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Abstract	24	

Understanding	 drivers	 of	 permafrost	 microbial	 community	 composition	 is	25	

critical	 for	 understanding	 permafrost	 microbiology	 and	 predicting	 ecosystem	26	

responses	 to	 thaw,	 however	 studies	 describing	 ecological	 controls	 on	 these	27	

communities	are	lacking.	We	hypothesize	that	permafrost	communities	are	uniquely	28	

shaped	by	constraints	 imposed	by	prolonged	 freezing,	and	decoupled	 from	factors	29	

that	 influence	 non-permafrost	 soil	 communities.	 To	 test	 this	 hypothesis,	 we	30	

characterized	 patterns	 of	 environmental	 variation	 and	 microbial	 community	31	

composition	in	permafrost	across	an	Alaskan	boreal	forest	landscape.	We	used	null	32	

modeling	 to	 estimate	 the	 relative	 importance	 of	 selective	 and	 neutral	 assembly	33	

processes	 on	 community	 composition,	 and	 identified	 environmental	 factors	34	

influencing	 ecological	 selection	 through	 regression	 and	 structural	 equation	35	

modeling	 (SEM).	 Proportionally,	 the	 strongest	 process	 influencing	 community	36	

composition	was	dispersal	limitation	(0.36),	exceeding	the	influence	of	homogenous	37	

selection	(0.21),	variable	selection	(0.16),	and	homogenizing	dispersal	(0.05).	Fe(II)	38	

content	 was	 the	 most	 important	 factor	 explaining	 variable	 selection,	 and	 was	39	

significantly	 associated	 with	 total	 selection	 by	 univariate	 regression	 (R2=0.14,	40	

p=0.003).	SEM	supported	a	model	in	which	Fe(II)	content	mediated	influences	of	the	41	

Gibbs	free	energy	of	the	organic	matter	pool	and	organic	acid	concentration	on	total	42	

selection.	These	 findings	 reveal	 that	 the	processes	 shaping	microbial	 communities	43	

in	permafrost	are	distinct	from	those	in	non-permafrost	soils,	as	the	stability	of	the	44	

permafrost	 environment	 imposes	 dispersal	 and	 thermodynamic	 constraints	 on	45	

permafrost	communities.	Models	of	permafrost	community	composition	will	need	to	46	
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account	 for	 these	 unique	 drivers	 in	 order	 to	 predict	 community	 characteristics	47	

across	permafrost	landscapes,	and	in	efforts	to	understand	how	pre-thaw	conditions	48	

will	influence	post-thaw	ecological	and	biogeochemical	processes.	49	

	 	50	
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Introduction	51	

Permafrost	 is	 defined	 as	 ground	 that	 has	 remained	 below	 0	 °C	 for	 two	 or	52	

more	consecutive	years	 1.	Because	 this	definition	 is	 solely	based	on	a	condition	of	53	

‘ground	climate’	 2,	permafrost-affected	soils	 can	span	a	diverse	 range	of	 soil	 types	54	

and	 be	 highly	 varied	 in	 geography,	 geology,	 physicochemistry,	 and	 microbiology.	55	

Indeed,	 permafrost	 environments	 account	 for	 approximately	 16	%	 of	 Earth’s	 soil	56	

environments	 3,	 spanning	 much	 of	 the	 terrestrial	 Arctic	 and	 subarctic	 4,	 ice-free	57	

areas	of	Antarctica	5,	and	high-elevation	regions	in	both	the	northern	and	southern	58	

hemispheres	 4,6.	 Collectively,	 these	 soils	 represent	 an	 important	 microbial	59	

ecosystem	7	and	a	globally	significant	pool	of	sequestered	carbon	3,8,	which	is	being	60	

mobilized	 as	 climate	warming	 increases	 permafrost	 thaw	 9.	While	 the	 fate	 of	 this	61	

carbon	remains	uncertain,	 it	will	 likely	be	strongly	dependent	on	properties	of	the	62	

resident	microbial	communities	and	the	local	soil	conditions.	As	such,	it	is	important	63	

to	understand	the	natural	abiotic	and	biotic	variation	that	occurs	within	permafrost	64	

environments	 in	order	 to	accurately	 inform	models	aimed	at	predicting	responses	65	

to	change	across	these	regions.		66	

While	both	environmental	conditions	and	microbial	community	composition	67	

of	 permafrost-affected	 soils	 are	 known	 to	 be	 highly	 variable,	 the	 degree	 to	which	68	

variation	in	community	composition	is	 linked	to	physicochemical	conditions	of	the	69	

soil	 is	not	well	understood	10.	 In	many	non-permafrost	soils,	microbial	community	70	

composition	 is	 shaped	 by	 physicochemical	 conditions,	 including	 pH	 11-13,	 nutrient	71	

content	 14,15,	 and	 soil	 moisture	 16-18.	 Given	 that	 permafrost	 can	 support	 active	72	

