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Abstract 

To develop efficient therapies and identify novel early biomarkers for chronic kidney disease 

(CKD) an understanding of the molecular mechanisms orchestrating it is essential. We here set 

out to understand how differences in CKD origin are reflected in gene regulatory mechanisms. 

To this end, we collected and integrated publicly available human-kidney glomerular microarray 

gene expression data for nine kidney disease entities that account for  a majority of CKD 

worldwide [Focal segmental glomerulosclerosis (FSGS), Minimal Change Disease (MCD), 

FSGS-MCD, IgA nephropathy (IgAN), Lupus nephritis (LN), Membranous 

glomerulonephropathy (MGN), Diabetic nephropathy (DN), Hypertensive nephropathy (HN) and 

Rapidly progressive glomerulonephritis (RPGN)]. We included data from five distinct studies and 

compared glomerular gene expression profiles to that of non-tumor part of kidney cancer 

nephrectomy tissues. A major challenge was the integration of the data from different sources, 

platforms and conditions, that we mitigated with a bespoke stringent procedure. This allowed us 

to perform a global transcriptome-based delineation of different kidney disease entities, 

obtaining a landscape of their similarities and differences based on the genes that acquire a 

consistent differential expression between each kidney disease entity and tumor nephrectomy. 

Furthermore, we derived functional insights by inferring signaling pathway and transcription 

factor activity from the collected gene expression data, and identified potential drug candidates 

based on expression signature matching. These results provide a foundation to comprehend the 

specific molecular mechanisms underlying different kidney disease entities, that can pave the 

way to identify biomarkers and potential therapeutic targets. 
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1. Introduction 

Chronic Kidney Disease (CKD) is a major public health burden affecting around 10 % of the 

population in the western world. There is no specific therapy to slow down kidney functional 

decline and prevent progression to end-stage renal disease (ESRD) for the vast majority of 

kidney diseases. Thus patients face dialysis or kidney transplantation. However, mortality and 

morbidity on dialysis is high and transplant wait times number in years. Furthermore, dialysis 

patients consume dramatic proportions of healthcare budgets 1. Despite of this, CKD/ESRD is 

not receiving as much attention as other diseases, and research-funding is much lower (e.g. 

100 fold less per patient than HIV 2). 

 

The origin of CKD is heterogenous and has slowly changed in recent years due to an aging 

population with increased number of patients with hypertension and diabetes. Major contributors 

to worldwide CKD that are studied here are Diabetic nephropathy (DN) and Hypertensive 

nephropathy (HN). Other contributors are immune diseases such as Lupus Nephritis (LN) and 

glomerulonephritides including IgA nephropathy (IgAN), Membranous glomerulonephropathy 

(MGN), Minimal Change Disease (MCD) as wells as Focal Segmental Glomerulosclerosis 

(FSGS) and  Rapidly progressive glomerulonephritis (RPGN). While various other diseases 

such as hereditary diseases as autosomal dominant polycystic kidney disease, chronic 

infections, and toxins, among others, are also contributing to the prevalence of CKD the data 

presented here is focusing on the above mentioned diseases.  

 

Regardless of the type of initial injury to the kidney the stereotypic response to chronic repetitive 

injury is scar formation and fibrosis with subsequent kidney functional decline. Scar forms in the 

tubulo-interstitium as tubulo-interstitial fibrosis and in the glomerulus referred to as 

glomerulosclerosis. Despite this stereotypic response that involves inflammation and expansion 

of scar secreting myofibroblasts the initiating stimuli are quite heterogeneous, ranging from an 

auto-immunological process in LN to poorly controlled blood glucose levels in DN. A better 

understanding of similarities and differences in the complex molecular process orchestrating 

disease initiation and progression will guide the development of novel targeted therapeutics.  

 

A powerful tool to understand and model the molecular basis of diseases is the analysis of 

genome-wide gene expression data. This has been applied in the context of various  kidney 

diseases contributing to CKD 3–7, and most studies are available in the resource NephroSeq. 

However, to the best of our knowledge, no study so far has combined these data sets to build a 
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comprehensive landscape of the molecular alterations underlying different kidney diseases 

contributing to a majority of  CKD prevalence. In this study, we set out to build such a data set. 

We collected data from five large studies with gene expression data from kidney biopsies of 

patients of eight different glomerular disease entities leading to CKD (from now on CKD 

entities), FSGS, MCD, IgAN, LN, MGN, DN, HN and RPGN. We normalized the data with 

bespoke stringent procedures, which allowed us to study the similarities and differences among 

these entities in terms of deregulated genes, pathways, and transcription factors, as well as to 

identify drugs that revert their expression signatures and thereby might be useful to treat them. 

