag times of the invader lie above the diag-
onal line formed by the coexisting strains’ traits (e.g.,
as in Fig. 3A), then the invader will quickly go extinct
(Supplementary Methods Sec. S7). This would be true
even if the invader has a growth time or lag time shorter
than those of all the resident strains. On the other hand,
if the invader lies below the diagonal line in growth-lag
trait space, then it will either take over the population
entirely or coexist with one of the resident strains if it is
sufficiently close to the diagonal line. It cannot coexist
with more than one of the resident strains, since all three
points by assumption will not lie on a straight line in the
growth-lag trait space.
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FIG. 3. Coexistence of multiple strains on a single resource. (A) Growth and lag times of four strains (blue, red,
green, orange). For them to coexist in a community, these traits must have a linear tradeoff with slope −c (Eq. 5). (B) Diagram
of competition outcomes as a function of resource density ρ. Each inset shows the dynamics of the strains’ densities xi(r) over
rounds of competition r for a particular value of ρ. All four strains will coexist if ρ is in the range defined by Eq. 6 (shaded
regions). If ρ is in the orange or blue regions, coexistence hinges on a single keystone strain of corresponding color (orange or
blue), while if ρ is in the gray region, coexistence is robust to loss of any single strain. (C) Density dynamics of the same four
strains with resource density ρ in the orange region of (B), so that the orange strain is the keystone. All four strains coexist
together at first, then at competition round 2000 one strain is removed (different in each panel) and the remaining strains are
allowed to reach their steady state. See Supplementary Methods Sec. S11 for parameter values.

E. Pairwise competitions do not predict
community behavior

A fundamental issue for microbial ecology and evolu-
tion is whether pairwise competitions are sufficient to
predict how a whole community will behave [7, 9, 10].
For example, if several strains coexist in pairs, will they
coexist all together? Or if a single strain dominates all
pairwise competitions, will it also dominate in the mixed
community? We now show that competition for a single
limiting resource with tradeoffs in growth traits is suffi-
cient to confound these types of predictions due to the
higher-order effects in the selection coefficient (Eq. 2).

Strains that coexist in pairs will generally not
coexist all together. Strains i and j that coexist as a
pair are characterized by a particular growth-lag tradeoff
cij = −∆λij/∆τij (Eq. 5). For a set of these pairs to co-
exist all together, these tradeoffs must all be equal, which
will generally not be the case. However, if the growth-
lag tradeoffs are equal for all pairs, then the strains can
indeed coexist in a community, but not at the same re-
source densities as for the pairs (Supplementary Methods
Sec. S8).

Pairwise champion may not dominate in the
community. In a collection of strains, there may be one
“champion” strain that wins all pairwise competitions.
This champion, however, may not prevail in a mixed com-
petition of all strains. For example, in Fig. 4A the green
strain beats the blue and red strains individually with
a “hoarding” strategy — slower growth, but shorter lag
with lower yield — but together the blue and red strains
consume resources efficiently enough to use their faster

growth rates to beat green (Fig. 4B). This is a unique con-
sequence of higher-order ecological effects: the presence
of the red strain actually changes the sign of the selec-
tion coefficient between green and blue (from positive to
negative), and the blue strain similarly changes the sign
of selection between green and red. In this example it
occurs via modifications to the effective population yield
Ȳ . Even if the strains have identical yields, it is possible
for the pairwise champion to lose the mixed competition
over short time scales due to effects from the growth-lag

coupling terms scouplingijk (Supplementary Methods Sec. S9,

Fig. S4).

Selection can be non-transitive. It is also possi-
ble that there is no pairwise champion among a set of
strains, meaning that selection is non-transitive [22]. For
example, in Fig. 4C, red beats blue and green beats red,
but then blue beats green, forming a rock-paper-scissors
game [37, 38]. This outcome relies crucially on the exis-
tence of tradeoffs between growth traits, so that no sin-
gle growth strategy always wins (Supplementary Meth-
ods Sec. S10, Fig. S5). In this example, red beats blue
by having a shorter lag time, green beats red by growing
faster and using resources more efficiently (higher yield),
and blue beats green by having shorter lag and hoarding
resources (lower yield). Non-transitivity in this model
occurs only for pairwise competitions where each strain
starts with equal density (xi(0) = 1/2); invasion com-
petitions, where each strain competes against another
starting from very low density (as would occur in an in-
vasion by a migrant or a new mutant), do not demon-
strate this type of non-transitivity (Supplementary Meth-
ods Sec. S10, Fig. S5).
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FIG. 4. Pairwise competitions do not predict commu-
nity behavior. (A, B) Example of three strains (blue, red,
green) with a single pairwise champion (green). Panel (A)
shows density dynamics xi(r) for binary competitions, while
panel (B) shows outcome of ternary competition as a function
of initial conditions: red marks space of initial densities where
the red strain eventually wins, while green marks initial den-
sities where green eventually wins. Inset: density dynamics
starting from equal initial densities (marked by black dot in
main panel). (C, D) Same as (A, B), but for three strains
without a pairwise champion (non-transitivity). See Supple-
mentary Methods Sec. S11 for parameter values.