microbial	communities	 19,20,	 it	 is	 reasonable	 to	assume	that	similar	 factors	may	be	73	
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important	 in	 structuring	 the	 permafrost	 microbiome.	 Alternatively,	 microbial	74	

community	 composition	 in	 these	 environments	 may	 be	 decoupled	 from	75	

physicochemical	conditions	that	are	found	to	be	important	in	non-permafrost	soils,	76	

and	 may	 instead	 be	 similarly	 shaped	 by	 the	 shared	 constraints	 imposed	 by	77	

prolonged	 freezing.	 Understanding	 how	 microbial	 communities	 are	 shaped	 by	78	

environmental	 conditions	 represents	 an	 important	 knowledge	 gap	 in	 permafrost	79	

microbiology.		80	

While	 resolving	 drivers	 of	 community	 composition	 in	 permafrost	81	

environments	will	improve	fundamental	understanding	of	the	microbiology	of	these	82	

extreme	ecosystems,	 there	 is	 also	practical	 importance	 in	 resolving	how	pre-thaw	83	

conditions	may	be	used	as	predictors	of	system	level	response	to	thaw.	Earth	system	84	

models	that	integrate	aspects	of	microbial	community	composition	and	function	are	85	

gaining	 support	 to	 improve	 understanding	 of	 terrestrial	 carbon	 cycling	 and	86	

predictions	about	the	fate	of	soil	carbon	in	response	to	environmental	change	21,22.	87	

However,	permafrost	environments	bring	a	high	level	of	complexity	that	is	difficult	88	

to	 generalize	 in	 current	 models,	 because	 soil	 type,	 soil	 conditions,	 and	 carbon	89	

composition	may	 all	 have	 important	 impacts	 on	 post	 thaw	 dynamics	 and	 carbon	90	

transformation	23-26.	Additionally,	the	composition	of	pre-thaw	communities	may	be	91	

a	strong	determinant	of	post-thaw	processes,	as	permafrost	microbial	communities	92	

are	expected	to	respond	rapidly	to	thaw	27,28,	and	the	abundance	of	particular	taxa	93	

and	 functional	 genes	 can	 be	 important	 predictors	 of	 process	 rates,	 such	 as	94	

methanogenesis	 26,29,30	 and	 iron	 reduction	 31.	 These	 findings	 underscore	 the	95	

importance	 of	 integrating	 knowledge	 of	 the	 physical	 environment,	 the	 chemical	96	
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nature	 of	 the	 organic	 matter	 pool,	 and	 the	 structure	 and	 function	 of	 permafrost	97	

microbial	 communities	 to	 accurately	 predict	 rates	 of	 carbon	metabolism	 in	 these	98	

systems.	 Spatially	 explicit	 studies	 capturing	 measures	 of	 soil	 heterogeneity	 are,	99	

therefore,	 necessary	 to	 inform	 models	 aimed	 at	 predicting	 microbial	 community	100	

responses	to	permafrost	thaw	and	carbon	fate	in	these	environments.	101	

	 The	 purpose	 of	 this	 work	 was	 to	 resolve	 the	 factors	 and	 processes	 that	102	

govern	microbial	community	structure	in	permafrost-affected	soils.	We	hypothesize	103	

that	 the	 factors	 and	 processes	 shaping	 permafrost	 microbial	 communities	 differ	104	

from	 those	 shaping	 non-permafrost	 soil	 communities,	 and	 reflect	 the	 unique	105	

constraints	of	the	permafrost	environment.	We	characterized	patterns	of	microbial	106	

community	composition	along	landscape	gradients	in	the	boreal	forest	ecosystem	of	107	

the	 Caribou	 Poker	 Creek	 Research	 Watershed	 (CPCRW)	 near	 Fairbanks,	 AK.	 We	108	

examined	 the	 influence	 of	 dispersal	 and	 selection	 on	 patterns	 of	 community	109	

composition	 and	 evaluated	 the	 importance	 of	 permafrost	 physicochemical	110	

conditions,	 including	 soil	 organic	 matter	 composition	 and	 thermodynamic	111	

properties,	 as	 deterministic	 factors.	 As	 the	 first	 landscape-scale	 survey	 linking	112	

permafrost	 community	 composition	 to	 environmental	 variability,	 this	 work	113	

provides	 mechanistic	 understanding	 of	 the	 controls	 on	 permafrost	 communities.	114	

This	 understanding	 can,	 in	 turn,	 inform	 models	 aimed	 at	 predicting	 permafrost	115	

microbial	community	characteristics	and	responses	to	thaw.	116	

	117	

Materials	and	Methods	118	

Sample	collection	and	processing	119	
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	 Samples	 were	 collected	 along	 a	 hydrologic	 gradient	 in	 the	 Caribou	 Poker	120	

Creek	 Research	 Watershed	 (CPCRW).	 CPCRW	 is	 a	 long-term	 ecological	 research	121	