2. Results 

2.1. Assemble of a pan-CKD collection of gene expression profiles of patients 

We searched in Nephroseq (www.nephroseq.org) and Gene Expression Omnibus (GEO) 8,9 and 

identified five available studies  - GSE20602 10; GSE32591 11; GSE37460 11; GSE47183 12,13; 

GSE50469 14 (see section 4.1.) - with human microarray gene expression data for nine different 

glomerular disease entities: FSGS, MCD, IgAN, LN, MGN, DN, HN and RPGN, as well as 

healthy tissue and non-tumor part of kidney cancer nephrectomy tissues as controls (Figure 1A 

and B). In addition, for one dataset, patients were labeled as an overlap of FSGS and MCD 

(FSGS-MCD) and we left it as such. These studies were generated in two different microarray 

platforms. To be able to jointly analyze and compare the different CKD entities, we performed a 

stringent preprocessing and normalization procedure that involved quality control assessment, 

either cyclic loess normalization or YuGene transformation and a batch effect mitigation 

procedure (see Methods and Supplementary material), thus at the end we kept 6289 genes 

from 199 samples in total. From the two potential controls, healthy tissue and cancer 

nephrectomy, we chose the latter as reference for further analysis as the batch mitigation 

removed a large number of genes for the healthy tissue.  

2.2. Technical heterogeneity across samples 

We first examined the similarities among the samples to see the extent of potential batch 

effects. Data does not primarily cluster by study source or platform, which can be attributed to 

our batch mitigation procedure (Figure 1C,  Sup. Figure 1), but the technical heterogeneity of 

the samples is still present, most probably due to the batch-group imbalance (see section 4.4. 

and Sup. Figure 1). Samples from RPGN and FSGS-MCD conditions seem to be more affected 

by platform-specific batch effects than samples from other conditions, most probably due to the 
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unbalanced distribution of samples: RPGN and FSGS-MCD samples are exclusively 

represented in platform Affymetrix Human Genome U133 Plus 2.0 Array (GPL570). In addition 

both of these are the subjects of a singular study, so that  the batch effect mitigation procedure 

was not feasible to be conducted on them. Thus, the relatively lower Spearman’s correlation 

coefficients - 0.6 vs. for the rest - could be attributed to this uneven sample distribution in 

microarray platforms.  

 

Figure 1. (A) Flow of analysis followed in this study. (B) Heatmap of the distribution of samples across 

studies and  microarray platforms. (C) Hierarchical clustering of the arrays based on gene expression 

Spearman’s correlation coefficients. 

2.3. Biological heterogeneity of CKD entities 

Keeping in mind the potential biases introduced by the technical heterogeneity, we set out to 

find molecular differences among glomerular CKD entities. For this purpose, we analyzed only 

the expression data obtained for glomeruli. First, we calculated the  differential expression of 

individual genes between the different CKD entities and TN fitting linear models for microarray 

data 15,16. From the 6289 genes included in the integrated dataset, 1791 showed significant 

differential expression (|logFC| > 1, p-value < 0.05) in at least one CKD entity. RPGN was the 
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CKD entity with the largest number of significantly differentially expressed genes (885), while 

MCD was the one with least (75). 12 genes showed significant differential expression across all 

the CKD entities (AGMAT, ALB, BHMT2, CALB1, CYP4A11, FOS, HAO2, HMGCS2, MT1F, 

MT1G, PCK1, SLC6A8). Interestingly, all these genes were underexpressed across all the CKD 

entities (none of them overexpressed for any CKD entity). In contrast, QKI and LYZ genes were 

significantly overexpressed in HN, IgAN, and LN, while significantly underexpressed in FSGS-

MCD, and RPGN (and DN for QKI). 107 different genes were significantly differentially 

expressed in at least 6 CKD entities (Figure 2A). 
 

To better comprehend the divergence and the similitude of the CKD samples we applied 

diffusion maps, as an attempt to reveal the underpinning geometric structure of the glomerular 

CKD transcriptomics data (Figure 2B). Specifically, we asked how the distinct CKD entities 

localised with respect to each other based on a common set of differentially expressed genes 

with regard to the expression profile of tumor nephrectomy. Thus, the diffusion distance of a 

given CKD entity with regard to tumor nephrectomy implies the extent of  expression profile 

divergence from that control.  

 

The most distant condition from tumor nephrectomy is RPGN, which is arguably the most 

drastic kidney disease condition with the most rapid kidney functional decline among the 

included kidney disease entities. Interestingly, healthy donor samples are distinct from tumor 

nephrectomy samples despite the fact that the tissue fragments resected from the patients with 

cancer were non-cancerous. This might be explained by either minor contamination with cancer 

cells or alternatively an effect of the tumor itself on the non-cancerous kidney tissue such as e.g.  

immune cell infiltration. DN and LN are in close proximity to RPGN, whereas HN is localised 

near IgAN. Differences are harder to asses in the middle of the diffusion map, but were visible 

when plotting the dimension components pair-wise (Sup. Figure 2). For instance, MCD samples 

spans from a point proximal to tumor nephrectomy and ends near FSGS, but some of its 

samples are in close proximity to MGN or even hypertensive nephropathy. While it makes sense 

that MCD as a relatively mild disease, without any morphological changes that can be detected 

by light microscopy, is relatively close to the control groups of TN and HLD, it remains unclear 

why other disease entities spread widely in the diffusion map. Unfortunately, the data we used 

does not include information about disease severity which might help to explain this 

heterogeneity with early stage disease closer to the control groups and late stage disease 

closer to RPGN.  Dimension component 1 (DC1) seems to offer a focus on the dissimilarity 
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between the two reference conditions, tumor nephrectomy and healthy living donor from the 

CKD entities. Dimension component 2 (DC2) provides more insight into the disparity of the 

reference conditions. Dimension component 3 (DC3) discerns the subtle geometrical 

manifestation of the distinct CKD entities with regard to each other. In summary, using diffusion 

maps we find clear differences in the global expression profiles of the CKD entities. 

