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Abstract 47 
As emerging and re-emerging infectious diseases like dengue, Ebola, chikungunya, and Zika 48 
threaten new populations worldwide, officials scramble to assess local severity and 49 
transmissibility, with little to no epidemiological history to draw upon. Standard methods for 50 
assessing autochthonous (local) transmission risk make either indirect estimates based on 51 
ecological suitability or direct estimates only after local cases accumulate. However, an 52 
overlooked source of epidemiological data that can meaningfully inform risk assessments prior 53 
to outbreak emergence is the absence of transmission by imported cases. Here, we present a 54 
method for updating a priori ecological estimates of transmission risk using real-time importation 55 
data. We demonstrate our method using Zika importation and transmission data from Texas in 56 
2016, a high-risk region in the southern United States. Our updated risk estimates are lower 57 
than previously reported, with only six counties in Texas likely to sustain a Zika epidemic, and 58 
consistent with the number of autochthonous cases detected in 2017. Importation events can 59 
thereby provide critical, early insight into local transmission risks as infectious diseases expand 60 
their global reach.  61 
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Introduction  91 
The explosive emergence of Ebola in West Africa in 2014 and Zika in the Americas in 92 

2016 caught the global health community by surprise. Officials scrambled not only to control the 93 
diseases at their source but also to anticipate and rapidly contain global transmission via 94 
infected travelers (1,2). The rate at which a newly introduced infectious disease spreads can 95 
vary enormously, depending on the physical and social environment. For example, serological 96 
surveys of dengue virus (DENV) exposure on either side of the Texas-Mexico border indicated 97 
far higher DENV exposure in the Mexican community despite virtually identical climatic 98 
conditions and even higher mosquito abundance in the Texan community (3).  99 

Epidemiological risk assessment--estimating the severity and transmissibility of a 100 
threatening disease--can be vital to successful mitigation with limited resources. Historical 101 
outbreak data can provide invaluable insight into future epidemic risk. However, for a disease 102 
yet to arrive or that has just begun to spread, we necessarily borrow epidemiological data from 103 
other populations or related diseases, or to indirectly assess risk based on environmental 104 
suitability. For example, as the first importations of Zika virus (ZIKV) arrived in the US in 2016, 105 
early attempts to determine the likelihood and rate of local transmission relied primarily on 106 
dengue epidemiological data from regions with markedly different climatic and socioeconomic 107 
conditions (4–6).   108 

These risk assessments provide information regarding the reproduction number of a 109 
disease (R0)---the expected number of secondary human infections resulting from a single 110 
human infection--- which provides a meaningful and predictive measure of local epidemiological 111 
risk. In a naive population, R0 indicates whether importations can potentially ignite local 112 
epidemics; if so, it also provides insight into the probability, magnitude, and speed of spread 113 
(7,8). Once a disease begins to spread, R0 can be directly estimated from early case data (9).  114 

Here, we introduce a method for estimating R0 prior to an outbreak in populations that 115 
face the ongoing threat of infected travelers from affected regions. This approach was motivated 116 
by recent introductions of ZIKV into the continental US. As hundreds of cases arrived from 117 
affected regions throughout the Americas, officials sought to estimate risks of autochthonous 118 
(local) transmission and identify high risk regions in the southern US. However, given the 119 
novelty of ZIKV and the large proportion of ZIKV cases that go undetected, early estimates had 120 
high uncertainty (6,10,11). Our method harnesses importation data---individual cases that arrive 121 
in a naive location with or without subsequently infecting others---to update a priori estimates of 122 
R0, while explicitly modeling case reporting uncertainty. As a case study, we use the almost 123 
complete absence of secondary transmission following 298 importations of ZIKV into the state 124 
of Texas in 2016 and 2017 to reduce and narrow local estimates of R0. 125 