(LTER)	site	and	is	representative	of	the	discontinuous	permafrost	regions	of	interior	122	

Alaska	 (http://www.lter.uaf.edu/research/study-sites-cpcrw).	 The	 sampling	 site	123	

was	 located	 on	 a	 gentle	 southeast-facing	 slope.	 To	 efficiently	 capture	 spatial	124	

variation	 at	 the	 landscape	 scale,	we	 used	 a	 cyclic	 sampling	 design,	 as	 opposed	 to	125	

regular	 grid	 spacing	 32.	 A	 3/5	 cyclic	 sampling	 design	 with	 4	 m	 grid	 cells	 was	126	

employed	along	four	replicate	transects	for	104	m:	starting	at	the	lowest	elevation,	127	

transects	were	sampled	at	0,	4,	12,	20,	24,	32,	40,	44,	52,	60,	64,	72,	80,	84,	92,	100,	128	

and	104	m.	Four	replicate	transects	ran	parallel	to	each	other	based	on	a	2/3	cyclic	129	

sampling	design	with	10	m	grid	cells	for	40	m	(Figure	1).		130	

At	 each	 sampling	 position,	 permafrost	 cores	 were	 collected	 using	 a	 SIPRE	131	

coring	 auger	 (John’s	 Machine	 Shop,	 Fairbanks,	 AK).	 Samples	 were	 wrapped	 in	132	

aluminum	foil	and	packed	in	coolers	on	dry	ice	until	they	could	be	stored	at	-20	°C	at	133	

the	University	of	Alaska,	Fairbanks,	AK.	Samples	were	shipped	on	dry	ice	to	Pacific	134	

Northwest	National	Laboratory	in	Richland,	WA,	where	they	were	stored	at	-20	°C	135	

until	further	processing.			136	

	 The	top	3-12	cm	of	each	core	was	removed	using	an	ethanol	sterilized	chisel	137	

and	 the	next	 4-10	 cm	 section	of	 each	 core	was	 taken	 for	 analysis.	 The	 exterior	 of	138	

each	core	 section	was	 removed	using	 sterile	 razor	blades,	 starting	 from	a	pristine	139	

surface	 of	 the	 core.	 Decontaminated	 cores	 were	 crushed	 and	 homogenized	 while	140	

frozen	 using	 a	 sterile	 stainless	 steel	 soil	 press	 in	 a	 walk-in	 -20	 °C	 freezer.	141	

Homogenized	frozen	samples	were	partitioned	aseptically	for	downstream	analyses.	142	
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Samples	 to	be	stored	anaerobically	were	 immediately	purged	with	nitrogen	gas	 in	143	

60	ml	serum	bottles	sealed	with	butyl	rubber	stoppers,	and	all	partitioned	material	144	

was	stored	at	-20	°C	until	analysis.	A	total	of	59	samples	were	included	in	the	final	145	

analyses,	 as	 cores	 could	 not	 be	 retrieved	 from	 some	 sample	 locations	 or	 were	146	

compromised	during	sample	processing	(refer	to	Figure	1).	147	

	148	

Figure	 1:	 Map	 of	 Alaska	 indicating	 the	 location	 of	 a)	 the	 Caribou	 Poker	 Creek	149	

Research	Watershed	 (CPCRW)	 and	 b)	 the	 location	 of	 the	 sample	 sites	 along	 each	150	

transect.	Yellow	dots	 indicate	where	samples	were	 taken	and	 included	 in	 the	 final	151	

analysis,	while	 red	 dots	 indicate	 landscape	 positions	where	 samples	 could	 not	 be	152	

recovered	or	where	samples	were	compromised	during	processing,	such	that	 they	153	

were	excluded	from	the	final	analysis.	154	

	 	155	
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	156	

Physicochemical	analyses	157	

	 Soil	water	content	was	determined	by	drying	1-10	g	of	sample	at	105	°C,	and	158	

measuring	mass	loss	after	48	hours:	sample	masses	were	determined	after	24	and	159	

48	 h	 to	 ensure	 samples	 reached	 a	 constant	 mass	 in	 consecutive	 measurements.	160	

Water	content	was	determined	from	the	average	of	five	replicate	measurements	per	161	

sample.	162	

Total	carbon	and	nitrogen	content	was	determined	from	30	mg	freeze-dried,	163	

ground,	and	<2	mm	sieved	samples.	Samples	were	analyzed	on	an	Elementar	vario	164	

El	 cube	 (Elementar,	 Germany).	 Values	 were	 determined	 from	 the	 average	 of	165	

triplicate	measurements	for	each	sample.		166	

Samples	 for	 metals	 and	 anion	 analyses	 were	 prepared	 from	 freeze-dried,	167	

ground,	and	<2	mm	sieved	samples.	For	metals	analysis,	1	g	of	sample	was	extracted	168	

with	 10	ml	 of	 0.5	N	HCl	 shaking	 at	 200	 rpm	 for	 2	 h	 at	 room	 temperature.	 Anion	169	

extractions	were	completed	as	above,	with	1	g	of	soil	in	5-10	ml	of	deionized	water.	170	

