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Abstract 
Alzheimer’s disease (AD) is characterized by neuronal loss and astrocytosis in the cerebral cortex. 
However, the effects of brain cellular composition are often ignored in high-throughput molecular studies. 
We developed and optimized a cell-type specific expression reference panel and employed digital 
deconvolution methods to determine brain cellular distribution in three independent transcriptomic studies. 
We found that neuronal and astrocyte proportions differ between healthy and diseased brains and also 
among AD cases that carry specific genetic risk variants. Brain carriers of pathogenic mutations in APP, 
PSEN1 or PSEN2 presented lower neurons and higher astrocytes proportions compared to sporadic AD.  
Similarly, the APOE ε4 allele also showed decreased neurons and increased astrocytes compared to AD 
non-carriers.  On the contrary, carriers of variants in TREM2 risk showed a lower degree of neuronal loss 
than matched AD cases in multiple independent studies. These findings suggest that genetic risk factors 
associated with AD etiology have a specific imprinting in the cellular composition of AD brains. Our 
digital deconvolution reference panel provides an enhanced understanding of the fundamental molecular 
mechanisms underlying neurodegeneration, enabling the analysis of large bulk RNA-seq studies for cell 
composition, and suggests that correcting for the cellular structure when performing transcriptomic analysis 
will lead to novel insights of AD. 
 
 
Keywords  
Digital deconvolution, Alzheimer’s disease, cellular composition, bulk RNA-seq, autosomal dominant AD, 
TREM2. 
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Introduction 
Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized clinically by gradual and 

progressive memory loss and pathologically by the presence of senile plaques (Aβ deposits) and 
neurofibrillary tangles (NFTs, Tau deposits) in the brain [41]. AD has a substantial but heterogeneous 
genetic component. Mutations in the amyloid-beta precursor protein (APP) and Presenilin genes (PSEN1 
and PSEN2) [21, 59] cause autosomal dominant AD (ADAD) which is typically associated with early-onset 
(<65 years).  In contrast, the most common manifestation of AD presents late-onset (LOAD) and accounts 
for the majority of the cases (90-95%). Despite appearing sporadic in nature, a complex genetic architecture 
underlies LOAD risk. APOE ε4 is the most common genetic risk factor, increasing the risk in 3- to 8-fold 
[19]. In addition, recent whole genome and whole exome analysis have identified rare coding variants in 
TREM2 [9, 32], PLD3 [20], ABCA7 [22, 63]  and SORL1 [26, 56] that are associated with AD and confer 
risk comparable to that of carrying one APOE ε4 allele. Besides age at onset, the clinical presentations of 
LOAD and ADAD are remarkably similar with an amnestic and cognitive impairment phenotype [57, 66]. 
A minor fraction of cases of ADAD have additional neurological findings, sometimes also seen in LOAD 
[57, 66]. 
 Altered cellular composition is associated with AD progression and decline in cognition. Neuronal 
loss in the hippocampus is characteristic in the initial stages of AD, which could explain early memory 
disturbances [52, 71]. As the disease progresses, neuronal death is observed throughout the cerebral cortex. 
Furthermore, ~25% of individuals who die by ~75 years of age who were cognitively normal also presented 
substantial cerebral lesions that resemble AD pathology, including amyloid plaque, NFTs, and neuronal 
loss [37]. Thus, the identification of the brain cellular population structure is essential for understanding 
neurodegenerative disease progression [30]. However, stereology protocols for counting neurons can be 
tedious, require extensive training and are susceptible to technical artifacts which may lead to biased 
quantification of cell-type distributions [30]. 

Recently there has been a growing interest in understanding the transcriptomic changes attributed 
to AD [8, 16, 27, 46, 50, 53, 62, 72], as these may point to underlying molecular mechanisms of disease. 
These studies are typically designed to analyze the expression profiles of large cohorts ascertained from 
homogenized regions of the brain (e.g. bulk RNA-seq) of affected and control donors. However, bulk 
RNA-seq captures the gene expression of all of the constituent cells in the sampled tissue, and the altered 
cellular composition associated with AD has been reported to confound downstream analyses [62].  

Digital deconvolution approaches enhance the interrogation of expression profiles to identify the 
cellular population structure of individual samples, alleviating the requirement of additional 
neurostereology procedures. These approaches have been developed, tested and applied to ascertain cellular 
composition altered in many traits [40, 51, 61, 75]. However, digital deconvolution has not been applied to 
identify the cellular population structure from RNA-seq from human brain tissue. Technical constraints 
restrict the dissociation of cells from the brains for very specific conditions [13, 73, 74]. Nevertheless, a 
limited number of RNA-seq from isolated cell populations from the brain have been generated [13, 73, 74]. 
Using these resources, we are now able to generate a reference panel for digital deconvolution of human 
brain bulk RNA-seq data. 

We sought to investigate the cellular population structure in AD by analyzing RNA-seq from 
multiple brain regions of LOAD participants.  To do so, we assembled a novel brain reference panel and 
evaluated the accuracy of digital deconvolution methods by analyzing additional cell-type specific RNA-
seq samples and by creating synthetic admixtures with defined cellular distributions. Then we analyzed 
large cohorts of pathologically confirmed AD cases and controls (N = 613) and verified that it predicts 
cellular distribution patterns consistent with neurodegeneration. Finally, we generated RNA-seq from the 
parietal lobe of participants from the Knight-ADRC [39], including non-demented controls, LOAD cases, 
with enriched proportions of carriers of high-risk coding variants associated with AD, and also ADAD 
from the Dominantly Inherited Alzheimer Network [23] (DIAN). We compared the cell composition in 
ADAD and LOAD; and also evaluated differences among carriers of coding high-risk variants in PLD3, 
TREM2 and APOE ε4. Our findings indicate that cell-type composition differs among carriers of specific 
genetic risk factors, which might be revealing distinct pathogenic mechanisms contributing to disease 
etiology.   
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Materials and methods 
 
Subjects and Samples 
DIAN and Knight-ADRC  

Parietal lobe tissue of post-mortem brain was obtained with informed consent for research use and 
were approved by Washington University in St. Louis review board. RNA was extracted from frozen brain 
using Tissue Lyser LT and RNeasy Mini Kit (Qiagen, Hilden, Germany).  RNA-seq Paired end reads with 
read length of 2×150bp were generated using Illumina HiSeq 4000 with a mean coverage of 80 million 
reads per sample (Table 1; Table S1). RNA-seq was generated for 19 brains from The Dominantly 
Inherited Alzheimer Network (DIAN), 84 brains with late-onset AD and 16 non-demented controls from 
The Charles F. and Joanne Knight Alzheimer's Disease Research Center (Knight ADRC) [39]. The clinical 
status of participants was neuropathologically confirmed [47].  We identified three additional participants 
from the Knight ADRC study with PSEN1 (A79V, I143T, S170F) mutations. CDR scores were obtained 
during regular visits throughout the study prior to the subject’s decease [48]. A range of other pathological 
measurement were collected during autopsy including Braak staging, as previously described [11].  