Non-transitive competitions are particularly confound-
ing for predicting the behavior of a mixed community.
Since there is no clear champion, non-transitive pairwise
competitions are often hypothesized as the basis for oscil-
lations or coexistence in mixed communities [22, 37, 38].
However, a non-transitive set of strains will not coexist
all together in our model. Which strain wins, though, is
not directly predictable from the pairwise selection coef-
ficients, and in fact may depend on the initial conditions.
For example, Fig. 4D shows the outcomes of ternary com-
petitions for a non-transitive set of strains as a function
of their initial densities. If green starts at sufficiently high
density, then it wins the mixed competition, but other-
wise red wins. In the inset we show one such ternary
competition, with initial conditions on the boundary be-
tween the red and green regimes. Here the outcome is
very sensitive to the initial conditions, since higher-order
effects from the decaying blue population draw the red
and green strains toward their unstable coexistence point,
where they temporarily remain until the blue strain goes
extinct and either red or green eventually wins.

IV. DISCUSSION

Ecological effects of growth trait variation. Vari-
ation in multiple growth traits is widespread in micro-
bial populations [23–25], since even single mutations tend
to be pleiotropic with respect to these traits [26, 27].
Genetically-identical cells can also demonstrate signifi-
cant growth variation [28, 29]. We have shown how this
variation, with competition for only a single finite re-
source and no other interactions, is sufficient to produce
a range of ecological phenomena, such as coexistence,
keystones, non-transitivity, and other collective behav-
iors where a community is more than the sum of its parts.
This is because variation in multiple growth traits cre-
ates higher-order effects in which the pairwise selection
coefficients themselves change in the presence of other
strains. This goes beyond the effects of ordinary clonal
interference [39]; for example, even the sign of the se-
lection coefficients may change due to these higher-order
effects, so that a strain that is the best in pairwise com-
petitions actually goes extinct in the mixed community
(Fig. 4A,B). For example, a mutation that is apparently
beneficial against the wild-type alone may not only ap-
pear to be less beneficial in the presence of other muta-
tions, but it could even appear to be deleterious. These
results highlight the importance of considering the muta-
tional distribution of ecological effects, rather than just
fitness effects relative to a wild-type, for predicting evo-
lutionary dynamics.

The ability to coexist on a single limiting resource con-
tradicts the principle of competitive exclusion [15, 16].
While previous work indicated that two strains may sta-
bly coexist through tradeoffs in growth traits [17–21],
here we have shown that an unlimited number of strains
can in fact coexist through this mechanism, and that co-
existence may be multi-stable at a range of densities. Our
work also supports the hypothesis that higher-order ef-
fects should be widespread in microbial ecosystems [7, 9].
Experimental tests for these effects and the predictive
power of pairwise competitions remains limited, however.
A recent study found that pairwise competitions of soil
bacteria generally did predict the behavior of three or
more species together [10], although there were impor-
tant exceptions. Our results suggest an avenue for future
investigations of this problem.

Tradeoffs between growth traits. Tradeoffs among
lag, growth, and yield underlie many key outcomes of
the model, such as stable coexistence. The prevalence
of these tradeoffs in microbial populations has been the
subject of many previous studies, especially due to inter-
est in the r/K (growth-yield) selection problem. Mod-
els of metabolic constraints do imply a tradeoff between
growth rate and yield [40, 41], while models of the lag
phase suggest a synergy, rather than a tradeoff, with the
growth phase (c < 0 in Eq. 5) [42–44]. While some ex-
perimental results have agreed these predictions, others
have found the opposite trends or no trends at all [23–
27]. In general, some sets of microbial strains certainly
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realize tradeoffs, but it remains unclear whether tradeoffs
are routinely generated by random mutations or emerge
through evolution.

Applications to experimental ecology and evo-
lution. Given a collection of microbial strains, we can
measure their individual growth curves to determine their
growth traits [30], and then predict the population dy-
namics of any combination of strains using our model.
If we also know the distribution of mutational effects on
growth traits, we can further predict evolutionary dy-
namics to determine what patterns of traits are likely
to evolve, which can be compared with experimental
data [23–26]. In contrast to another recent computa-
tional method [45], which also aims to predict competi-
tions from individual growth curves, our results are ana-
lytical and therefore provide greater insight into the con-
tribution of different growth traits to selection and evo-
lutionary dynamics.

Our results are especially relevant to evolution and
ecology experiments where populations undergo periodic
growth cycles. While the importance of interference
among mutants has been widely studied in these exper-
iments [6, 39], it is generally assumed that each mutant
is described by a fixed selection coefficient independent
of the background population, since the relative genetic
homogeneity of the population suggests there should be
no additional ecological interactions beyond competition

for the limiting resource. But since even single muta-
tions will produce variation in multiple growth traits,
our results show that higher-order effects should actually
be widespread in these populations. Even genetically-
identical populations may experience higher-order effects
due to stochastic cell-to-cell variation [28, 29, 42], al-
though the effects will fluctuate from one round of compe-
tition to the next assuming cell-to-cell variation does not
persist over these timescales. While natural populations
likely contain more complex interactions beyond compe-
tition for a single resource between different strains or
species, our results here can nevertheless serve as a null
model for detecting these interactions [19].
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