Metals	(Fe,	Mn,	Mg,	Cu,	P,	S)	and	anion	(Cl-,	SO4-,	and	NO3-)	analyses	were	completed	171	

as	previously	described	(Zachara	et	al.,	2009).		172	

Iron(II)	 content	 was	 determined	 by	 ferrozine	 assay	 33.	 In	 an	 anaerobic	173	

chamber	(Coy	Laboratory	Products,	Grass	Valley,	MI),	10	ml	0.5	N	HCl	was	added	to	174	

1	 g	 of	 permafrost	 sample,	 and	 the	 vial	 was	 sealed	 and	 vortexed.	 Samples	 were	175	

extracted	 for	1	h	and	 filtered	 through	a	0.22	µm	pore-size	polyethersulfone	 (PES)	176	

syringe	 filter.	 Extracts	 were	 diluted	 in	 0.1	 N	 HCl	 and	 100	 µl	 was	 added	 to	 1	 ml	177	

ferrozine;	 after	 5	 min,	 the	 absorbance	 at	 562	 nm	 was	 measured	 on	 a	 Shimadzu	178	
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Biospec-1601	spectrophotometer.	 Iron(II)	concentrations	were	determined	 from	a	179	

six-point	standard	curve	ranging	from	0	to	45	µM	Iron(II).	Samples	were	dried	at	60	180	

°C	and	weighed	to	determine	the	Iron(II)	content	by	dry	weight.	181	

Organic	 acids	 and	 sugars	 were	 quantified	 in	 the	 same	 water	 extracts	182	

prepared	for	anion	analysis,	using	an	Agilent	1100	series	HPLC	(Agilent,	Palo	Alto,	183	

CA)	with	a	300	x	7.8mm	Aminex	HPX-87H	column	(Bio-Rad,	Hercules,	CA),	a	0.008	N	184	

H2SO4	mobile	phase	with	a	flow	rate	of	0.6	ml/min	and	variable	wavelength	detector	185	

(VWD)	at	210	nm	for	organic	acids	and	refraction	index	detector	(RID)	for	sugars.	186	

Samples	were	 filtered	through	a	0.22	µm	pore-size	PES	syringe	filter	and	acidified	187	

by	 adding	 10	 µl	 of	 2.5	 N	 H2SO4	 per	 ml.	 Concentrations	 were	 determined	 by	188	

comparison	to	peak	areas	of	standards.	189	

Soil	texture	was	determined	by	measuring	the	gravel	(>	2mm),	sand	(64	µm-190	

2	mm),	and	mud	(silt	and	clay)	(<64	µm)	fractions	of	each	sample.	Briefly,	20	g	of	191	

soil	 was	 dried	 at	 60	 °C,	 and	 the	 total	 dry	 weight	 determined.	 Samples	 were	 dry	192	

sieved	 through	 a	 2	 mm	 sieve,	 and	 the	 mass	 of	 the	 >2	 mm	 fraction	 was	 used	 to	193	

calculate	the	gravel	 fraction.	The	<2	mm	fraction	was	wet	sieved	through	a	64	µm	194	

sieve,	the	fraction	retained	was	dried	and	used	to	calculate	the	sand	fraction,	while	195	

the	<64	µm	fraction	was	dried	and	used	to	calculate	the	mud	fraction.		196	

Soil	 pH	 was	 determined	 on	 a	 Denver	 Instrument	 model	 215	 pH	 meter	197	

(Denver	 Instruments,	 Bohemia,	 NY)	 by	 slurry	 of	 1	 g	 soil	 in	 2	 ml	 MilliQ	 water	198	

(Millipore	Sigma,	St.	Louis,	MO).		199	

	 	200	

Organic	matter	composition	determination	by	FT-ICR-MS	201	
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Organic	 matter	 was	 extracted	 from	 bulk	 soil	 sequentially	 with	 water,	202	

methanol	 and	 chloroform	 as	 described	 previously	 34,35.	 Briefly,	 organic	 matter	203	

extracts	were	prepared	by	adding	1	ml	of	solvent	to	100	mg	lyophilized	and	ground	204	

bulk	soil	and	shaking	for	two	hours	on	an	Eppendorf	Thermomixer	in	2	mL	capped	205	

glass	 vials.	 Samples	 were	 removed	 from	 the	 shaker	 and	 left	 to	 stand	 before	206	

centrifugation	 at	 2000	 rpm	 for	 10	 min	 and	 the	 supernatant	 was	 retained	 for	207	

analysis.	 The	 soil	 residue	 was	 dried	 with	 nitrogen	 gas	 to	 remove	 any	 residual	208	

solvent,	 and	 the	 extraction	was	 repeated	with	 each	 of	 the	 next	 two	 solvents.	 The	209	