RNA was extracted from frozen brain tissues using Tissue Lyser LT and RNeasy Mini Kit 
(Qiagen, Hilden, Germany) following the manufacturer’s instruction. RIN (RNA integrity) and DV200 
were measured with RNA 6000 Pico Assay using Bioanalyzer 2100 (Agilent Technologies). The RIN is 
determined by the software on the Bioanalyzer taking into account the entire electrophoretic trace of the 
RNA including the presence or absence of degradation products. The DV200 value is defined as the 
percentage of nucleotides greater than 200nt. RIN and DV200 for all the samples can be found on Table 
S1. The yield of each sample is determined by the Quant-iT RNA Assay (Life Technologies) on the Qubit 
Fluorometer (Fisher Scientific). The cDNA library was prepared with the TruSeq Stranded Total RNA 
Sample Prep with Ribo-Zero Gold kit (Illumina) and then sequenced by HiSeq 4000 (Illumina) using 
2×150 paired end reads at McDonnell Genome Institute, Washington University in St. Louis with a mean 
of 58.14 ± 8.62 million reads. Number of reads and other QC metrics can be found in Table S1. 
 
Mayo Clinic Brain Bank 

Mayo Clinic Brain Bank RNA-seq was accessed from the AMP-AD portal (synapse ID = 
5550404; accessed January 2017) (Table 1). Paired end reads of 2×101 base pairs were generated by 
Illumina HiSeq 2000 sequencers for an average of 134.9 million reads per sample. Neuropathology criteria, 
quality control procedures, RNA extraction and sequencing details are explained elsewhere [8].  

RNA-seq based transcriptome data was generated from post-mortem brain tissue collected from 
cerebellum (189 samples) and temporal cortex (191 samples) of Caucasian subjects [2, 8]. RNA was 
extracted using Trizol® reagent and cleaned with Qiagen RNeasy. RIN measurement was performed with 
Agilent Technologies 2100 Bioanalyzer. Samples with RIN greater than 5 were included. Library was 
prepared by Mayo Clinic Medical Genome Facility Gene Expression and Sequencing Cores with TruSeq 
RNA Sample Prep Kit (Illumina). 
 
Mount Sinai Brain Bank  

Mount Sinai Brain Bank RNAseq study was downloaded from the AMP-AD portal (synapse ID = 
3157743; accessed January 2017) (Table 1). Single end reads of 100 nucleotides was generated by Illumina 
HiSeq 2500 System (Illumina, San Diego, CA) for an average of 38.7 million reads per sample [5].   

This dataset contains 1030 samples collected from four post-mortem brain regions of 300 subjects: 
anterior prefrontal cortex (BA10), superior temporal gyrus (BA22), parahippocampal gyrus (BA36), and 
inferior frontal gyrus (BA44). RNAseq was generated using the TruSeq RNA Sample Preparation Kit v2 
and Ribo-Zero rRNA removal kit (Illumina, San Diego, CA) [3].  
 
iPSC-derived neurons  
 We have generated and characterized human iPSC made from human fibroblasts using non-
integrating Sendai virus carrying OCT3/4, SOX2, KLF4, and cMYC [65, 68]. iPSCs were plated in a v-
bottom plate in neural induction media (StemCell Technologies; 65,000 per well) to form highly uniform 
neural aggregates. After 5 days, neural aggregates were transferred onto PLO/laminin-coated tissue culture 
plates. Neural rosettes formed over 5-7 days. The resulting neural rosettes were then isolated by enzymatic 
selection (StemCell Technologies) and cultured as neural progenitor cells (NPCs). NPCs were then 
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differentiated culturing in neural maturation medium (neurobasal medium supplemented with B27, GDNF, 
BDNF, cAMP).  
 
TRAP-seq mice 

All animal procedures were performed in accordance with the guidelines of Washington 
University's Institutional Animal Care and Use Committee. The Rosa26fsTRAP mice 
(Gt(ROSA)26Sortm1(CAG-EGFP/Rpl10a,-birA)Wtp) [76] (The Jackson Laboratory) were crossed with PVCre 
mice (Pvalbtm1(cre)Arbr) [35] (The Jackson Laboratory) to produce PV-TRAP mice directing expression 
of  EGFP-L10a ribosomal fusion protein in parvalbumin (PV) expressing cells.  
Purification of cell-type specific mRNA by translating ribosome affinity purification (TRAP) was 
described previously [34] with modifications. Briefly, PV-TRAP mouse brain was removed and quickly 
washed in ice-cold dissection buffer (1× HBSS, 2.5 mM HEPES-KOH (pH 7.3), 35 mM glucose, and 4 
mM NaHCO3 in RNase-free water). Barrel cortex was rapidly dissected and flash-frozen in liquid nitrogen, 
and then stored at -80 °C until use. Affinity matrix was prepared with 150 µl of Streptavidin MyOne T1 
Dynabeads, 60 µg of Biotinylated Protein L, and 25 µg of each of GFP antibodies 19C8 and 19F7. The 
tissue was homogenized on ice in 1 ml of tissue-lysis buffer (20 mM HEPES KOH (pH 7.4), 150 mM KCl, 
10 mM MgCl2, EDTA-free protease inhibitors, 0.5 mM DTT, 100 µg/ml cycloheximide, and 10 µl/ml 
rRNasin and Superasin). Homogenates were centrifuged for 10 min at 2,000 × g, 4 °C, and 1/9 sample 
volume of 10% NP-40 and 300 mM DHPC were added to the supernatant at final concentration of 1% 
(vol/vol). After incubation on ice for 5 min, the lysate was centrifuged for 10 min at 20,000 × g to pellet 
insolubilized material. Then 200 µl of freshly resuspended affinity matrix was added to the supernatant and 
incubated at 4 °C for 16–18 hours with gentle end-over-end mixing in a tube rotator. After incubation, the 
beads were collected with a magnet and resuspended in 1000 µl of high-salt buffer (20 mM HEPES KOH 
(pH 7.3), 350 mM KCl, 10 mM MgCl2, 1% NP-40, 0.5 mM DTT and 100 µg/ml cycloheximide), and 
collected with magnet as above. After 4 times of washing with high-salt buffer, RNA was extracted using 
Absolutely RNA Nanoprep Kit (Agilent Technologies) following manufacturer’s instruction. RNA 
quantification was measured using Qubit RNA HS Assay Kit (Life Technologies) and the integrity was 
determined by Bioanalyzer 2100 using an RNA Pico chip (Agilent Technologies). The cDNA library was 
prepared with Clontech SMARTer and then sequenced by HiSeq3000. Single end reads of 50 base pairs 
were generated for an average of 29.2 million reads per sample (24 samples).  
 
 
iPSC-derived microglia 

The data was accessed from the AMP-AD portal (Synapse ID syn7203233). Myeloid progenitors 
expressing CD14/CX3CR1 were generated within 30 days of differentiation. iPSC-derived microglia were 
able to phagocytose and responded to ADP by producing intracellular Ca2+ transients, whereas 
macrophages lacked such response. The differentiation protocol was highly reproducible across several 
induced pluripotent stem cell (iPSC) lines. 
 
RNA-seq QC and Alignment 

FastQC was applied to DIAN and Knight-ADRC RNAseq data to perform quality check on 
various aspects of sequencing quality [58]. The DIAN and Knight-ADRC dataset was aligned to human 
GRCh37 primary assembly using Star (ver 2.5.2b) [24]. We used the primary assembly and aligned reads to 
the assembled chromosomes, un-localized and unplaced scaffolds, and discarded alternative haploid 
sequences. Sequencing metrics, including coverage, distribution of reads in the genome [4], ribosomal and 
mitochondrial contents and alignment quality, were further obtained by applying Picard 
CollectRnaSeqMetrics (ver 2.8.2) to detect sample deviation. Additional QC metrics can be found in Table 
S1. 