 

 

Figure 2. (A) Radial heatmap of consistently differentially expressed genes across six or more disease 

entities (up- or down-regulation). (B) Diffusion map of CKD entities reveals the underpinning geometric 

structure of the glomerular CKD transcriptomics data. 
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2.4. Transcription factor activity in CKD entities 

To further characterize the differences among the CKD entities, we performed various functional 

analyses. First, we assessed the activity of transcription factors (TFs; Figure 3), based the 

levels of expression of their known targets (see Methods). Changes in the  target genes 

provides superior estimates of the TF activity than the expression level of the transcription factor 

itself 17,18 (Figure 3). We found 10 TFs differentially regulated in at least one CKD entity (Figure 

3). Furthermore, we correlated the identified TF’s  activities with the expression of those genes, 

that are encoding for these TFs. The idea is that, while factors with negative correlation are 

potentially acting as repressors, whereas those with positive correlation are acting as activators. 

Those with no correlation indicate factors whose activity is significantly modulated using post-

translational modifications or factors whose regulons or expression measurements are 

unconfident. For instance, Interferon regulatory factor-1 (IRF1) is significantly enriched in Lupus 

nephritis and moderately correlated (Spearman’s rank-based correlation coefficient of 0.624) 

with the expression level of the gene encoding for IRF1. This suggests an as of yet 

undiscovered potential role of  IRF1 as a transcriptional activator in Lupus nephritis. In addition, 

IRF1’s transcriptional activity was  elevated  in LN with respect to the rest of the conditions. The 

activity of the upstream stimulatory factor 2 (USF2) - a basic helix-loop-helix (bHLH) TF 19 - is 

estimated to be significantly depleted in MCD compared to the rest of the conditions. 

Interestingly, USF2’s estimated activity across the CKD entities is inversely correlated - 

Spearman’s rho (rs = -0.867) - with the expression level of the gene USF2, that is encoding for 

the TF USF2. Intriguingly, USF2 has been implicated as a potential transcriptional modulator of 

Angiotensin II type 1 receptor (AT1R) - associated protein (ATRAP/Agtrap) in mice 19. 

Altogether, the identified TFs are estimated to exhibit different mode of action depending on the 

CKD entity.  
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Figure 3. Transcription Factor Activity in glomerular CKD Entities. Heatmap depicting transcription 

factor activity (colour) for each CKD entity and tumor nephrectomy in glomerular tissue. Negative 

numbers (blue) signify decreased transcription factor activity, positive numbers (pink) indicate increased 

transcription factor activity of an entity relative to the other entities. The corresponding q-value is 

represented by asterisk(s) (*) to indicate the statistical significance of each TF in each disease entity. The 

numbers to the right of factor names are Spearman’s rank-based correlation coefficients of factor activity 

and factor expression across different CKD entities.  

 

2.4. Signaling Pathway Analysis  

We complemented the functional characterization of transcription factor activities with an 

estimation of pathways activities. For this, we applied two methodologies, our tool PROGENy 20 

and a general gene set enrichment tool, Piano 21. 

2.4.1. Pathway activity of CKD entities using PROGENy 

We first applied PROGENy, that infers pathway activity by looking at the changes in levels of 

the genes affected by perturbation on pathways. We have found that this provides a better 
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proxy of pathway activity than looking at the genes in the actual pathway 20. More specifically, 

whether it is expected to have a given PROGENy score for a particular pathway in a specific 

disease entity given the gene expression data at hand. Figure 4A depicts the pathway activities 

of CKD entities gained from PROGENy. Essentially, the degree of pathway deregulation is 

associated with the degree of disease severity. The pathways present in PROGENy exhibit 

rather divergent signaling footprints across the CKD entities. For example, VEGF is estimated to 

be significantly influential in five CKD entities: RPGN, HN, DN, LN and IgAN, from which, VEGF 

is predicted to be deactivated in RPGN and DN, but more prominently activated in HN, LN and 

IgAN. 10 out of 11 pathways are predicted to be significantly deregulated in RPGN with respect 

to TN, which is aligned with the diffusion map (Figure 2B) outcome; the divergence of RPGN 

from TN (control) is considerably prominent both at a global transcriptome landscape and 

signaling pathway level. Intriguingly the pathway JAK-STAT does not appear to be affected in 

RPGN, however, it is - JAK-STAT - considerably activated in LN and markedly deactivated in 

DN in comparison to TN. Overall, the separate CKD entities are characterised by distinct 

combinations, magnitudes and directions of signaling pathway activities according to 

PROGENy. 