 126 
Methods  127 

We used a two-step procedure to estimate the monthly R0 for each of the 254 Texas 128 
counties (hereafter county-month R0): (1) estimate a priori county-month R0 distributions using 129 
published ecological models of ZIKV transmission (4,6), and (2) using these as Bayesian priors, 130 
generate posterior  R0 distributions based on reported importations and subsequent local 131 
transmission.  132 

 133 
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Data  135 
We analyzed all ZIKV importations into Texas from January 2016 to September of 2017, 136 

including the county and notification date. County-level purchasing power parity (PPP) in US 137 
dollars (12); daily temperature data at a 5 km x 5 km resolution for 2016-2017 and historical 138 
averages from 1960-1990 (13,14) were also used as inputs to the transmission risk model. For 139 
each county and month, we averaged daily temperatures across all 5 km x 5 km grid cells 140 
whose center fell within the county; we aggregated 5 km x 5 km  mosquito (Aedes aegypti) 141 
occurrence probabilities similarly (15). Data available doi:10.18738/T8/HYZ53B.  142 

In all, six mosquito-borne, autochthonous cases of ZIKV were reported in Texas in 2016 143 
and two were reported in 2017 (25). For updating R0 estimates, we analyzed 2016 data and 144 
assumed that two autochthonous cases were detected in Cameron County--one in November 145 
and one in December 2016; we excluded four nearby cases discovered during the November 146 
follow-up investigation, because our model does not incorporate active surveillance. As 147 
sensitivity analyses, we re-estimated R0 assuming that no cases were detected and that all six 148 
cases were detected (Fig S7). For validating our estimates, we analyzed 2017 data and 149 
considered only one of the two reported autochthonous cases, as the second case occurred 150 
outside the timeline of our 2017 importation data. 151 
 152 
A priori county-month R0 estimates 153 
 Following Perkins et al (6), we estimated R0 using the Ross-Macdonald temperature-154 
dependent formulation:  155 

, 156 
with parameters as defined in Table 1. We calculated relative abundance of the ZIKV vector 157 
based on Ae. aegypti occurrence probabilities as -ln(1-occurrence probability), and interpret this 158 
as a relative (rather than absolute) abundance, which is sufficient for our R0 estimation (6). We 159 
derived a priori county-month R0 distributions by drawing 1,000 Monte Carlo samples from each 160 
underlying parameter distribution, with the appropriate county and month data. Finally, we fit 161 
gamma distributions to each probability distribution for use as an informative priors. 162 
 163 
Table 1: Parameters of prior R0 estimates. 164 

Parameter Description Distribution Value (CI) Citation 

b Mosquito-to-human transmission 
probability 

Constant 0.4 (16) 

c/r Human-to-mosquito transmission 
probability times the duration of 
human infectiousness 

Constant 3.5 (17) 

a Mosquito biting rate Constant 0.67 (18) 

μ(T) Mosquito daily mortality rate Non-parametric 
GAM 

 0.1151 (19,20) 
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n(T) Extrinsic incubation period in 
Mosquitoes 

Exponential 6.1 (3.4, 
9.9)2 

(21) 
 

m Economic mosquito-human 
contact factor 

Monotonic 
decreasing SCAM 

Fit to monte 
carlo 
samples 

(6) 

1. Fit to data from mark-recapture study occurring between 20-34 C 165 
2. At 30 C 166 

 167 
 168 
Autochthonous transmission likelihood  169 

Following (22), we developed a likelihood function describing the expected outbreak size 170 
following an importation. We assumed that the secondary case distribution for each infected is 171 
negative binomial with mean R0, and dispersion parameter, k. Assuming all cases are detected, 172 
the probability of an outbreak of chain size, j, is given by: 173 

, 174 
where �(n) = (n-1)!. However, not all cases are detected and the imported index case is always 175 
detected and correctly classified as an importation, so the probability of detecting a chain of 176 
size, j, from a given importation is given by: 177 
 178 

, 179 
where pd is the case detection probability. Importantly, this allows for local, undetected cases. 180 