chloroform	 and	water	 extracts	were	 diluted	 in	methanol	 to	 improve	 electrospray	210	

ionization	(ESI)	efficiency	and	20	µl	was	injected	into	the	FTICR-MS.	Samples	were	211	

analyzed	 in	 triplicate	 for	water	extractions	and	chloroform	extractions,	 and	singly	212	

for	methanol	extractions.	213	

A	12	Tesla	Bruker	SolariX	FTICR-MS	located	at	the	Environmental	Molecular	214	

Sciences	 Laboratory	 (EMSL)	 in	 Richland,	WA,	 was	 used	 to	 collect	 high-resolution	215	

mass	spectra	of	the	organic	matter	in	the	extracts.	A	standard	Bruker	ESI	source	was	216	

used	 to	 generate	 negatively	 charged	 molecular	 ions.	 Samples	 were	 introduced	217	

directly	to	the	ESI	source	at	a	flow	rate	of	3	µl/min.	The	ion	accumulation	time	was	218	

varied,	 from	 0.1	 s	 to	 0.5	 s,	 to	 account	 for	 differences	 in	 C	 concentration	 between	219	

samples	and	to	maintain	a	final	dissolved	organic	carbon	concentration	of	20	ppm.	220	

The	 instrument	 was	 externally	 calibrated	 weekly	 with	 a	 tuning	 solution	 from	221	

Agilent	 (Santa	 Clara,	 CA),	 which	 calibrates	 to	 a	 mass	 accuracy	 of	 <0.1	 ppm.	 Two	222	

hundred	 scans	were	averaged	 for	 each	 sample	and	 internally	 calibrated	using	OM	223	

homologous	 series	 separated	 by	 14	 Da	 (–CH2	 groups).	 The	 mass	 measurement	224	
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accuracy	was	less	than	1	ppm	for	singly	charged	ions	across	a	broad	m/z	range	(i.e.	225	

200	<m/z	<1200).	To	further	reduce	cumulative	errors,	all	sample	peak	lists	for	the	226	

entire	dataset	were	aligned	to	each	other	prior	to	formula	assignment	to	eliminate	227	

possible	 mass	 shifts	 that	 would	 impact	 formula	 assignment.	 Putative	 chemical	228	

formulas	 were	 assigned	 using	 in-house	 software	 based	 on	 the	 Compound	229	

Identification	Algorithm	(CIA)	36,	and	modified	as	previously	described	37.	Chemical	230	

formulas	 were	 assigned	 based	 on	 the	 following	 criteria:	 S/N	 >7,	 and	 mass	231	

measurement	error	<1	ppm,	taking	into	consideration	the	presence	of	C,	H,	O,	N,	S	232	

and	P	and	excluding	other	elements.	Peaks	with	large	mass	ratios	(m/z	values	>500	233	

Da)	 were	 assigned	 formulas	 through	 the	 detection	 of	 homologous	 series	 (CH2,	 O,	234	

H2).	 Additionally,	 to	 ensure	 consistent	 assignment	 of	 molecular	 formula	 the	235	

following	rules	were	implemented:	one	phosphorus	requires	at	least	four	oxygens	in	236	

a	 formula	 and	when	multiple	 formula	 candidates	were	 assigned	 the	 formula	with	237	

the	lowest	error	and	with	the	lowest	number	of	heteroatoms	was	picked.		238	

	 For	 all	 analyses,	 peak	 intensities	were	 converted	 to	 presence/absence	 and	239	

peaks	 observed	 in	 any	 of	 the	 triplicate	 measurements	 were	 included	 as	 present.	240	

Compound	classes	were	assigned	to	chemical	formulas	based	on	molar	O:C	and	H:C	241	

ratios,	 determined	 from	analysis	 of	 van	Krevelen	diagrams.	The	Gibbs	 energies	 of	242	

the	 oxidation	 half	 reaction	 (DG°Cox)	 of	 each	 compound	was	 derived	 based	 on	 the	243	

nominal	 oxidation	 state	of	 carbon	 (NOSC)	 as	previously	described	 38.	The	 average	244	

DG°Cox	 of	 the	 carbon	pool	was	determined	 for	 each	 sample	extraction:	 the	median	245	

values	were	used	for	the	methanol	(DG°Cox(MeOH))	and	chloroform	(DG°Cox(CHCl3))	246	
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extracts	 due	 to	 highly	 skewed	 distributions,	 while	 the	 DG°Cox	 was	 normally	247	

distributed	for	water	extracts	(DG°Cox(H2O))	such	that	the	mean	values	were	used.	248	

	249	

Microbial	community	analyses	250	

	 Total	 community	DNA	was	 extracted	 from	0.25	 g	 of	 each	 sample	using	 the	251	