 

2.4.2. Pathway enrichment with Piano 

While PROGENy can give accurate estimates of pathway activity, it is limited to 11 pathways for 

which robust signature could be generated 20. To get a more global picture, we complemented 

that analysis with a gene-set-enrichment analysis using Piano 21. A total of 160 pathways out of 

1329 were significantly enriched (up-/down-regulated, corrected p-val < 0.05) in at least one 

CKD entity. Interestingly, no pathway was enriched in opposite directions across the CKD 

entities, in agreement with a common effect on kidney disease progression with a stereotypic 

tissue response regardless of the initial stimuli. HN was the entity with the largest number of 

differentially enriched pathways (81, 25 down-regulated, 56 up-regulated), while FSGS-MCD did 

not show significant enrichment for any pathway. Cell-cycle and immune-system related 

pathways were significantly up-regulated in seven out of the 9 different CKD entities (FSGS, 

HN, IgAN, LN, MGN and RPGN in both cases, DN for immune system, and MCD for cell-cycle); 

in contrast, VEGF pathway was differentially enriched in a single CKD entity (LN). Interestingly, 

TNFR2 pathway was differentially enriched in IgAN, HN, and LN, in line with the results from  

PROGENY where VEGF is significantly deregulated, not only in IgAN, HN and LN, but also in 

RPGN and DN. 59 different pathways showed significant enrichment in at least 3 CKD entities 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2018. ; https://doi.org/10.1101/265447doi: bioRxiv preprint 

https://doi.org/10.1101/265447
http://creativecommons.org/licenses/by-nd/4.0/


 

10 

(Figure 4B). Figure 4B also shows that HN (52), MGN (45), and IgAN (37) are the CKD entities 

with more pathways differentially enriched in at least 3 entities, result that agrees with Figure 2B 

showing these entities in the center of the diffusion map.  

Figure 4 - Pathway activity alterations in CKD entities. (A) Heatmap depicting pathway activity (colour) 

for each CKD entity relative to tumor nephrectomy in glomerular tissue, according to PROGENy 20. The 

magnitude and direction - positive or negative - of PROGENy scores indicates the degree of pathway 

deregulation in a given CKD entity with regard to the reference condition, tumor nephrectomy. 

Permutation q-values are used to indicate statistical significance of each pathway in each disease entity, 

indicated by asterisk(s) (*). (B) Radial heatmap of consensually enriched pathways across three or more 

disease entities (up-, down-, or non-directional-regulation) according to PIANO 21 using MSigDB-C2-CP 

gene sets. 

 

2.5 Prediction of potential novel drugs indication to treat CKD  

As a final analysis, we  applied a signature-search-engine, L1000CDS2 tool 22. L1000CDS2 

measures the distance between two signatures of disease data and the LINCS-L1000 data, and 

then prioritizes small molecules that are expected to have reverse signature compared to 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2018. ; https://doi.org/10.1101/265447doi: bioRxiv preprint 

https://doi.org/10.1101/265447
http://creativecommons.org/licenses/by-nd/4.0/


 

11 

disease signature. With L1000CDS2, we performed this analysis separately for the nine CKD 

entities and then identified 220 small molecules across the CKD entitles (Sup. Figure 5). In 

order to narrow down the list of 220 small molecules, we focused on 20 small molecules 

observed in the L1000CDS2  output of at least 3 subtypes (Figure 5A).   

 

 
Figure 5. - Top 20 Drug Candidates from Drug Repositioning. (A) Distribution of 20 small molecules 

reversely correlated with at least 3 CKD entities. (B) Table of four small molecules out of the 20 of (A) 

supported by manual curation. Table shows drugs (first row), protein coding genes targeted by these four 

drugs (second row) and pathways (MSigDB) related to the biological functions these drugs affect (third 

row).   

 

By manual curation of scientific publications, we found  that four small molecules have 

experimental evidence to support their clinical relevance in CKD or renal disease animal model 

testing (Sup. Table 1). BRD-K04853698 (LDN-193189) which is known as a selective BMP 

signaling inhibitor, and has been shown to suppress endothelial damage in mice with chronic 

kidney disease 23. Wortmannin is one of cell-permeable PI3K inhibitors, and it has been shown 

to decreases albuminuria and recovers podocyte damage for early diabetic nephropathy in rat24. 

The tyrosine kinase inhibitor Nilotinib is a Food and Drug Administration (FDA) approved 

medication  to treat chronic myelogenous leukemia (CML).25 Iyoda et al. showed 26 that nilotinib 

treatment resulted in stabilized kidney function and prolonged survival after subtotal 

nephrectomy in rats when compared to vehicle treatment b 26. Finally narciclasine was identified 

which has been reported to reduce macrophage infiltration and inflammation in the mouse 

unilateral ureteral obstruction (UUO) model of kidney fibrosis 27.  
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To further explore the association of these drugs with CKD disease and progression, we 

analysed  the expression data for the targets of the literature supported drug candidates. First, 

each drug candidate was mapped to genes that encode the proteins targeted by these drugs 

(Figure 5B). For each gene, its differential expression of any CKD entity against TN was 

evaluated. Out of the 11 mapped genes, MYLK3, a target of narciclasine, was significantly 

differentially expressed (under-expressed, logFC<-1, p<0.05) in two CKD entities (IgAN and LN) 

(Supplementary figure 6). Complementarily, screened drugs were mapped to the pathways they 

affect based on their functional information. The enrichment of the subset of pathways was 

evaluated using the previous results from gene set analysis algorithm (piano). This time, only 

PI3KCI pathway appears to be both, significantly enriched for HN patient data (up-regulated, 

p<0.05), and as pathway affected by the candidate repositioned drugs (Wortmannin, PI3K 

inhibitor).   