Aligned and sorted  bam files were loaded into IGV [55] to perform visual inspection of target 
variants. Samples carrying unexpected variants or missing expected variants were labeled as potential 
swapped samples. In addition, variants were called from RNA-seq following BWA/GATK pipeline [44, 
45]. The identity of the samples was later verified by performing IBD analysis against genomic typing from 
GWAS chipsets.  
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Expression quantification 
We applied Salmon transcript expression quantification (ver 0.7.2) [54] to infer the gene 

expression for all samples included in the reference panel and participants in the Mayo, MSBB, DIAN and 
Knight-ADRC. We quantified the coding transcripts of Homo Sapiens included in the GENCODE 
reference genome (GRCh37.75). Similarly, we quantified the expression of the mice samples included in 
the reference panel using the Mus Musculus reference genome (mm10). 
 
Reference Panel 

We assembled a cell-type specific reference panel from publicly available RNA-seq datasets 
comprised of both immunopanning collected or iPSC derived neurons, astrocytes, oligodendrocytes, and 
microglial cells from human and murine samples.  For immunopanning collected cells, antibodies for cell-
type specific antigens were utilized to bind and immobilize their targeted cell types in order to 
immunoprecipitate and purify each cell type from the suspensions [73]. cDNA synthesis was accomplished 
using Ovation RNA-seq system V2 (Nugen 7102) and library prepared with Next Ultra RNA-seq library 
prep kit from Illumina (NEB E7530) and NEBNext® multiplex oligos from Illumina (NEB E7335 E7500). 
TruSeq RNA Sample Prep Kit (Illumina) was used to prepare library for paired-end sequence on 100ng of 
total RNA extracted from each sample. Illumina HiSeq 2000 Sequencer was used to sequence all libraries 
[73]. 

Both human adult temporal cortex tissue, collected from patients receiving neurological surgeries, 
and mice cells were disassociated, sorted and sequenced as described elsewhere [74], and deposited in the 
Gene Expression Omnibus GSE73721 and GSE52564. We also accessed neural progenitor cells (day 17) 
and mature human neurons (day 57 and 100) from Broad iPSC deposited in the AMP-AD portal [6] and  
neural progenitor cells and iPSC-derived neurons from [12]. Broad iPSC derived neurons accessed from 
AMP-AD portal were generated using an embryoid body-based protocol to differentiate into forebrain 
neurons [1]. Wild-type cells used in the protocol were obtained from UConn StemCell Core.  RNA was 
purified using PureLink RNA mini-kit (Life Technologies) and libraries were prepared by Broad Institute's 
Genomics Platform using TruSeq protocol. Please refer to Table S2 for additional information. 
 
Gene markers 

The reference panel was assembled with samples from four distinct cell types. A redundant set of 
well-known cell-type markers was selected from the literature [74] (Table S3). Principal component 
analysis was performed on the reference panel using R function prcomp (version 3.3.3) to verify that the 
expressions of these gene were clustering samples by their cell types (Fig S1b; Fig S2a).  
 
Inference of the cellular population structure 

We ascertained alternative computation deconvolution algorithms implemented in the CellMix 
package (ver 1.6). Based on accuracy and robustness evaluation results we compared and reported the 
following three algorithms that outperformed the others: Digital Sorting Algorithm (named “DSA”) [75], 
which employs linear modeling to infer cell distributions; the method population-specific expression 
analysis (PSEA, also named meanProfile in CellMix implementation) [40] that calculates estimated 
expression profiles relative to the average of the marker gene list for each cell type [40]; and a semi-
supervised learning method that employs non-negative matrix factorization (ssNMF in CellMix 
implementation) [29]. We tested additional methods which provided considerably lower accuracy (least-
squares fit [7], quadratic programing [31]) or no significant difference (support vector regression [51] or 
latent variable analysis [17]) to the methods presented. 

We selected the samples that provide the most faithful transcriptomic profile for their respective 
cell types by following a leave-one-out cross validation approach. We trained iteratively deconvolution 
models using all but one of the samples that was tested.  Only samples predicted with a composition higher 
than 80% were kept for the reference panel (Table S2; Fig S2b).  

 
Accuracy and Robustness Evaluation 
Chimeric validation 
 To emulate heterogeneous tissue with known and controlled cellular composition, we generated 
chimeric libraries pooling reads (to a total of 400,000) contributed from cell-type specific human donor 
samples (See Table S2).  This process was repeated 720 times, using alternative samples from the 
reference panel to model each cell type. The proportion of reads that the libraries of neurons, astrocytes, 
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oligodendrocytes and microglia provided to the chimeric libraries varied in predefined ranges (Fig S3). As 
a result, each of the chimeric libraries contained reads that followed 32 different distributions (neuronal 
reads contributed between 2 to 36% of reads, astrocytes between 22 to 76%, oligodendrocytes between 6 to 
62% and microglia between 1 to 5%). Refer to Table S4 for detailed description of the 32 different 
distributions. We quantified the chimeric reads using Salmon (v0.7.2) [54], and employed the samples that 
did not contribute reads to the chimeric library as reference panel for the deconvolution methods.  

Overall, we quantified the expression of 23,040 (720 × 32) chimeric libraries. We evaluated the 
accuracy using the root-mean-square error (RMSE, Equation 1 to compare the digital deconvolution 
cellular proportion estimates (method ssNMF) versus the defined proportion of reads specific to each of the 
chimeric libraries: 

 

!"#$ =	'∑ (*+,	-	*,)/0
1	2	3

4          (Equation 1) 

 5+6 − 89:6;<:8=	><?@8, 56 − BC98D>8=	><?@8  
We also tested whether the deconvolution results were dominated by the expression of any 

specific gene, and ascertained the robustness of the transcriptomic signature we modeled for each cell type 
to any possibly altered gene expression. To do so, we performed the deconvolution analysis discarding one 
gene of the reference panel at a time and evaluated how these distributions differed in comparison to the 
full gene reference panel.  
 
Statistical Analysis  

We employed linear regression models to test the association between cell-type proportions and 
disease status (R Foundation for Statistical Computing, ver.3.3.3).  We used stepwise discriminant analysis 
(stepAIC function of R package MASS, version 7.3-45) to determine significant covariates, and correct for 
confounding effects. We included RNA integrity number (RIN), batch, age at death and post-mortem 
interval (PMI) as covariates for the Mayo Clinic analyses. For Mount Sinai Brain Bank analyses, we 
corrected for RIN, PMI, race, batch and age at death. We also used linear-mixed models to perform 
multiple-region association analysis, employing random slopes and random intercepts grouping by 
observations and by donors [64], and correcting for the same covariates previously described. 

To analyze the DIAN and Knight-ADRC studies we applied linear-mixed models (function lmer 
and Anova, R packages lme4 ver.1.1 and car ver.2.1, respectively), clustering at family level to ascertain 
the effect of the neuropathological status in the cell proportion, and corrected for RIN and PMI.  For late-
onset specific analyses we also corrected for age at death. 