MoBio	Power	Soil	DNA	Isolation	Kit	(MoBio	Laboratories,	Carlsbad,	CA),	according	252	

to	 manufacturer’s	 instructions.	 Additional	 cleanup	 and	 concentration	 of	 DNA	253	

extracts	 was	 completed	 using	 the	 Zymo	 ZR-96	 Genomic	 DNA	 Clean	 and	254	

Concentrator-5	 kit	 (Zymo	 Research	 Corporation,	 Irvine,	 CA).	 PCR	 amplification	 of	255	

the	V4	region	of	the	16S	rRNA	gene	was	performed	as	previously	described	39,	with	256	

the	exception	 that	 the	 twelve-base	barcode	sequence	was	 included	 in	 the	 forward	257	

primer.	Amplicons	were	sequenced	on	an	Illumina	MiSeq	using	the	500	cycle	Miseq	258	

Reagent	 Kit	 v2	 (Illumina	 Inc.,	 San	 Diego,	 CA),	 according	 to	 manufacturer’s	259	

instructions.	260	

	 Raw	sequence	reads	were	demultiplexed	using	EA-Utils	 40	not	allowing	any	261	

mismatches	in	the	barcode	sequence.	Reads	were	quality	filtered	with	BBDuk2	41	to	262	

remove	 adapter	 sequences	 and	 PhiX	 with	 matching	 kmer	 length	 of	 31	 bp	 at	 a	263	

hamming	 distance	 of	 1.	 Reads	 shorter	 than	 51	 bp	 were	 discarded.	 Reads	 were	264	

merged	 using	 USEARCH	 42	 with	 a	 minimum	 length	 threshold	 of	 175	 bp	 and	265	

maximum	error	rate	of	1	%.	Sequences	were	de-replicated	and	clustered	using	the	266	

distance-based,	greedy	clustering	method	of	USEARCH	at	97	%	pairwise	sequence	267	

identity	 among	 operational	 taxonomic	 unit	 (OTU)	 member	 sequences.	 Taxonomy	268	

was	assigned	 to	OTU	sequences	at	a	minimum	 identity	cutoff	 fraction	of	0.8	using	269	
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the	global	alignment	method	implemented	in	USEARCH	across	RDP	trainset	version	270	

15.	 OTU	 seed	 sequences	 were	 filtered	 against	 RDP	 classifier	 training	 database	271	

version	9	to	identify	chimeric	OTUs	using	USEARCH.	De	novo	prediction	of	chimeric	272	

reads	occurred	as	 reads	were	assigned	 to	OTUs.	OTU	count	 tables	were	 randomly	273	

resampled	to	17899	sequences	and	OTUs	that	could	not	be	assigned	at	the	kingdom	274	

level	were	removed.	275	

	276	

Statistical	analysis	277	

	 The	environmental	variables	consisted	of	all	physicochemical	variables	and	278	

the	average	DG°Cox	for	each	FTICR	extraction	(mean	for	DG°Cox(H2O)	and	median	for	279	

DG°Cox(MeOH)	 and	 DG°Cox(CHCl3).	 	 Missing	 data	 were	 replaced	 by	 the	 geometric	280	

mean	of	values	for	a	given	variable,	or	the	arithmetic	mean	in	the	case	of	the	lactate	281	

data,	 which	 had	 numerous	 zero	 values.	 Data	 for	 water	 content,	 Cl,	 SO4,	 NO3,	282	

Fe(total),	Mn,	Mg,	Cu,	P,	S,	Fe(II),	C,	and	N	were	 log10(x)	transformed,	and	data	 for	283	

lactate,	 formate,	and	acetate	concentrations	were	 log10(x+1)	 transformed.	Data	 for	284	

pH,	 gravel,	 sand,	 mud,	 DG°Cox(H2O),	 DG°Cox(CHCl3),	 and	 DG°Cox(MeOH)	 were	 not	285	

transformed.		286	

Principal	 components	 analysis	 (PCA)	 was	 used	 to	 assess	 variation	 in	287	

environmental	 variables	across	 the	 landscape	using	 the	princomp	 function	 in	R	 43.	288	

All	 variables	 were	 scaled	 by	 subtracting	 the	 mean	 and	 dividing	 by	 the	 standard	289	

deviation	 prior	 to	 analysis.	 Scores	 of	 all	 principal	 components	 (PCs)	 and	 variable	290	

loadings	along	each	PC	were	extracted	for	downstream	analyses.	Variable	loadings	291	

along	each	PC	were	used	to	assess	the	importance	of	individual	variables	to	each	PC.	292	
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	 Analyses	of	community	diversity	and	composition	were	completed	using	the	293	