 

3. Discussion 

In this paper, we have aimed to shed light on the commonalities and differences among 

glomerular transcriptomics of major kidney diseases contributing to the CKD epidemic affecting 

>10% of the population in Europe and the United States. Multiple pathologies are covered under 

the broad umbrella of being contributors to CKD and, while they share a physiological 

manifestation in terms of loss of kidney function, the driving molecular process can be very 

different. In this study we explored these processes by analyzing glomerular gene expression 

data from kidney biopsies obtained upon microdissection. We found general trends such as 

underexpression of SLC6A8, ALB and CALB1  consistently across all included kidney disease 

entities. The decreased expression of SLC6A8 which encodes for a creatinine transporter might 

just reflect a negative feedback loop due to increased creatinine levels with kidney functional 

decline across all disease entities. Similarly, although albumin is primarily expressed in the liver, 

there are reports about minor albumin expression in the kidney28 and thus decreased 

expression of the gene encoding for albumin (ALB) might be a negative feedback loop of cells 

exposed to high urinary albumin levels during progression of CKD. CALB1 encodes for calbindin 

1 an intracellular calcium binding protein which has been reported to be downregulated in the 

rat UUO kidney-fibrosis model and the anti-glomerular basement membrane glomerulonephritis 

model 29. Decreased urinary calbindin 1 was proposed as a biomarker for kidney injury 29.  
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Other genes were specifically altered  in certain kidney disease entities such as Quaking (QKI) 

or Lysozyme C (LYZ), significantly overexpressed/underexpressed/non-significant depending on 

the underlying kidney disease. It is known that QKI is associated with angiogenic growth factor 

release and plays a pathological role in the kidney 30, while LYZ was known to be related with 

vascular damage and heart failure but was recently found to be increased in plasma during CKD 

progression 31.  This data supports the fact that despite a stereotypic response of the kidney to 

injury with glomerulosclerosis, interstitial fibrosis and nephron loss there are various disease 

specific differences that are important to understand in order to develop novel personalized  

therapeutics. 

 

CKD is a complex disease with a  high degree of polygenicity. Furthermore, it is a very 

heterogeneous condition that can be acquired through a variety of biological mechanisms which 

is reflected by the results of pathway analysis. There was little to no overlap in significantly 

enriched pathways between the different kidney disease entities. We found 59 different 

pathways that showed significant enrichment in at least 3 disease entities (Figure 4B), indicating 

that different disease entities share some general mechanisms but their underlying 

pathophysiology differs from one entity to another. Besides increasing the interpretability, the 

pathway analysis identify many more differences among disease-identities than the gene-level 

analysis (Figure 2A). For example, pathway analysis identified pathways related to the 

metabolism of lipids and lipoproteins significantly down-regulated in MCD, MGN, and HN; and 

pathways related to fatty acid metabolism significantly down-regulated in MCD, IgAN, MGN, and 

HN, results similar to those reported by Kang et al 6.  

 

PROGENy (Figure 4A) estimated JAK-STAT, a major cytokine signal transduction regulator 32,  

to be significantly activated in LN with respect to TN and DoROthEA (Figure 3) predicted the 

TFs IRF1 and STAT1 to be significantly enriched in LN. The estimated pathogenic influentiality 

of JAK-STAT/STAT1/Interferon signaling in LN is supported by various studies 33 34 35. 

 

We also used the signature-matching paradigm to explore potential drugs that could revert the 

disease phenotype, and found that four drugs could be an encouraging medicine for CKD 

entities. Even though more experimental validations are required for the unknown medical 

interaction between drugs of our results and CKD progression, our approach suggests that it is 

possible to find promising treatments for CKD with the concept of drug repositioning. In 

particular, for one of the identified drugs, nilotinib, results have already been confirmed that it is 
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safe to use for treatment and there is  supporting data of its value  insight  at indications for CKD 
26.  

 

The analysis of the drug targets’ expression found that MYLK3, a gene encoding for one of the 

targets of Narciclasine, was significantly underexpressed in IgAN and LN when compared with 

TN. Similarly, PI3KCI pathway, the target of Wortmannin was enriched in HN (up-regulated,  

p<0.05). This analysis attempts to refine the outcome of the repositioning analysis, and at the 

same time help to connect it to the disease mechanism both in gene as well as in pathway level. 

 

We see our analysis as a first step towards a characterization of the similarities and differences 

of the various pathologies that lead to CKD. As more data sets become available, either micro-

array or RNA-seq, these can be integrated in our pipeline. Furthermore, the burgeoning field of 

single-cell RNA (scRNA) has started to produce data sets in kidney 36,37, which hold the 

potential to revolutionize our understanding of the functioning of the kidney and its pathologies 
38 39. In particular, scRNA data can provide us signatures of the many cell types of the kidney, 

which in turn can be used to deconvolute the composition of cell types12 in the more abundant 

and cost-effective bulk expression datasets 39. Other data sets, such as (phospho)proteomics40 

and metabolomics41, would complement gene expression towards a more complete picture of 

the CKD-entities. Ideally, all these data sets would be collected in a standardized manner to 

facilitate integration, which was a major hurdle in our study. Such a comprehensive analysis 

across large cohorts, akin to what has happened for the different tumour types thanks to 

initiatives such as the International Cancer Genome Consortium, can lead to major 

improvements in our understanding of and treatment venues for CKD 42. 