We take the product of all likelihoods for each imported case as 181 

, 182 
where the vector, O, contains the observed outbreak sizes for each importation (terminal 183 
importations have an outbreak size of one), denotes the county ( )-month ( ) R0 for the 184 

location and time that the importation occurred, and α is a statewide scaling factor applied to 185 
each . The introduction of the state-wide scaling factor allows for localized importations to 186 

inform statewide estimates, but assumes that biases in the a priori R0 estimation procedure are 187 
constant across counties and months. Details of simulations and validation of the likelihood can 188 
be found in supplemental section I (Fig S1). 189 
 190 
Estimating the dispersion parameter 191 

The negative binomial dispersion parameter governs the variability in secondary cases 192 
following each importation, with values near zero meaning that most importations yield few or no193 
cases while a few “superspreaders” produce many. We assume that ZIKV secondary case 194 
distributions resemble that of dengue virus (DENV) (23). Padmanabha et al. describe the 195 
relationship between regional R0 and the percentage of DENV cases generating over 20 196 

ze 

, 

s 

n 

no 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 15, 2018. ; https://doi.org/10.1101/265942doi: bioRxiv preprint 

https://doi.org/10.1101/265942
http://creativecommons.org/licenses/by-nc/4.0/


secondary infections (p20), as R0 = 0.63 x 100 x (p20) + 0.58. We assumed that p20 = 1e-8 for 197 
R0<0.58, and found that a single dispersion parameter captures this relationship for all R0 values 198 
and thus used k=0.12 for all analyses (Fig S2). 199 
 200 
Updating posterior R0 estimates 201 
 We estimated posterior distributions for α, and each county-month R0 for each day with a 202 
new importation between January 2016 and January 2017. We assumed a uniform prior for α of 203 
U~(0,2), and used a blocked Gibbs sampling algorithm of MCMC. For each MCMC step we 204 
provide the detected imported cases to date and propose each county-month R0, a single α, and 205 
a pd. County-month R0 proposals were normally distributed around the previous sample with 206 
standard deviation of 0.1, α proposals were distributed U~(0,2), and we used a previously 207 
estimated distribution for the reporting rate, pd ~ N(5.74%, sd=1.49%), which we assumed to not 208 
vary spatiotemporally (24). We used the Metropolis-Hastings probability to accept or reject 209 
proposals. Our chains consisted of 200,000 samples with a burn-in duration of 100,000; thinning 210 
every 10 steps. Further algorithmic details and code are available on Github 211 
(https://github.com/sjfox/rnot_updater). 212 
  213 
Validating posterior county-month R0 estimates 214 
 We derived the expected number of autochthonous cases from the importations data 215 
through September of 2017 (at that time, the most recent importation was detected in mid-May) 216 
and compared the estimates to the actual reported autochthonous cases. We integrated 217 
uncertainty into our estimates by sampling from the posterior county-month R0 distributions and 218 
simulating outbreaks accordingly (full details in supplemental section II). 219 
 220 
 221 

 222 
Figure 1: R0 updating using importation data. Consider a hypothetical scenario in which the first 223 
15 terminal ZIKV importations into Texas arrive in Harris County (which includes Houston) 224 
during August 2016. (A) Estimated Harris County R0 for August 2016 a priori (dark grey) and 225 
after accounting for the 15 (light grey) terminal importations (Future August). (B) Median R0 226 
estimates for August before (August 2016) and following (Future August) the importation-based 227 
update.  228 
 229 
 230 
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Results 231 
Importation-based updates of transmission risk 232 

Hypothetically, suppose that the first 15 imported cases of Zika into Texas arrived in 233 
August into Harris County (which contains Houston) without any detected autochthonous 234 
transmission. Prior to these importations, environmental suitability models yielded a relatively 235 
high local risk estimate with median Harris county R0 above the epidemic threshold of one 236 
(Figure 1A - dark grey). The lack of secondary cases following all 15 importations suggests that 237 
R0 may be lower. Indeed, our updated estimates suggest that the Harris county R0 is likely 238 
below one (Figure 1A - light grey). Our method leverages such county-level importation data to 239 
update R0 estimates throughout the state (via a scaling factor), based on the assumption that 240 
any a priori biases will be similar across counties (Figure 1B). 241 