Cellular composition shown as proportions were plotted using R package ggplot2 (ver 2.2.1) 
 
 
 

RESULTS 
 
Study design 

To infer cellular composition from RNA-seq, we firstly assembled a gene reference panel for 
neurons, astrocytes, oligodendrocytes and microglia. The panel was created by analyzing expression data 
from purified cell lines. We evaluated alternative digital deconvolution methods and selected the best 
performing for our primary analyses. We tested the digital deconvolution accuracy on induced pluripotent 
stem cell (iPSC) derived neurons/microglia cells and neuronal Translating Ribosome Affinity Purification 
followed by RNA-seq (TRAP-seq; Fig 1). Finally, we verified its accuracy by creating artificial admixture 
with pre-defined cellular proportions.  

Once the deconvolution approach was optimized, we calculated the cell proportion in AD cases 
and controls from the different brain regions of Mayo and MSBB datasets. The RNA-seq data for the Mayo 
Clinic study (N = 191) [8] and Mount Sinai (MSSM) Brain Bank (MSBB; N = 300) [5] are deposited in the 
Advanced Medicines Partnership-AD (AMP-AD) knowledge portal (Synapse ID: syn5550404 and 
syn3157743; Table 1). The Mayo study includes RNA-seq from the temporal cortex and cerebellum for 
AD affected and non-demented controls, in addition to pathological aging participants (Fig 1). The MSBB 
also profiled four additional cerebral cortex areas: anterior prefrontal cortex - APC, superior temporal gyrus 
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- STG, parahippocampal gyrus – PHG, and inferior frontal gyrus – IFG; Table 1; Fig 1). We restricted the 
case-control analysis to subjects with definite AD and autopsy confirmed controls. In addition, we 
generated RNA-seq from parietal lobe for participants of the Knight-ADRC (84 late-onset cases, carriers of 
genetic risk factors and 16 controls; Table S1) and the Dominantly Inherited Alzheimer Network (DIAN; 
19 carriers of mutations in APP, PSEN1, PSEN2) (Table 1; Fig 1). We employed the same pipeline to 
process all of the samples in order to avoid any bias. Furthermore, RNA-seq from the Knight-ADRC and 
DIAN studies allowed us to compare the cell composition from ADAD vs LOAD brains, and similarly to 
test for differences in brain of controls, sporadic AD who do not carry any known high-risk variant, carriers 
of high-risk variants in TREM2 (N = 20), PLD3 (N = 33), and APOE e4 allele.  

 
 
Development of a reference panel to estimate brain cellular population structure  

Due to limited availability of brain cell-type specific transcriptomic data, we compiled samples 
from different sources, including single-population RNA-seq from mice and human (immunopan-purified 
oligodendrocytes, neurons, astrocytes and microglia and iPSC-derived neurons and astrocytes) (Table S2).  

We first tried to create a transcriptome wide reference panel by selecting the genes that are 
differentially expressed among cell types [17, 28, 51]. However, the species heterogeneity of the reference 
samples we compiled ruled out this attempt, as the principal component analyses (PCA) showed that 
differences between the human and mice donor samples dominated the transcriptome-wide effect (Fig 
S1a). For this reason, we curated a list of genes that have been described to tag these distinct cell types [14, 
36, 74]. A visual inspection of the expression of these genes in the samples we compiled suggested a 
divergent transcriptomic profile among the cell types (Fig S2a). The PCA showed that their expression was 
sufficient to cluster samples of neurons, astrocytes, oligodendrocytes and microglia with their respective 
cell types, regardless of the species of the reference samples (Fig S1b; Table S3). We observed that some 
samples did not cluster with their expected cell types, and coincidently the leave-one-out cross-validation 
indicated that these samples had an expression signature that differed from the other samples of the same 
cell type. However, we found that all of these outliers correspond to samples not correctly purified or that 
were sequenced in early stages of differentiation (Supplementary Results). After discarding these 
samples, we assessed six digital deconvolution algorithms implemented in the CellMix package [28] and 
found that the semi-supervised non-negative matrix factorization [29] (ssNMF) calculated the most 
accurate estimates (see Materials and methods). Our final reference panel had a very high confidence to 
predict cell types with a mean predicted accuracy = 95.2%; s.d. = 4.3 (Fig S2b), and a root-mean-square 
error (RMSE) = 0.06 (Table S5). 
 
 
Optimization, validation and accuracy estimation of the reference panel and digital deconvolution 
method 
 Once we identified the optimal approach to perform digital deconvolution from brain RNA-seq, 
we benchmarked it by using three sets of independent pure cell populations and simulated chimeric 
libraries. 

We firstly validated the accuracy to predict neuronal composition by generating RNA-seq for 
eight iPSC-derived cortical neurons (see Materials and methods). We observed an accurate prediction in 
these independent cell lines (mean neuronal proportion = 94.8% and s.d. = 1.1%; Fig S4a).  We also 
ascertained the cellular composition of mRNA extracted from the barrel cortex neurons isolated by 
Translating Ribosome Affinity Purification (TRAP) in 24 mice. TRAP is a method that captures cell-type 
specific mRNA translation by purifying tagged ribosomal subunit and capturing the mRNA it bound to 
[34]. We observed an average of neuronal proportion = 96.7% and s.d. = 1.2% (Fig S4b). Similarly, we 
assessed the RNA-seq data generated for iPSC-derived microglia (N = 10) deposited in the AMP-AD portal 
(Synapse ID: -syn7203233) and inferred their cellular population structure, and observed a mean microglia 
proportion = 86.6% and s.d. = 7.1% (Fig S4c). 

To evaluate the accuracy of digital deconvolution for measuring cell-type proportion from cell-
type admixtures, we simulated RNA-seq libraries by pooling reads from individual cell types into well-
defined proportions. We combined randomly sampled reads from neurons, astrocytes, oligodendrocytes and 
microglia to create chimeric libraries that mimic bulk RNA-seq from brain, but with a range of pre-defined 
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cell-type distributions (Fig S3).  We then quantified the gene expression for the chimeric libraries and 
inferred the cell-type distribution (employing for the reference panel samples that did not contribute reads 
to the chimeric libraries). This process was repeated 23,040 times, choosing distinct human samples to 
represent each cell type and varying the proportions in 32 alternative distributions (See methods and Table 
S4). The overall error (RMSE) compared to known proportions = 0.08. 

Finally, we evaluated whether any gene included in the reference panel was dominating the 
inference of cell proportions. We re-calculated the cell-type distributions of the chimeric libraries, but 
dropping each of the genes from the reference panel one at a time. We observed a negligible difference 
between the cellular population structure inferred using the full reference and the gene-dropped panels 
(average RMSE = 0.022, s.d. < 0.01). In this way, we verified that the proportions inferred using the 
reference panel are not driven by the expression of a single gene. This reassured us the inference should be 
robust to any bias introduced by the potential association of a single gene included in the reference panel 
with a particular trait.  
 
 
Deconvolution of bulk RNA-seq of non-demented and AD brains shows a characteristic signature for 
neurodegeneration 

Pathologically, AD is associated with neuronal death and gliosis specifically in the cerebral cortex. 
We evaluated whether we could exploit deconvolution methods using our reference panel to detect altered 
cellular population structure from the bulk RNA-seq, and whether this corresponded to known pathological 
alterations.  