4. Methods 

4.1. Data collection 

Raw data CEL files of each microarray dataset - GSE20602 10; GSE32591 11; GSE37460 11; 

GSE47183 12,13; GSE50469 14 - were downloaded and imported to R (R version 3.3.2) using the 

getGEOSuppFiles and read.affy function of the GEOquery and simpleaffy package, respectively 
43. Each dataset came from either Affymetrix Human Genome U133A Array or Affymetrix 

Human Genome U133 Plus2.0 array, therefore the preprocessing was done with the affy R 

package 44 accordingly.  
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4.2. Preprocessing and mapping  

RNA quality was assessed by RNA degradation plots using the AffyRNAdeg function from the 

affy package. In order to assess the statistical characteristics of the raw data, the affyPLM 

package 45 was used and probe-level metric calculations were carried out on the CEL files by 

calling the fitPLM function. The homogeneity of probe sets was evaluated by Normalized 

Unscaled Standard Error (NUSE) and Relative Log Expression (RLE) boxplots 46–48. We 

removed all arrays that showed greater spread of NUSE value distribution with respect to the 

rest or where the median NUSE value was above 1.05, as these features indicated the sign of 

low quality array.  The RLE values represent the ratio between the expression of a probe set 

and the median expression of that probe set across all arrays in the data set. The ratios are 

expected to be centered around zero on a logarithmic scale. RLE boxplots were generated to 

visualise the distribution of RLE values. Array quality was evaluated by taking NUSE and RLE 

plots into account.  

 

The preprocessing step also constituted background correction and log2 transformation of the 

raw values, of which was done by the Robust Multichip Average (RMA) package 49–51. 

 

Probe IDs were mapped to Entrez Gene ID resulting in 12437 (Platform GPL570, Affymetrix 

Human Genome U133 Plus 2.0 Array) and 20514 (Platform GPL96, Affymetrix Human Genome 

U133A Array) unique Entrez gene identifiers, respectively. In the case where datasets contained 

multiple probes for the same Entrez ID gene, the probe with the highest interquartile range 

(IQR) was retained as the representative of that given gene in the dataset. For this filtering step, 

the nsFilter function from the genefilter package 52 was utilized.  

4.3. Correlation of arrays 

Correlation of arrays was assessed by hierarchical clustering of the arrays based on gene 

expression Spearman’s rank-based correlation coefficients. Low Spearman correlation 

coefficients imply considerable differences between array intensities 53.  

4.4. Normalization and batch effect mitigation 

When required, cyclic loess normalization was applied using the limma package 16,54,55 or 

YuGene transformation was carried out using the YuGene R package 56. 

 

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2018. ; https://doi.org/10.1101/265447doi: bioRxiv preprint 

https://doi.org/10.1101/265447
http://creativecommons.org/licenses/by-nd/4.0/


 

16 

The efficient integration of the data from different sources and platforms requires batch effect 

management, which should be customised to the data at hand. The current data was heavily 

affected by platform- and study-specific batch effects, because the outcome categories (CKD 

entities and their samples) were unevenly distributed across the batches. The commonly used 

algorithms for correcting batch effects assume a balanced distribution of outcome categories 

across batches and are vulnerable to the group-batch imbalance 57–60. We conducted a stringent 

batch effect mitigation process in order to minimize the influence of technical heterogeneity. 

First, we structured the data in a platform-specific manner. Then, we conducted differential gene 

expression analysis between those identical biological conditions that are originating from 

distinct study sources after cyclic loess normalization and removed those genes that are 

significantly differentially expressed between them, as it indicated difference mainly due to the 

data source, rather than the biological difference. We applied this procedure for the data 

fragments coming from Affymetrix Human Genome U133 Plus 2.0 Array and Affymetrix Human 

Genome U133A Array. Next, we merged the data sets between the two platforms using the 

overlapping genes, followed by a process to mitigate the platform-induced batch effect. This 

latter procedure is similar to the one used for the data source-specific batch effect mitigation.  

By applying this stringent procedure, we eliminated the genes that are the most affected by 

batch effects. For the illustration of this procedure, see Sup. Figure 1. The scater R package 61 

was used for producing the batch effect management related plots.  

 

 

4.5. Detection of genes with consistently small p-values across all studies 

 
Based on the assumption that common mechanisms might contribute to all CKD entities we 

performed a Maximum p-value (maxP) method 62 - which uses the maximum p-value as the test 

statistic - on the output of the differential expression analysis of the hypothetically separate 

studies. The maxP test follows a beta distribution that is parametrized by α  =  K and β  =  1 under 

the null hypothesis:  

 

 

 

𝐻! :  ∩!!!!    𝜃𝑘 = 0  versus 𝐻! :  ∩!!!!    𝜃𝑘 ≠ 0  (𝐻𝑆!) 
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where θk is the effect size of study k. 

This hypothesis setting (symbolised by HSA) aims to uncover differentially expressed (DE)  

genes that acquire non-zero effect sizes in all studies. To phrase it differently, it is designated to 

unravel DE genes that are characterised by a small p-value across all studies 62–64.  