 242 
Baseline importation and transmission risks in Texas 243 

Prior to making importation-based updates, our initial median estimates of R0 across 244 
Texas’ 254 counties in 2016 range from approximately 0 to 1.5 throughout the year with July 245 
and August having the highest transmission risk (Figure 2A). Throughout the manuscript, we 246 
conduct a one-sided test at a 1% significance level and thus consider counties with 99 247 
percentiles (upper bounds) that include one to be at risk for an epidemic (R0 > 1). Initial upper 248 
bound estimates reach as high as three, and 119 (47%) of Texas counties are expected to be at 249 
risk of a local outbreak in at least one month of the year (Figure 2A, S2). When we considered 250 
historic average temperatures rather than 2016 temperatures, the projected 2017 risks were 251 
consistently lower, with the largest differences occurring during the unseasonably warm 2017 252 
winter (Fig S4). Case importations peaked in July, August, and September of 2016, with 164 253 
(55%) of the 298 total 2016 importations arriving then (Figure 2B). The few detected 254 
autochthonous cases occurred in November and December, when expected risk was relatively 255 
low but not negligible. 256 

 257 
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 263 
Figure 2: Texas importations and baseline transmission risk estimates for 2016-17.  (A) Initial 264 
ZIKA R0 estimates using ecological risk models parameterized with actual 2016-2017 265 
temperatures. Each solid line shows median values for one of Texas’ 254 counties. Dashed line 266 
shows the highest upper bound (99th percentile) across all counties. (B) Daily ZIKV 267 
importations into Texas. Blue arrows indicate importations that produced detected 268 
autochthonous transmission; shading indicates training (2016) and testing (2017) periods. 269 
 270 
 271 
Updated transmission risks in Texas 272 
 Based on all importations and autochthonous cases that occurred in Texas prior to 273 
January 2017, we estimate that all Texas counties have a median posterior R0 below one (Fig 274 
3). Median estimates range from 0 to 0.29; upper-bound estimates range from 0 to 1.12, with 275 
only six (5%) of the original 119 high-risk counties maintaining epidemic potential (Fig S5). 276 
When we assume historic averages rather than 2016 temperatures, we obtain similar results 277 
(Fig S6).  278 

In a sensitivity analysis that assumes ~20 times more undetected importations, we found 279 
that the estimated risks decreased further (Fig S7). We also varied the number of detected 280 
autochthonous cases in November: as they decrease from one to zero, the estimated risks 281 
decrease considerably; as they increase to five, estimated risks increase, with 83 counties 282 
becoming at risk for a local outbreak (Fig S7).   283 
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284 
Figure 3: Posterior median county R0 estimates for Texas, based on ZIKV importations through 285 
January 2017. This assumes that all importations were terminal except for a two autochthonous 286 
cases detected in Cameron County in late 2016.  287 
 288 
 Importation events had variable impacts on the posterior estimates, depending on their 289 
timing and location (Fig 4). Terminal importations early in the year, when a priori R0 estimates 290 
were low, had little effect; those arriving in the summer months, when high a priori R0 estimates 291 
suggested that transmission should have occurred, led to sharp decreases and a shrinking 292 
confidence interval. By early November, the median α decreased from 1.0 to 0.06 with a narrow 293 
95% CI of 0.002-0.30. However, the two secondary transmission events detected in November 294 
and December increase R0 estimates and widen the confidence intervals. Incorporating all data 295 
up to January 2017, our best estimate is that R0 values across the state are roughly one fifth the 296 
original estimates (median: 0.19, 95% CI: 0.05-0.48).  297 