We initially analyzed the RNA-seq from the Mayo Clinic Brain Bank that includes bulk RNA-seq 
from the temporal cortex (TC) and cerebellum (CB) for 191 participants [8] (Table 1). In the TC, we 
observed a significant increase of astrocyte (β = 0.23; p = 5.01×10-09; Table 2; Fig 2; Table S6) in AD 
brains compared to controls brains. We also found a significant decrease of neurons (β = -0.17; p = 
1.58×10-07; Table 2; Fig 2; Table S6) and oligodendrocytes (β = -0.07; p = 1.8×10-02; Table 2; Fig S5; 
Table S6). As expected, given the absence of pathology, we did not observe a significant change in the 
cell-type composition in the CB (Table 2).  

The distribution of microglia was similar in the TC and CB from AD and control brains (Table 2; 
Fig S5). The proportion of microglia was lower than any other cell types. The Mayo dataset also includes 
brains from individuals with pathological aging (PA; Table 1); which is neuropathologically defined by 
amyloid-beta (Aβ) senile plaque deposits but little or no neurofibrillary tau pathology [8, 49]. We observed 
a significant decrease of microglia proportion of PA brains compared to AD in both TC and CB (Table S7; 
Fig S6) [43]. Therefore, we speculated that the lack of changes in the AD microglial population was neither 
due to low statistical power nor the inability of our method to estimate the microglial proportions, but 
reflected unaltered neuropathological observations in AD brains. 

We also analyzed data from the MSBB, which contains bulk RNA-seq for four additional cerebral 
cortex areas (APC, STG, PHG, IFG). Replicating our findings from the Mayo dataset we observed a 
significant decrease in neurons and increase in astrocytes in all four areas (Table 2; Fig 2; and Table S6). 
The strongest effect size was detected in the parahippocampal gyrus and superior temporal gyrus (p < 
3.49×10-07) (Table 2; Table S8). Neuropathological studies have described that the parahippocampal gyrus 
in one of the first brain areas in which AD pathology occurs [10, 25, 69]. We also observed a significant 
and strong correlation between neuronal and astrocyte proportions and last ascertained clinical status 
(Clinical Dementia Rating - CDR), and number of amyloid plaques and Braak staging (Table 2; Fig 2; Fig 
S7).  

 
 

The cellular population structure differs between ADAD vs LOAD 
While the loss of neurons is a common feature of AD, it is not clear whether the mechanism holds 

true across different forms of AD or AD cases carrying different genetic risk variants. Therefore, we 
investigated whether AD with distinct etiologies showed different cellular compositions. We generated 
RNA-seq data from the parietal lobe of participants enrolled in Knight-ADRC (84 LOAD, 3 ADAD, and 
16 neuropath-free controls) and DIAN (19 ADAD) studies (Table 1; Table S1). We selected the LOAD 
and ADAD participants to match for CDR at death, brain weight and sex distributions (See Table S1). 

Using digital deconvolution, we determined the cellular composition for these brains. We 
observed a significant decrease in neurons (β = -0.02, p = 2.66×10-02) and significant increase in astrocytes 
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in AD (β = 0.03, p = 5.48×10-03) for the combined LOAD and ADAD brains compared to controls (Table 
3; Fig 3; Table S9), consistent with our findings in the Mayo and MSBB datasets. Similarly, the joint 
analysis of the brains from Knight-ADRC and DIAN showed a significant association between the 
neuronal and astrocyte proportions and neuropathological measures (Braak staging: β = -0.03, p = 8.51×10-

06 for neurons and β = 0.03, p = 3.83×10-06 for astrocytes; Table 3; Fig 3b) as well as for clinical measures 
(CDR: β = -0.02, p = 2.66×10-02 for neurons and β = 0.03 and p = 5.48×10-03 for astrocytes; Table 3; Fig 
3c). We did not observe a significant difference in the compositions of microglia or oligodendrocytes 
(Table 3; Fig S8).  

Next, we compared the cell proportion of LOAD vs ADAD and found that the cell composition 
differs between them. We firstly selected the LOAD brains (N = 25) to match the Braak staging distribution 
of ADAD brains (N = 17). The ADAD brains showed a significant decreased neuronal proportion 
compared to LOAD brains (β = -0.08; p = 1.03×10-02; Table 3), and increased astrocytes (β = 0.11; p = 
9.26×10-04; Table 3). Then, we analyzed the entire Knight-ADRC LOAD brains, by extending the model to 
correct for Braak stages. We also observed significant decreased neurons (β = -0.09; p = 4.71×10-03; Table 
3; Fig 3a; Table S9) and increased astrocytes (β = 0.11; p = 5.24×10-04; Table 3; Fig 3a; Table S9 in 
ADAD brains compared to LOAD. We observed the same cellular differences when we corrected for CDR 
at death (β = -0.12; p = 2.11×10-03 for neurons and β = 0.13; p = 6.29×10-04 for astrocytes; Table 3; Fig 
3bc).  In summary, our results indicate that ADAD individuals present a higher neuronal death even in the 
same stage of the disease, suggesting that in ADAD neuronal death play a more important role in 
pathogenesis than sporadic AD, in which other factors such as inflammation or immune response may be 
involved. 
 
 
Specific genetic variants confer a distinctive cell composition profile 

A variety of genetic variants increase risk of LOAD; however, it is unclear if the cellular 
mechanisms are the same across these distinct risk factors. Therefore, we tested the hypothesis that distinct 
genetic causes of LOAD have characteristic cellular population signatures. 

We initially ascertained the effect of APOE ε4 on the cell-type composition. We observed a 
significant decrease in neurons (β = -0.06 for each of the ε4 alleles; p = 9.91×10-03) and increase of 
astrocytes (β = 0.10; p = 4.15×10-02) from the TC included in the Mayo Clinic dataset (Table S10; Fig 4a; 
Fig S9a). This finding was replicated when we performed a multi-area analysis of the MSBB dataset (β = -
0.03; p = 2.75×10-04 and β = 0.04; p = 8.06×10-06 for neurons and astrocytes respectively; Table 4; Fig 4a; 
Table S10; Fig S9a). Given the strong risk conferred by the APOE ε4 allele [19], we studied its effects on 
the cell-type composition by restricting our analysis to AD brains. We observed a significant association in 
the multi-area analysis of the MSBB dataset, with the same effect size for the neurons as the observed when 
we analyzed both affected and control brains (p = 1.60×10-02; Table 4; Fig 4b; Table S11; Fig S9b) and 
also a significant increase in astrocytes (β = 0.03; p = 1.03×10-02; Table 4; Fig 4b; Table S11; Fig S9b). 
We also observed a significant decrease in neurons proportion (β = -0.06; p = 2.11×10-02; Table 4; Fig 4c) 
when we analyzed the LOAD and control brains from the Knight-ADRC. When we restricted the analysis 
to AD brains from the Knight-ADRC and compared the APOE ε4 carriers (N = 46) to non-carriers (N = 41) 
we also observed decreased neurons (β = -0.06; p = 2.69×10-02; Table 4; Fig 4d). 