To obtain the p-values, differential expression analysis was conducted on the batch effect 

mitigated data using the limma R package 15. We contrasted each glomerular CKD entity with 

tumor nephrectomy condition - each CKD - tumor nephrectomy contrast represented a 

hypothetically separate “study” - and the lmFit function was used to fit a linear model to the 

expression data for each probe set in the array series, followed by the estimation of eBayes 

values and the execution of a moderated t-test by the empirical Bayes method for differential 

expression (eBayes function) 15,53. 

4.6. Diffusion map 

The batch mitigated data containing merely the maxP identified  (section 4.5.) 1790 genes (FDR 

< 0.01) (Sup. file 1), were YuGene transformed 56 and the destiny R package 65 was utilised to 

produce the diffusion maps. 

4.7. Functional Analysis 

4.7.1. Transcription factor activity analysis 

We estimated transcription factor activities in the glomerular CKD entities using DoRothEA17 

which is a pipeline that tries to estimate transcription factor activity via the expression level of its 

target genes utilizing a curated database of transcription factor - target gene interactions (TF 

Regulon). The cyclic loess normalized expression values of all genes in all conditions were 

scaled and re-centered across the conditions and the transcription factors activities were 

estimated from the TF Regulon using VIPER 18. We then conducted a Spearman’s rank-based 

correlation between the identified transcription factors’ activity and the scaled and re-centered 

expression of the genes encoding for these transcription factors. Since as a consequence of the 

batch effect mitigation procedure we lost many potentially informative genes, the coverage of 

the TF regulon database was limited and hence our statistical power decrease, meaning that 

there might be more differentially regulated TFs. 
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4.7.2. Inferring Signaling Pathway Activity fusing PROGENy  

We used the cyclic loess normalised and batch effect mitigated expression values for 

PROGENy 20, a method which utilizes downstream gene expression changes due to pathway 

perturbation in order to infer the upstream signaling pathway activity. The expression values 

were standardised to express a distance of each CKD sample from tumor nephrectomy (CKD 

entity sample scaled by the standard deviation of tumor nephrectomy). We used the overlapping 

genes between the standardised gene expression matrix and the PROGENy model. Then, a 

matrix multiplication was done to get the product matrix,  containing a PROGENy score for each 

pathway in each CKD entity. A positive PROGENy score in a given pathway in a given CKD 

entity implies higher signaling activity compared to that specific pathways’ activity in tumor 

nephrectomy, and vice versa for a negative PROGENy score. 

 

Statistical significance was assessed using permutation-based hypothesis testing. We 

resampled the standardised gene expression values in a way that results in the randomised 

allocation of expression values to different glomerular disease  labels. This resampling was 

done ten thousand times. We then computed PROGENy scores from these permuted Z-scores, 

resulting in a list  of glomerular CKD entity specific PROGENy scores. By applying this 

approach we generated an empirical null distribution on the basis of the original gene 

expression sample distribution. The probability that the original PROGENy score in a given 

glomerular CKD entity is coming from the estimated null distribution or not was evaluated in a 

pathway-specific manner. We used a p-value of 0.05 as the threshold for statistical significance. 

Furthermore, we applied the Benjamini-Hochberg adjustment 66 on the p-values to correct for 

multiple testing. 

 

4.7.3. Pathway Analysis with Piano 

Pathway analysis was performed using the piano package from R 21. The Molecular Signature 

Database - Curated Pathways - Canonical Pathways (MSigDB-C2-CP) was used as biological 

model to map the individual genes to functional sets. Gene-level statistics were obtained after 

applying the limma algorithm (see section 4.5.). All disease entities were compared to tumor 

nephrectomy, because the healthy living donor samples were highly corrupted by batch effects 

and as a result of the batch effect mitigation, we had to remove a considerably large number of 

genes from these samples.  The following ten methods (with their corresponding gene-level 

statistics) were used as input of the pathway analysis algorithm to calculate gene set 
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enrichment: Fisher (PVal), Stouffer (PVal), Reporter (PVal), PAGE (TVal), Tail Strength (PVal) 

,GSEA (TVal), Mean (FC), Median (FC), Sum (FC), MaxMean (TVal). From algorithm’s output 

only the adjusted p-values from p_distinct_up, p_non_dir, and p_mix_down were extracted. For 

each pathway/p-value pair the geometrical average across all ten methods was calculated. 

 

4.8. Drug repositioning 

Cyclic loess normalized gene expression data for nine glomerular CKD entities were analyzed 

separately for measuring characteristic direction (CD) 67. Cosine distance for each gene was 

computed to the line which has 90 degree to the hyperplane which set the given CKD entity 

apart from tumor nephrectomy in N-dimensional gene expression space. Then, for each CKD 

entity, the signature of cosine distances computed by characteristic direction was applied to a 

signature-search-engine, L1000CDS2 22 with the mode of reverse in configuration. L1000CDS2 

provided the top 50 ranked small molecule candidates with 1-cos(a), p-value, drug database 

links. Significant small molecules with FDR < 0.05 were filtered in for the nine CKD entities, 

separately. For converting the name of small molecules into general chemical names, we 

referred to LINCS phase I, II dataset stored in GEO (GSE92742, GSE70138) 68. 
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Supplementary material 

Illustration of the batch effect mitigation procedure 

For illustrative purposes the batch effect mitigation process will be illuminated using samples 

from the condition IgA Nephropathy (IgAN). IgAN samples are only represented in platform 