 298 
 299 
 300 
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 301 
Figure 4: Evolving posterior distribution of statewide scaling factor for R0. Zika 302 
importations, both with and without subsequent detected autochthonous transmission, provide 303 
insight into local transmission potential, via a statewide scaling factor, α. This shows the 304 
posterior distributions of α, for each day of 2016 that had at least one imported case. Median 305 
estimates reach a minimum in early November, just before the detected autochthonous 306 
transmission events (upside-down blue triangles). Red shading indicates the average statewide 307 
monthly temperature. Note: the scaling factor is never less than zero. 308 
 309 
 310 
Expected autochthonous transmission in Texas 311 
 We use transmission risk estimates based on importations through December 2016 to 312 
estimate the number of autochthonous cases we would expect to detect in Texas in 2017. 313 
Assuming first that only the reported importations occurred in 2017 (26 total), we estimate that 314 
there should have been 0.08 (95%CI: 0-1) detected autochthonous cases in the state; assuming 315 

that many importations went undetected, according to the reporting probability (26 / pd ≈ 453 316 

total), we estimate 1.3 (95% CI: 0-7) detected autochthonous cases. These estimates are 317 
consistent with the single autochthonous case detected in Texas in 2017 (Fig 5). 318 
 319 
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 321 
Figure 5: Expected autochthonous cases in 2017, assuming revised county R0 estimates and 322 
reported importations through September 2017. The probability distributions are built from 323 
10,000 simulations, each randomly drawing from the R0 posterior distributions. The dashed blue 324 
line indicates the actual number of detected autochthonous cases in state (one), and the solid 325 
black lines indicate means for the baseline importation scenario, in which only the reported 326 
importations occurred (top) and the increased importation scenario, in which a large fraction of 327 
importations went undetected (bottom). 328 
 329 
Discussion  330 

The global expansion of ZIKV was declared a Public Health Emergency of International 331 
Concern in February 2016, and caused more than 565,000 confirmed or probable cases and 332 
over 3,352 documented cases of congenital Zika syndrome. Although it is receding in most 333 
regions of the world, ecological risk assessments suggest that previously unaffected or 334 
minimally affected areas may remain at risk for future emergence, including parts of Asia and 335 
South America (26–28). Differentiating regions that can sustain a ZIKV epidemic (R0>1) from 336 
those that cannot is vital to effective planning and resource allocation for future preparedness 337 
plans. To address this challenge, we have developed a simple method for refining uncertain risk 338 
assessments with readily available data on disease importations.  339 

We applied the method to update ZIKV R0 estimates for each of the 254 counties in 340 
Texas, and found that only six counties have non-negligible probabilities of sustained local 341 
transmission. This is a substantial downgrade in expected risk, given that 43% of the 254 342 
counties were previously thought to be vulnerable to ZIKV outbreaks. These estimates suggest 343 
that there should have been roughly one detected case of locally acquired ZIKV between 344 
January and September of 2017, closely corresponding to the single transmission event actually 345 
detected in Cameron County in July 2017 (Figure 5). Our sensitivity analysis suggests that, if we346 
underestimated case-reporting in November, 77 additional counties have non-negligible but low 347 
risks of summer outbreaks. Given comparable importation and climatic data, this approach 348 
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could readily update ZIKV transmission risk estimates for all counties in the continental US and 349 
elsewhere. 350 