Next, we analyzed the cellular composition in PLD3 carriers (N = 33). PLD3 carriers exhibited 
significantly decrease of neurons compared to controls (β = -0.10; p = 1.60×10-04; Fig 3d) and a significant 
increase in astrocytes (β = 0.13; p = 2.84×10-03; Table 4; Fig 3d).  Sporadic AD non-carriers cases also 
exhibited significantly decrease of neurons compared to controls (β = -0.11; p = 5.45×10-03) and significant 
increase of astrocytes (β = 0.13; p = 2.95×10-04; Table 4; Fig 3d). The cell proportion between sporadic 
AD non-carriers and PLD3 carriers did not show any significantly difference (p > 0.05). 

Finally, we performed similar analyses with TREM2 carriers. TREM2 is involved in the immune 
response and its role in amyloid-β deposition or clearance remain controversial [67]. Our analysis on the 
Knight-ADRC data showed significantly increased astrocytes in AD affected TREM2 carriers (N = 20) 
compared to controls (β = 0.11; p = 1.05×10-02; Table 4; Fig 3d). Despite TREM2 carriers presented lower 
neuron proportion compared to controls, this difference was not statistically significant (p>0.05; Table 4; 
Fig 3d). We analyzed whether the TREM2 carriers provided sufficient power to detect a significant 
association. Our empirical estimates showed that TREM2 sample size provides 96% of power to detect an 
association with an effect size comparable to that observed for sporadic AD (β = -0.11).  We also 
investigated whether the cellular proportion of the eleven TREM2 carriers in the MSBB dataset. The multi-
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region analysis showed TREM2 carriers do not show a significant difference in neurons compared to 
controls (p > 0.05; Table 4; Fig 4e), whereas in the AD TREM2 non-carriers the neuronal and astrocytic 
proportions are significantly different from controls (β = -0.07; p = 1.91×10-08 and β = 0.08; p = 1.25×10-08 
respectively; Table 4; Fig 4e).  

In fact, our analyses indicate that TREM2 carriers have a unique cellular brain composition distinct 
than the other AD cases. TREM2 brains showed significantly higher neurons (β = 0.05; p = 1.98×10-02) and 
significantly decreased astrocytes than the AD non-carries (β = -0.05; p = 1.58×10-02; Table 4). The 
distribution of CDR, mean number of amyloid plaques and Braak staging do not differ between strata. 
Nonetheless, we verified that the cellular proportions were still significant after correcting for each of those 
variables (Table 4). These results suggested that the mechanism that lead to disease in TREM2 carriers is 
less neuron-centric than in the general AD population. 

 
 
Discussion 

We have developed, optimized and validated a digital deconvolution approach to infer cell 
composition from bulk brain gene expression that integrates publicly available cell-type specific expression 
data while addressing the heterogeneity of the phenotypic differences of samples and technical 
characteristics of transcriptome ascertainment. We acknowledge that the accuracy of this platform might be 
affected by the phenotypic diversity of the reference panel or the disease-induced dysregulation of genes it 
includes. However, the deconvolution approach proved to be robust to the genes included in the reference 
panel, as we demonstrated that the proportions it inferred are not driven by the expression of any single 
gene. This platform produced reliable cell proportion estimates, as was shown by the evaluation of 
independent datasets of iPSC-derived neurons and microglia, mice cortical neurons (Fig S4) and simulated 
chimeric libraries. 

We used this approach to deconvolve studies that include large number of neuropathologically 
defined AD and control brains with their transcriptome ascertained in distinct brain regions, and observed 
consistently significant neuronal loss and astrocytosis in the cerebral cortex. Compatible with other studies, 
we also identified that the altered cellular proportion is also significantly associated with decline in 
cognition and Braak staging [60]. In contrast, we did not identify a significant difference in the cellular 
population structure in the cerebellum, a region not affected in AD (Table 2; Fig 2a).  

We generated RNA-seq data from brains carrying pathogenic mutations in APP, PSEN1, PSEN2, 
which cause alterations in Aβ processing and lead to ADAD, and also generated RNA-seq from brains of 
LOAD and neuropath-free controls. We observed altered cell composition in both ADAD and LOAD 
compared to controls. However, we identified that ADAD brains have a different cell-type composition 
than disease-stage-matched LOAD, as the ADAD has a significantly lower neuronal proportion and more 
pronounced astrocytosis. Based on our results, we would hypothesize that this change in Aβ processing of 
ADAD would leads to more direct to neuronal death than the pathological processes of LOAD. Similarly, 
decreased neurons and increased astrocytes were significantly associated with APOEε4 allele. It has been 
reported APOE ε4 allele increase the risk for AD by affecting APP metabolism or Aβ clearance [15, 38], 
suggesting a direct link between APP metabolism and neuronal death. 

In contrast, the analysis of the Knight-ADRC brains showed that the neuronal loss is less 
pronounced in TREM2 carriers than in other LOAD cases. We replicated this finding in a multi-area 
analysis from the MSBB dataset. These results may implicate that TREM2 risk variants lead to a cascade of 
pathological events that differ from those occurring in sporadic AD cases, which is also consistent with the 
known biology of TREM2. TREM2 is involved in AD pathology through microglia mediated pathways, 
implicated on altered immune response and inflammation [18]. Recent studies in TREM2 knock-out 
animals showed that fewer microglia cells were found surrounding Aβ plaques with impaired microgliosis 
[70]. Furthermore, TREM2 deficiency was reported to attenuate tauopathy against brain atrophy [42]. We 
found no significant difference in the proportion of microglia between AD cases and controls. However, we 
found significantly decreased microglia in brains exhibiting pathological aging (Table S7; Fig S6), proving 
that these studies are sufficiently powered to identify significant differences. In any case, we cannot rule 
out the possibility of a change in the activation stage of microglia in these individuals.  Overall, these 
results suggest that TREM2 affects AD risk through a slightly different mechanism to that of ADAD or 
LOAD in general. Therefore, other pathogenic mechanisms should contribute to disease.  We believe that a 
detailed modeling of immune response cells, reflecting the alternative microglia activation states, will 
generate more accurate profiles to elucidate the immune cell distribution in AD.  
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There is a large interest in the scientific community to use brain expression studies to try to 
identity novel pathogenic mechanism in AD and to identify novel therapeutic targets. These efforts are 
generating a large amount of bulk RNA-seq data, as single-cell RNA (scRNA-seq) from human brain tissue 
in large sample size is not feasible. Single-cell sorting needs to be performed with fresh tissue [33], which 
restrains the analysis of highly characterized fresh-frozen brains collected by AD research centers. Our 
results indicate that digital deconvolution methods can accurately infer relative cell distributions from brain 
bulk RNA-seq data. Having this approach validated for AD can have an important impact in the 
community,  because digital deconvolution analyses 1) can reveal distinct cellular composition patterns 
underlying different disease etiologies 2) can provide additional insights about the overall pathologic 
mechanisms underlying different mutations carriers for variants as in genes such as TREM2, APOE, APP, 
PSEN1 and PSEN2) can correct the effect that altered cell composition and genetic statuses have in 
addition to downstream transcriptomic analyses and lead to novel and informative results. 4) can help the 
analysis of highly informative frozen brains collected over the years. 