Affymetrix Human Genome U133A Array (GPL96), however, these samples are originating from 

two distinct studies, GSE37460 11 and GSE50469 14, respectively. Sup. Figure 1A depicts a 

Principal component analysis (PCA) of gene expression measurements corresponding to the 

aforementioned IgAN samples from the two distinct studies prior batch effect mitigation. The 

samples are colored according to their respective study origin. Based on the PCA plot it can be 

said that there is a considerable clustering of samples due to the different study origin. In other 

words, the Principal component 2 explains the variance induced by the study source 

dissimilarity. We conducted differential expression analysis using limma 15 between the IgAN 

samples of GSE37460 and that of GSE50469. Sup. Figure 1B shows an MA plot that visualises 

the difference in gene expression between the GSE37460 and GSE50469 IgAN samples. 

Assuming that these two set of IgAN samples are essentially represent the same condition, the 

genes that are differentially expressed in this comparison are the ones that are the most 

affected by the platform-specific batch effect. Next, we started to remove the genes that are 

most affected by the batch effects. Sup. Figure 1C visualises Principal component 2 from Supp. 

Figure 1/A as a function of the gradual removal of the most affected genes, that are represented 

by the -log10 adjusted p-value of a particular removed affected gene. One can observe a 

cumulative shrinkage of variance explained by the Principal component 2 due to removal of 

batch-effect affected genes. Sup. Figure 1D depicts a Principal component analysis (PCA) of 

gene expression measurements corresponding to the IgAN samples from the two distinct 

studies post batch effect mitigation. The samples are colored according to their respective study 

origin. As a result of the batch effect mitigation the principal component 2 shrunk by 4% and the 

measurements between the two studies seem to be closer to each other than before the 

procedure. Sup. Figure 1E shows for each gene the variance that is explained by group (CKD 

entity), study and platform, respectively,  after batch effect mitigation. Most genes’ variance is 

explained by group (CKD entity), however, there are genes for which the the variance in 

expression levels is largely attributed to platform or study. Even though this procedure does not 
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completely eliminate or correct for the batch effects, we could show ,through this example, that 

we could mitigate the batch effects and gained some confidence that most genes’  variance in 

expression between the samples are due to difference in  disease.  
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Supplementary Materials 

 

 

Supplementary Files 

 

Supplementary file 1. 

1790 genes identified by the maxP method 62,63  (see section 4.5.) 

https://drive.google.com/drive/folders/16DUyIfXpDuDjIIYjYOWGHimB2dZirYdg 
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Supplementary Figure 1 - Batch effect mitigation procedure. (A) Principal component analysis (PCA) 
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of gene expression measurements corresponding of IgAN samples from the two distinct studies prior 

batch effect mitigation. (B) MA plot visualising the difference in gene expression between the GSE37460 

and GSE50469 IgAN samples. (C) Principal component 2 (PC2) as a function of the gradual removal of 

the most affected genes (-log10 adjusted p-value of a particular removed affected gene). (D) PCA of gene 

expression corresponding to the IgAN samples from the two distinct studies post batch effect mitigation. 

(E) Depiction of variance for each gene, that is explained by group (CKD entity), study and platform after 

batch effect mitigation. 

 

 

 
Supplementary Figure 2 - Two dimensional diffusion maps of CKD entities unravel the geometric 

trajectory of CKD entities based on their comparative transcriptome profile. (A) Dimension 

component 1 (DC1) is depicted against dimension component 2 (DC2), so that the divergence between 

the controls and the CKD entities are apparent. (B) DC1 is visualised against dimension component 3 

(DC3), revealing the fine distinctions between CKD entities. 
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Supplementary Figure 3. Heatmap depicting the expression of the genes encoding for the transcription 

factors shown in Figure 4. The expression values were averaged within each condition, then scaled and 

centered across the conditions. The numbers to the right of factor names are Spearman’s rank-based 

correlation coefficients of factor activity and factor expression across different CKD entities.  
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Supplementary Figure 4 - Enrichment of metabolic pathways after gene set analysis. Pathway 

analysis result in metabolic pathways (‘METABOL’):  and their corresponding enrichment: up-regulation 

(green), down-regulation (red) and non-significant (white). Metabolic pathways are listed in Y axes and 

disease entities in X axes. Only pathways enriched in at least one disease are shown. Note that FSGS, 

FSGS-MCD, and RPGN do not have any metabolic pathway significantly affected. 
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Supplementary Figure 5. Bar graph (count of CKD entities) and heatmap of the distribution of 220 small 

molecules reversely correlated with nine CKD entities.  Colored bars on both the bar graph and heat map 

correspond to the subtype of CKD entities and 220 small molecules are represented on the x-axis of both 

graphs. 
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Supplementary Figure 6. Volcano plot of differential expression of CKD entities vs TN for glomerular 

samples for the drug targeted genes. X-axis indicates the log2 of the fold change (FC) and the Y-axis the 

-log10 of the p-value after differential expression analysis using limma.  
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Supplementary table 1.  Manual curation for four small molecules. For four small molecules, table 

includes drug name corresponding to four small molecules, biological function, FDA approval status and 

several informations of articles explaining clinical relevance of small molecules for CKD.  
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