‘vegan’	package	44	 in	R.	Shannon	diversity	estimates	were	completed	based	on	 the	294	

resampled	 OTU	 counts.	 OTU	 abundances	 were	 Hellinger	 transformed	 prior	 to	 all	295	

other	 compositional	 analyses.	 Non-metric	 multidimensional	 scaling	 was	 used	 to	296	

examine	 the	 community	 variation	 between	 samples	 based	 on	 Bray	 Curtis	297	

dissimilarity,	 and	 environmental	 variables	 were	 fit	 as	 vectors	 in	 the	 final	 two-298	

dimensional	 ordination	 to	 evaluate	 relationships	 between	 community	 and	299	

environmental	variation.		300	

	 Spatial	 analyses	were	 completed	 in	 R.	 Kriging	was	 used	 to	 interpolate	 and	301	

visualize	 spatial	 trends	 in	 both	 the	 environmental	 and	 biological	 data,	 using	 the	302	

autokrig	 function	 of	 the	 ‘automap’	package	 45.	 Principal	 coordinates	 of	 neighbor	303	

matrices	(PCNM)	was	used	to	create	orthogonal	spatial	variables	based	on	sample	304	

site	 locations	 46,47.	 PCNMs	were	 calculated	 as	 previously	 described	 48.	 PCNM	 axes	305	

were	 used	 as	 explanatory	 variables	 in	 downstream	 analyses	 to	 examine	 the	306	

importance	of	spatial	filters	on	community	composition.		307	

A	 redundancy	 analysis	 (RDA)	 model	 was	 used	 to	 relate	 community	308	

composition	to	environmental	and	spatial	variation	using	the	vegan	package	44	in	R.	309	

Due	 to	 collinearity	 between	 several	 environmental	 variables,	 PC	 scores	 extracted	310	

from	the	environmental	PCA	were	used	to	represent	environmental	variables	in	the	311	

model.	Forward	stepwise	model	building	based	on	adjusted	R2	was	carried	out	using	312	

all	23	PCs	and	all	15	positive	PCNMs.	The	importance	of	each	variable	added	to	the	313	

model	was	assessed	using	variance	partitioning	based	on	RDA.	314	
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	 Null	modeling	was	used	to	estimate	the	influence	of	ecological	processes	on	315	

community	composition,	as	described	previously	49,50.	The	influence	of	selection	was	316	

estimated	by	evaluating	 the	difference	between	 the	observed	between-community	317	

mean-nearest-taxon	distance	(bMNTD)	and	the	mean	of	the	null	distribution	in	units	318	

of	 standard	 deviation.	 Significant	 deviations	 from	 the	 null	 distribution	 were	319	

evaluated	using	 the	b-nearest	 taxon	 index	(bNTI)	and	the	signal	 for	selection	was	320	

expressed	 as	 the	 proportion	 of	 comparisons	 for	 which	 bNTI>2	 or	 bNTI<-2,	321	

representing	signals	for	variable	selection	and	homogenous	selection,	respectively.	322	

Comparisons	 falling	 within	 the	 null	 distribution	 (2>bNTI>-2)	 represent	323	

compositional	 differences	 that	 do	 not	 arise	 from	 selection,	 and	 are	 instead	324	

attributable	 to	 dispersal	 limitation,	 homogenizing	 dispersal,	 or	 processes	325	

undominated	 by	 dispersal	 or	 selection.	 To	 assess	 the	 relative	 influence	 of	 these	326	

processes,	 a	 Raup-Crick	 metric	 incorporating	 species	 relative	 abundance	 (RCbray)	327	

was	 used	 to	 compare	 the	 observed	 and	 expected	 species	 turnover	 between	328	

communities.	 Significant	 deviations	 from	 the	 null	 distribution	 indicating	 greater	329	

than	expected	differences	 in	community	composition	(2>bNTI>-2	and	RCbray>0.95)	330	

were	 attributed	 to	 dispersal	 limitation,	 while	 those	 indicating	 less	 than	 expected	331	

differences	 in	 community	 composition	 (2>bNTI>-2	 and	 RCbray<-0.95)	 were	332	

attributed	 to	 homogenizing	 dispersal.	 Comparisons	 falling	 within	 the	 null	333	

distribution	 of	 both	 metrics	 (2>bNTI	 >-2	 and	 0.95>RCbray>-0.95)	 represent	334	

differences	in	community	composition	that	were	not	strongly	governed	by	selection	335	

or	dispersal	(i.e.,	the	observed	differences	were	‘undominated’).	336	
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	 A	 regression	 modelling	 approach	 was	 used	 to	 identify	 the	 environmental	337	

variables	that	explain	variation	in	the	process	estimates	for	total	selection	(variable	338	

and	homogenous	selection	combined).	Here,	process	estimates	were	generated	for	339	

each	community	by	finding	the	fraction	of	pairwise	comparisons—between	a	given	340	

community	 and	 all	 other	 communities—falling	 into	 the	 process	 categories	341	

summarized	above	50.	Community-level	estimates	of	total	selection	were	then	used	342	

as	 the	 dependent	 variable	 in	 an	 exhaustive	 model	 selection	 using	 Bayesian	343	

information	criterion	(BIC),	performed	in	the	‘leaps’	package	51	in	R.		344	

	 Path	 analysis	 was	 used	 to	 estimate	 interactions	 among	 environmental	345	

variables	 predicted	 to	 influence	 total	 selection.	 A	 hypothetical	 model	 outlining	346	

expected	relationships	between	variables	was	evaluated	using	 the	sem	function	of	347	

the	 ‘sem’	package	 52	 in	R	 (Figure	S1).	Adjustments	 to	 the	model	were	 informed	by	348	

modification	indices,	which	suggest	addition	of	paths	to	improve	model	fit,	and	were	349	

included	based	on	logical	evaluation	of	potential	associations	between	variables.	350	