In conclusion, our study provides a reliable approach to enhance our understanding of the 
fundamental cellular mechanisms involved in AD and enable the analysis of large bulk RNA-seq data that 
may lead to novel discoveries and insights into neurodegeneration. 
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Table 1. Demographics and disease status of cohorts from four brain bank resources. 
  Mayoa MSBBb DIAN Knight-ADRC 

Sample Size 191 300 19 103 
Age 83 ± 7.77 83.3 ± 7.55 50.6 ± 7.06 85.1 ± 9.78 

% Male 45.5 36 68.4 38.8 
% APOE ε4+ 33.2 31.7 14.3 45.6 
Brain weight - - 1187.7 ± 184.5 1138.1 ± 142.5 

ADc 82 135 19 87 
PAd 29 0 0 0 

Control 80 85 0 16 
CDRe = 0 - 40 0 13 
CDR = 0.5 - 40 0 9 
CDR = 1 - 30 2 11 
CDR = 2 - 44 4 14 
CDR = 3 - 146 1 56 

a Mayo stands for Mayo Clinic. 
b MSBB stands for Mount Sinai Brain Bank. 
c AD stands for Alzheimer’s Disease. 
d PA stands for pathological aging (amyloid plaques but no tau tangles). 
e CDR stands for clinical dementia rating for available samples. 
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Table 2.  Comparison of the cellular population structure (AD vs. neuropath-free controls) from the brains in the Mayo Clinic and Mount Sinai Brain 
Bank. 
  Brain Regions Sample Size Neuron Astrocyte Oligodendrocyte Microglia 

M
ay

o AD vs Control N Effect P-value Effect P-value Effect P-value Effect P-value 
  Cerebellum 119 -0.03 2.74×10-01 0.05 8.65×10-02 -0.02 1.07×10-01 -3.19×10-04 9.19×10-01 
  Temporal Cortex 119 -0.17 1.58×10-07 0.23 5.01×10-09 -0.07 1.8×10-02 -2.03×10-03 5.48×10-01 

M
ou

nt
 S

in
ai

 B
ra

in
 B

an
k 

AD vs Control                   
  Anterior Prefrontal Cortex 184 -0.04 8.14×10-04 0.06 8.11×10-05 -0.01 3.36×10-02 -3.18×10-03 1.12×10-02 
  Superior Temporal Gyrus 167 -0.08 3.49×10-07 0.1 1.45×10-07 -0.01 5.8×10-02 -3.17×10-03 5.78×10-02 
  Parahippocampal Gyrus 160 -0.11 1.35×10-08 0.13 5.48×10-10 -0.02 1.79×10-03 -3.18×10-03 1.35×10-01 
  Inferior Frontal Gyrus 159 -0.04 3.12×10-03 0.06 3.58×10-04 -0.01 4.39×10-02 -3.98×10-03 1.64×10-02 
Clinical Dementia Rating        

  Anterior Prefrontal Cortex 184 -0.02 9.38×10-04 0.02  2.07×10-04 -3.43×10-03  1.25×10-01 -1.46×10-03  4.95×10-03 
  Superior Temporal Gyrus 167 -0.03  1.87×10-06 0.04 3.33×10-07 -0.01   2.1×10-02 -1.02×10-03  1.49×10-01 
  Parahippocampal Gyrus 160 -0.04  8.56×10-06 0.04  2.85×10-06 -0.01  8.7×10-02 -1.94×10-03  2.53×10-02 
  Inferior Frontal Gyrus 159 -0.02  8.29×10-05 0.03 1.4×10-05 -4.64×10-03  6.7×10-02 -1.46×10-03  3.11×10-02 
Braak Staging          

  Anterior Prefrontal Cortex 173 -0.01  1.21×10-02 0.01  1.27×10-03 -3.09×10-03  2.77×10-02 -7.04×10-04  3.12×10-02 
  Superior Temporal Gyrus 158 -0.02  2.22×10-07 0.02  2.77×10-07 -2.91×10-03  1.17×10-01 -5.47×10-04  1.97×10-01 
  Parahippocampal Gyrus 147 -0.02  1.83×10-06 0.03  9.6×10-08 -0.01 1.49×10-03 -3.71×10-04  4.97×10-01 
  Inferior Frontal Gyrus 152 -0.01  1.01×10-02 0.01 8.56×10-04 -3.55×10-03  2.37×10-02 -1.01×10-03  1.74×10-02 
Mean Amyloid Plaques          

  Anterior Prefrontal Cortex 184 -1.88×10-03  3.6×10-03 2.82×10-03  1.03×10-04 -7.99×10-04  2.13×10-03 -1.46×10-04  1.72×10-02 
  Superior Temporal Gyrus 167 -4.2×10-03  7.73×10-08 0.01  4.63×10-08 -6.08×10-04  9.01×10-02 -2.04×10-04  1.5×10-02 
  Parahippocampal Gyrus 160 -4.96×10-03  5.05×10-09 0.01  1.26×10-10 -9.99×10-04  1.85×10-03 -2.1×10-04  2.58×10-02 
  Inferior Frontal Gyrus 159 -2.58×10-03  3.82×10-04 3.53×10-03  1.96×10-05 -7.41×10-04  1.51×10-02 -2.04×10-04  1.26×10-02 

The cell-type proportions from AD cases and control were inferred from bulk RNA-seq using the ssNMF method. Effects of AD and associations with additional 
clinical and pathological phenotypes in cell-type distributions were estimated using linear regression model. 
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Table 3. Cellular population structure altered in the parietal lobe from AD brains in the DIAN study and Knight-ADRC brain bank.  

Disease Status  Sample Size Neuron Astrocyte Oligodendrocyte Microglia 

AD Status N Effect P-value Effect P-value Effect P-value Effect P-value 

   ADa vs Control 122 -0.11 5.52×10-04 0.14 2.48×10-05 -0.03 6.5×10-02 -2.64×10-03 2.49×10-01 

   ADAD vs Control 38 -0.19 3.94×10-07 0.24 1.57×10-10 -0.04 8.5×10-03 -0.01 7.77×10-05 

   LOAD vs Control 100 -0.09 5.67×10-03 0.12 3.34×10-04 -0.02 1.06×10-01 -1.70×10-03 4.57×10-01 

   ADAD vs LOAD          

      Braak matched 42 -0.08 1.03×10-02 0.11 9.26×10-04 -0.03 7.1×10-02 -1.46×10-03 7.01×10-01 

      Braak corrected 91 -0.09 4.71×10-03 0.11 5.24×10-04 -0.02 1.77×10-01 -2.41×10-03 4.25×10-01 

      CDR corrected 94 -0.12 2.11×10-03 0.13 6.29×10-04 -0.02 3.8×10-01 -3.11×10-03 2.41×10-01 

Clinical Dementia Rating          

   ADa and Controls 110 -0.02  2.66×10-02 0.03  5.48×10-03 -0.01  2×10-01 -4.63×10-04  4.77×10-01 

   ADAD and Controls 26 -0.08  4.12×10-04 0.11  1.78×10-07 0.01   4.03×10-03 -1.55×10-03  1.75×10-08 

   LOAD and Controls 100 -0.02  3.22×10-02 0.03  7.01 ×10-03 -0.01 1.81×10-01 -4.64×10-04  5.11 ×10-01 

Braak Staging          

   ADa and Controls 106 -0.03  8.51×10-06 0.03  3.83×10-06 -4.24×10-03  2.04×10-01 -2.52×10-04  6.81×10-01 

   ADAD and Controls 33 -0.05  2.37×10-05 0.06  2.45×10-05 -0.01  2.29×10-01 -7.2×10-04  4.89×10-01 

