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Abstract 

Motivation: One of the main benefits of using modern RNA-sequencing (RNA-seq) technology 

is the more accurate gene expression estimations. However, numerous issues can result in the 

possibility that an RNA-seq read can be mapped to multiple locations on the reference genome 

with the same alignment scores, which occurs in plant, animal, and metagenome samples. Such a 

read is so-called a multiple mapping read (MMR). The impact of these MMRs is reflected in gene 

expression estimation and all downstream analyses, including differential gene expression, 

functional enrichment, etc. Current analysis pipelines lack the tools to test the reliability of gene 

expression estimations, thus are incapable of ensuring the validity of all downstream analyses.  

 

Results: Our investigation into 95 RNA-seq datasets from seven species (totaling 1,951GB) 

indicates an average of roughly 22% of all reads are MMRs for plant and animal species.  Here we 
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present a tool called GeneQC (Gene expression Quality Control), which can accurately estimate 

the reliability of each gene’s expression level. The underlying algorithm is designed based on 

extracted genomic and transcriptomic features through extensive use of mathematical and 

statistical modeling and design. GeneQC utilizes big data-driven mathematical modeling 

approaches and allows researchers to determine reliable expression estimations and conduct 

further analysis on the gene expression that are of sufficient quality. This tool also enables 

researchers to investigate continued analysis to determine more accurate gene expression estimates 

for those with low reliability. 

 

Availability: GeneQC is freely available at http://bmbl.sdstate.edu/GeneQC/home.html. 

Contact: qin.ma@sdstate.edu 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

1 Introduction  

RNA-seq is a revolutionary high-throughput process that allows researchers to observe the genetic 

makeup of a particular sample (Garber, et al., 2011; Ozsolak and Milos, 2011; Wang, et al., 2009).  

Research involving RNA-seq data produces genetic expression profiles, in which a discrete 

expression value for each annotated gene for that species is identified.  These gene expression 

profiles are extracted through computational RNA-seq analysis pipelines (Anders, et al., 2015; 

Andrews, 2010; Bonfert, et al., 2015; Chang, et al., 2015; Dobin, et al., 2013; Grabherr, et al., 

2011; Kim, et al., 2015; Kong, 2011; Li and Dewey, 2011; Pertea, et al., 2016; Pertea, et al., 2015; 

Philippe, et al., 2013; Trapnell, et al., 2009; Wang, et al., 2010; Wang, et al., 2009; Wu, et al., 

2013; Wu, et al., 2016; Yuan, et al., 2017) and can be analyzed further to identify differentially 
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expressed genes between treatment groups (Anders and Huber, 2012; Pimentel, et al., 2017; 

Ritchie, et al., 2015; Robinson, et al., 2010; Trapnell, et al., 2012), enriched functional gene 

modules (Chen, et al., 2009; Pathan, et al., 2015; Subramanian, et al., 2005; Zhou and Su, 2007), 

co-expression networks (Li, et al., 2009), among other applications.   

 

One of the applications of RNA-seq analysis pipelines is to use the sequenced short reads with a 

reference genome, if available, to estimate the expression level of each gene (Miller, et al., 2014; 

Nagalakshmi, et al., 2008). The basic process is to map these short reads to the location with the 

best alignment score on the reference genome (Wu, et al., 2014). Even though numerous methods 

have been developed to facilitate the analysis of RNA-seq data, some important issues persist. The 

nature of DNA—long strands of millions of base-pairs created by a reordering of the four 

nucleotides—makes it inevitable that some similarities and duplications will occur throughout the 

genome. This can lead to ambiguity during read mapping, with specific reads being aligned to 

multiple locations across the reference genome with the same alignment scores (Baruzzo, et al., 

2017; D'haeseleer, 2006; Li, et al., 2009; Oshlack, et al., 2010; Swan, 2013; Trapnell, et al., 2013).  

This MMR problem can be observed in any genomic region, including, exons and transcripts.  For 

conciseness, we refer to these genomic regions simply as “genes”. This issue has been observed in 

many diploid species, including human and other mammals and Arabidopsis (Anders and Huber, 

2012; Anders, et al., 2015; Bonfert, et al., 2015; Garber, et al., 2011; Wang, et al., 2009), as well 

as many multiploid species. 