Our estimation method relies on several simplifying assumptions. We assumed that the 351 
shape of the secondary case distribution resembles that of dengue. Although we have no 352 
evidence to the contrary, this should be updated as ZIKV-specific estimates become available 353 
(23). We also assumed that transmission is equally likely from imported and locally acquired 354 
cases. Imported cases may be less infectious than locally acquired cases for two reasons, 355 
leading us to underestimate local transmission risks. First, they may be more likely to receive 356 
care or education that limits subsequent transmission, although most ZIKV cases are inapparent 357 
or mild, and do not require medical care (11); second, if they arrive already infectious, their local 358 
infectious periods may be shorter than those of autochthonous cases. Next, we treat all 359 
importations as independent. However, spatiotemporal heterogeneity in case detection 360 
probabilities or clustering of cases (e.g., testing of travel companions) could bias risk estimates. 361 
Furthermore, when secondary clusters are detected, we assume they share a transmission tree 362 
stemming from a single detected importation. In fact, the low ZIKV detection rate suggests that 363 
both primary importations and secondary cases are likely to be missed. If the detection rates are 364 
roughly similar, our results hold. When we assume, in sensitivity analysis, that importations are 365 
detected at higher rates than secondary cases, then the resulting risk estimates will be higher; 366 
when we assume the reverse, they are lower. The additional assumption, that clusters are 367 
epidemiologically connected, seems reasonable for the small contained outbreaks detected in 368 
Texas, but may not be appropriate for importation-fueled arbovirus outbreaks in Florida, for 369 
example. In such cases, molecular data might enable estimation of transmission clusters 370 
(32,33). We also rely on informative Bayesian priors and a statewide scaling factor, which 371 
allows us to use local importations to inform risk estimates elsewhere, but implies that our prior 372 
county-month transmission risk estimates are correct relative to each other. Given additional 373 
importation data, we could potentially estimate each county-month R0 independently. Finally, we 374 
do not consider possibility of sexual transmission of ZIKV. While sexual transmission has 375 
occurred and may be important for specific populations (29), we assumed that mosquito-borne 376 
transmission is the dominant mode of infection. 377 
 During the height of the ZIKV threat, public health agencies in the US rapidly 378 
implemented both preventative measures (e.g., vector control and educational campaigns) and 379 
response measures (e.g. laboratory testing and epidemic trigger plans), particularly in high risk 380 
southern states. Decision makers sought to identify and narrow the spatiotemporal scope of 381 
outbreak risk to enable targeted responses, efficiently allocate resources, and avoid false 382 
alarms (10,30). Our method facilitates such rapid, real-time geographic risk estimation from 383 
typical early outbreak data, and suggests that only 3% of the Texas population is at risk for a 384 
local outbreak. Critically, we can conclude neither that all initial ecological risk assessments for 385 
ZIKV will overestimate risk, although this seems to be the case for ZIKV in Texas, nor that 386 
public health preparations and interventions for ZIKV are no longer necessary in Texas or the 387 
southern US. Rather, our results suggest that sustained ZIKV outbreaks are unlikely, but not 388 
impossible, and provide more robust and localized estimates of ZIKV risk that can inform more 389 
targeted surveillance and reactions to future ZIKV importations. 390 

This framework can be applied to update any R0 estimates using importation data, 391 
regardless of the a priori method of estimation. For example, a new approach combining 392 
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epidemiological and molecular analyses suggests that transmission risk in Florida is subcritical 393 
(i.e., R0 < 1) (31,32). Given that Florida experienced thousands of introductions, only a few of 394 
which sparked large outbreaks, coupling such outbreak-driven estimation with our terminal 395 
importation method may provide a powerful real-time risk assessment framework for exploiting 396 
all available data.  397 

We presented a simple and rational method for continuously updating transmission risk 398 
estimates for populations experiencing infectious disease importations, with or without 399 
secondary transmission. As we demonstrated for ZIKV in Texas, large numbers of terminal 400 
importations can profoundly lower both estimated risks of transmission and uncertainty in prior 401 
estimates, particularly those derived from ecological suitability or other models that borrow 402 
inputs from related pathogens in other parts of the world. Although the threat of ZIKV 403 
emergence in the continental US motivated this study, this new framework can be widely 404 
applied to improve transmission risk assessments when a disease newly threatens a population 405 
via regular introductions with minimal secondary transmission. For example, importation-fueled 406 
MERS-CoV transmission risk, or highly pathogenic avian influenza (34,35). This method can 407 
also be used to assess disease transmission risk during elimination scenarios, such as 408 
assessing risk for measles transmission in vaccinated populations or malaria in non-endemic 409 
regions (36,37).  410 
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