   LOAD and Controls 88 -0.03  7.41×10-04 0.03  4.63×10-04 -3.72×10-03  3.29×10-01 -1.66×10-04  7.86×10-01 
a AD includes both autosomal dominant AD (ADAD) and late-onset AD (LOAD).  
The cellular population structure was inferred using the ssNMF method. Effects and p-values for the association with disease status, clinical dementia 
rating and Braak staging using generalized mixed models. We identified similar trends with approximately the same significance levels.  
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Table 4. Gene specific cellular proportion analysis for Knight-ADRC and Mount Sinai Brain Bank studies  

Variant Carriers Sample Size Neuron Astrocyte Oligodendrocyte Microglia 
Knight-ADRC N Effect P-value Effect P-value Effect P-value Effect P-value 
   PLD3 vs Control 49 -0.1 1.6×10-04 0.13 2.84×10-03 -0.03 6.17×10-02 7.05×10-04 7.89×10-01 
   TREM2 vs Control 36 -0.07 7.93×10-02 0.11 1.05×10-02 -0.03 4.9×10-02 1.65×10-03 5.84×10-01 
   Sporadic AD vs Control 45 -0.11 5.45×10-03 0.13 2.95×10-04 -0.02 4.55×10-01 -3.48×10-03 1.13×10-01 
   APOEε4+ vs APOEε4- LOAD cases and controls 100 -0.06 2.11×10-02 0.05 5.35×10-02 0.01 3.72×10-01 -8.09×10-04 6.31×10-01 
   APOEε4+ vs APOEε4-  LOAD cases only 84 -0.06 2.69×10-02 0.03 2×10-01 0.03 1.4×10-02 -8.31×10-04 6.21×10-01 

Mount Sinai Brain Bank - Multi-region          

   AD TREM2 carriers vs Control 301 -0.03 3.57×10-01 0.03 3.19×10-01 -2.08×10-03 7.87×10-01 -2.68×10-03 8.67×10-02 
   AD non-carriers TREM2 vs Control 882 -0.07 1.91×10-08 0.08 1.25×10-08 -3.36×10-03 4.79×10-01 -2.89×10-04 7.97×10-01 
   AD TREM2 vs AD non-TREM2 673 0.05 1.98×10-02 -0.05 1.58×10-02 2.12×10-03 7.76×10-01 -2.13×10-03 1.74×10-01 
       CDR corrected 673 0.04 5.83×10-02 -0.04 4.46×10-02 1.68×10-03 8.19×10-01 -1.92×10-03 2.22×10-01 
       Braak corrected 642 0.05 1.3×10-02 -0.05 2.7×10-02 -1.82×10-03 8.13×10-01 -2.66×10-03 1.28×10-01 
       Mean plaque counts corrected 673 0.05 2×10-02 -0.05 1.59×10-02 1.73×10-03 8.15×10-01 -2.2×10-03 1.5×10-01 
   APOEε4 counts all samples 556 -0.03 2.75×10-04 0.04 8.06×10-06 -4.33×10-04 4.31×10-01 -0.01 2.42×10-03 
   APOEε4 counts AD cases  225 -0.03 1.60×10-02 0.03 1.03×10-02 -2.07×10-04 8.20×10-01 -3.46×10-03 3.29×10-01 
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Figures Legends 

Fig 1 Study Design Development of the brain cell-type transcriptomic reference panel (left column): the 
expression signatures of key cell types of the brain were curated by compiling publicly available RNA-seq 
data from neurons, astrocytes, oligodendrocytes and microglia. The panel was curated iteratively to retain 
only those samples that showed the most faithful expression signature, while evaluating alternative digital 
deconvolution methods. The accuracy of digital deconvolution to estimate brain cellular proportion was 
validated using additional cell-type specific samples, and also by generating chimeric libraries. To study 
cellular population structure in AD (right column), we accessed publicly available datasets from the 
Advanced Medicines Partnership-AD knowledge portal (AMP-AD), including Mayo Clinic and Mount 
Sinai Brain Bank datasets. In addition, we generated RNA-seq from participants of the Knight-ADRC and 
the Dominantly Inherited Alzheimer (DIAN) studies. These three studies generated RNA-seq data from 
pathological aging brains, Alzheimer Disease cases, and neuropath-free controls for a total of six cerebral 
cortex regions and cerebellum.  We quantified the gene expression for all of the samples included in these 
studies using the same RNA-seq processing pipeline. Using digital deconvolution methods, we estimated 
the brain cellular proportions of the samples and compared the proportion between AD cases and controls.  
We study the cell structure of brains carriers of Mendelian pathological mutations and variants that confer 
high-risk to AD. Anterior prefrontal cortex – APC; superior temporal gyrus – STG; parahippocampal gyrus 
– PHG; inferior frontal gyrus – IFG; Mount Sinai Brain Bank – MSBB; Alzheimer Disease – AD; 
pathological aging – PA. 

Fig 2 Cell-type distributions of the samples included in the Mayo Clinic and Mount Sinai Brain Bank 
Mean neuronal (blue) and astrocytic proportion (red) for a) Alzheimer disease affected brains (AD) and 
controls (bars indicate standard deviations). The numbers of subjects for each group are shown below the x-
axis. Distribution for additional clinical and pathological phenotypes reported for the Mount Sinai Brain 
Bank (MSBB): b) clinical dementia rating scores (CDR) and c) Braak and Braak staging.  d) Brain cell-
type proportions (x-axis) plotted against the mean number of amyloid plaque (values greater than 0; y-
axis). Standard errors were depicted in shaded area with LOESS smooth curve fitted to cell-type 
proportions derived from deconvolution. (** P< 0.01; *** P< 1.0×10-3; and **** P< 1.0×10-4). 

Fig 3 Neuron and astrocyte distributions from the DIAN and Knight-ADRC brains a) Mean neuronal 
(blue) and astrocytic (red) proportions for carriers of pathogenic mutations in APP, PSEN1 or PSEN2 
(ADAD), late-onset AD (LOAD) and neuropath-free controls (bars indicate standard deviations). Neuronal 
and astrocytic proportions plotted against b) Braak Staging; c) by Clinical Dementia Rating. d) Cell-type 
distributions for carriers of AD genetic risk factors. Lines indicate significance levels (*P< 0.05; ** P< 
0.01; *** P< 1.0×10-3; **** P< 1.0×10-4). 

Fig 4 Effect of the APOE ε4 allele and TREM2 coding variants on the cellular population structure 
Mean neuronal (blue) and astrocytic (red) proportions for a) AD cases and controls in the Knight-ADRC 
brains categorized by APOE ε4 carriers vs. non-carriers and b) AD cases of Knight-ADRC brain bank (bars 
indicate standard deviations). c) AD cases and controls in the Mayo Clinic and MSBB d) AD cases in the 
Mayo Clinic and MSBB. e) Neuronal (blue) and astrocyte (red) distributions for samples included in the 
Mount Sinai brain bank stratified by TREM2 genetic status. APC: Anterior Prefrontal Cortex; STG: 
Superior Temporal Gyrus; PHG: Parahippocampal Gyrus; IFG: Inferior Frontal Gyrus; (n.s. P > 0.05; * P< 
0.05; **** P< 1.0×10-4).
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