 

The general solution of the MMR problem in previous studies is to discard or evenly distribute to 

all potential locations, leading to severe, biased underestimation or overestimation of the gene 
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expression levels, respectively (Chang, et al., 2015). More commonly, a proportional assignment 

of ambiguous reads, in which the read is segmented in smaller portions based on the number of 

possible mapping locations and uniquely mapped reads to each of them (Li, et al., 2009).  In species 

with high levels of uncertainty, especially angiosperms, the MMR problem can have serious 

implications on gene expression levels and can be extremely hard to remediate due to the genes’ 

and chromosomes’ duplicative nature (Grabherr, et al., 2011).  In some species, such as Glycine, 

up to 75% of the genes have the duplicated partners in its genome (Kim, et al., 2015). During our 

initial investigation into the MMR problem, 95 datasets totaling 1,951GB were analyzed, and it 

was determined that an average of 22% of all reads were ambiguously aligned over seven distinct 

plant and animal species (Fig. 1A).  In some datasets, over 35% of the reads were ambiguously 

aligned, and more details are provided in Preliminary Analysis S1 and Table S1.  
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To address this issue, we present GeneQC based on novel mathematical modeling approaches to 

quantify the mapping uncertainty issue.  This tool can determine genes having reliable expression 

estimates and those require further analysis, along with statistical significant evaluation of the 

mapping uncertainty level. The basic idea is to develop a distinct score, referred to as D-score, to 

group genes into several categorizations with different reliability levels, through integration and 

modeling of genomic and transcriptomic features. Specifically, (i) sequence similarity between a 

particular gene and other genes is collected to give an insight into the genomic characteristics 

contributing to the MMR problem; (ii) the proportion of shared MMR between gene pairs provides 

Figure 1. (A) The MMR percentages for the 95 analyzed datasets across seven species. More detailed information 

can be found in Table S1; (B) GeneQC takes a read alignment, reference genome, and annotation file as inputs; 

(C) The first step of GeneQC is to extract features related to mapping uncertainty for each annotated gene; (D) 

Using the extracted features, a linear model is constructed for calculating the D-score, which represents the 

mapping uncertainty for each gene; (E) A series of Mixture Normal and Mixture Gamma distributions are fit to 

the D-scores; (F) The mixture models are used to categorize the D-scores into different levels of mapping 

uncertainty along with a statistical significance score for each gene; (G) GeneQC outputs a table containing the 

extracted features, D-score, and mapping uncertainty categorization.   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/266445doi: bioRxiv preprint 

https://doi.org/10.1101/266445
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

information regarding the transcriptomic influences of mapping uncertainty for each dataset; and 

(iii) the degree of each gene, representing the number of gene-gene interactions resulting from (i) 

and (ii).  GeneQC provides values for each extracted feature, a D-score, and mapping uncertainty 

categorization for each annotated gene corresponding to a provided dataset. More details of the 

procedure can be found in the following section.  

 

2 Methods 

Requires Inputs for GeneQC  

GeneQC takes as inputs only three pieces of information that are easily found in most RNA-seq 

analysis pipelines: (1) the read mapping result SAM file; (2) the fasta reference genome 

corresponding to that species; and (3) the species-specific annotation gff/gff3 file (Fig. 1B).   

 

Extraction of Relevant Mapping Uncertainty Features 

From input information, GeneQC performs feature extraction, in which the three characteristics 

are calculated for each annotated gene (Figure 1C).  The first feature is derived from the genomic 

level and involves the similarity between two genes.  For each gene, this value is calculated as the 

maximum of the sequence similarity multiplied by the match length, where the match length is the 

longest continuous string of matching base pairs. The second feature comes from the 

transcriptomic level and represents proportion of shared MMR.  Here, the value is calculated as 

the maximum proportion of shared MMR between the gene of interest and another gene.  The third 

feature collected is a network factor that represents the number of alternate gene location with 

significant interactions with the gene of interest based on the previous two parameters.  In addition 

to understanding the severity of the MMR problem in each sample, GeneQC provides species- or 
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sample-specific insight into each feature’s impact on mapping uncertainty. This is done by 

developing a linear model to determine the significance and degree of impact for each feature.  To 

perform the linear modeling, a dependent variable is constructed, with more detailed information 

on this value and each feature found in Methods S1. 

 

Sample-specific D-score Development using Linear Modeling 

GeneQC utilizes the linear regression models to calculate the optimal coefficients with the three 

extracted features representing the independent variables and the constructed variable representing 

the dependent variable (Figure 1D). In this modeling, all possible interaction terms are considered.   

𝐷𝐷 = 𝛼𝛼1𝐷𝐷1 + 𝛼𝛼2𝐷𝐷2 + 𝛼𝛼3𝐷𝐷3 + 𝛼𝛼4𝐷𝐷1𝐷𝐷2 + 𝛼𝛼5𝐷𝐷1𝐷𝐷3 + 𝛼𝛼6𝐷𝐷2𝐷𝐷3 + 𝛼𝛼7𝐷𝐷1𝐷𝐷2𝐷𝐷3 

The statistically significant coefficients are then combined, generating the equation to define the 

D-score. This D-score represents the mapping uncertainty for each annotated gene and is provided 

to give researchers an idea of how reliable their initial read mappings are, with a higher D-score 

representing more mapping uncertainty, and thus a less reliable expression estimate.  More specific 

details regarding this process can be found in Methods S2. 

 

Mixture Model Fitting  

Based on the calculated sets of D-scores through initial investigations during GeneQC 

development, there are clear underlying distributions for these scores, intuitively representing 

levels of mapping uncertainty.  For this purpose, extensive mixture model fitting is included within 

GeneQC to best fit a variable number of distributions to each set of D-scores (Figure 1E).  

Specifically, it is assumed that each set of D-scores can be expressed as a mixture model 

distribution given by  
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𝑃𝑃(𝑋𝑋|𝜃𝜃) = �𝛽𝛽𝑘𝑘𝑌𝑌𝑘𝑘(𝑋𝑋|𝜃𝜃𝑘𝑘)
𝑘𝑘

 

with 𝛽𝛽𝑘𝑘  representing the weighting parameter of the 𝑘𝑘𝑡𝑡ℎ  component, 𝑌𝑌𝑘𝑘  representing the 

probability density function of the 𝑘𝑘𝑡𝑡ℎ component of the mixture model, and 𝜃𝜃𝑘𝑘 representing the 

parameters of the 𝑘𝑘𝑡𝑡ℎ  component.  Based on our preliminary investigations into the D-score 

development, we have selected two underlying distributions for this purpose: Gamma and 

Gaussian.  GeneQC fits mixture models for both the Gamma and Gaussian distributions with a 

variable number of distributions, ranging from two to five distributions. The optimally fitted 

mixture model is determined using a Bayesian Information Criterion (BIC) with a penalization 

based on the number of distributions is used to determine the best-fitting distribution.  Specific 

details regarding the mixture model fitting procedure are outlined in Methods S3. 

 

Categorization 

The best fitting mixture model is then used to separate each D-score into a category representing 

the severity of mapping uncertainty, thus indicating the mapping uncertainty categorization for 

each gene (Figure 1F).  In addition to the mapping uncertainty categorization, a significance value 

based on the posterior probabilities of the other distributions is provided to represent the certainty 

of the gene ID belonging to that category.  Details for the categorization, cutoffs, and significance 

value are provided in Methods S4.  The categorizations based on the mixture model fitting of the 

D-scores is then provided along with each of the three features and the D-score for each gene 

related to the user-provided mapping and reference genome.  These items are organized in tabular 

form to the user to make informed decisions about further and continued analysis (Figure 1G).  An 

example output file is provided in Table S2. 
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3 Conclusions 

GeneQC is a tool used to address an issue in modern RNA-seq analysis.  Oversight in the quality 

of RNA-seq read mapping can have drastic consequences for all downstream analyses, and 

mapping uncertainty is a significant cause of problems in further analysis. GeneQC can provide 

insight into the severity of this issue for each annotated gene in terms of three genomic and 

transcriptomic features. It utilizes mathematical and statistical modeling to combine these features 

into a distinct score representing the severity of mapping uncertainty and provides a categorization 

based on fitting mixture models to the derived D-scores, along with a value indicating the 

significance of this categorization.  This information allows researchers to make more well-

informed decisions based on the results of their RNA-seq data analysis and to plan further analyses 

to address this issue.     

 

In addition to the direct provisions of GeneQC, interpretations of the coefficients allow for a further 

examination of the specific features contributing the mapping uncertainty.  This will allow for 

further analysis and re-alignment strategies to be developed to the specific characteristics of the 

dataset.  We are currently using this information to provide a computational tool capable of 

performing re-alignment of reads currently aligned to genes with high D-scores with the purpose 

of assisting researchers in correction of mapping uncertainty.  In the future, GeneQC will be 

integrated into a web server that apply this tool and associated re-alignment tools to perform large-

scale RNA-seq analyses on human, plant, and metagenome datasets.  This application will allow 

for ease-of-use and collection of more data to support research with significant MMR issues.     
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