	351	

Code	availability	352	

Custom	 computer	 code	 used	 in	 the	 current	 study	 is	 available	 from	 the	353	

corresponding	author	on	reasonable	request.	354	

	355	

Data	availability	356	

Sequence	data	has	been	deposited	in	the	European	Nucleotide	Archive	(ENA),	under	357	

accession	 number	 PRJEB23054	358	

(http://www.ebi.ac.uk/ena/data/view/PRJEB23054).	 All	 other	 datasets	 generated	359	
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and	analyzed	 in	 the	current	study	are	available	 from	the	corresponding	author	on	360	

reasonable	request.	361	

	362	

Results	363	

Environmental	conditions	and	carbon	composition	364	

Permafrost	 characteristics	 were	 highly	 variable	 across	 the	 sampling	 area,	365	

and	are	summarized	in	Table	S1.	Samples	ranged	greatly	in	carbon	content	from	1.3	366	

to	35.8	%,	and	nitrogen	content	 co-varied	 strongly	with	 carbon	content	 (r2=0.98),	367	

ranging	from	0.1	to	2.0	%.	Soil	texture	was	typically	dominated	by	sand	(average	63	368	

%),	 but	 had	 substantial	 inputs	 of	 mud	 (average	 35	 %).	 All	 samples	 were	 mildly	369	

acidic,	 ranging	 from	 pH	 4.9	 to	 6.7.	 Notably,	 permafrost	 samples	 across	 the	 site	370	

varied	greatly	 in	 ice	 content,	with	gravimetric	water	 content	varying	 from	0.28	 to	371	

9.2	g(water)/g(dry	soil).	Fe(II)	content,	indicative	of	soil	redox	conditions,	was	also	372	

highly	variable,	spanning	over	two	orders	of	magnitude	from	0.07	to	12.9	mg/g(dry	373	

soil).	374	

The	 compound	 classes	 assigned	 to	 FTICR	 peaks	 based	 on	 van	 Krevelen	375	

diagrams	 showed	 distinct	 peak	 profiles	 for	 each	 solvent	 extraction	 (Table	 S2).	376	

Water	 extractions	 recovered	 the	 highest	 percentage	 of	 compounds	 classified	 as	377	

lignin-,	 condensed	 hydrocarbon-,	 carbohydrate-,	 tannin-,	 and	 amino	 sugar-	 like	378	

compounds,	 while	 methanol	 and	 chloroform	 extractions	 recovered	 the	 highest	379	

percentage	 of	 compounds	 grouping	 to	 unsaturated	 hydrocarbon-	 and	 lipid-	 like	380	

compounds.	Compounds	grouping	as	peptide-	or	protein-	like	were	recovered	in	all	381	

fractions,	 representing	 6.61	 %,	 8.93	 %,	 and	 4.96	 %	 in	 the	 water,	 methanol,	 and	382	
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chloroform	 extracts,	 respectively.	 A	 large	 percentage	 of	 compounds	 in	 each	383	

extraction	were	not	assigned	to	a	compound	class	(25-48	%).	The	DG°Cox	estimates	384	

from	 the	 FTICR	 profiles	 were	 tightly	 linked	 to	 the	 overall	 variation	 in	 FTICR	385	

compound	 classes	 for	 each	 extraction	 (Figure	 S2).	 The	 DG°Cox	 estimates	 were,	386	

therefore,	 used	 to	 represent	 organic	 carbon	 profiles	 in	 downstream	 analyses,	 as	387	

they	capture	variation	in	organic	carbon	composition	as	a	biochemically	meaningful	388	

continuous	variable	that	can	be	interpreted	mechanistically.		389	

PCA	 using	 all	 physicochemical	 variables	 revealed	 environmental	 gradients	390	

both	 within	 and	 between	 transects	 (Figure	 2).	 The	 first	 two	 PCs	 accounted	 for	391	

nearly	58	%	of	the	environmental	variance,	with	41	%	captured	on	PC1	and	17	%	on	392	

PC2.	The	strongest	loadings	along	PC1	were	for	C	content	(-0.31),	N	content	(-0.31),	393	

water	 content	 (-0.28),	 S	 content	 (-0.28),	 acetate	 (-0.28),	 DG°Cox(H2O)	 (-0.27),	 and	394	

formate	 (-0.27),	while	 the	 strongest	 loadings	 along	PC2	were	 for	 Fe(II)	 content	 (-395	

0.37),	soil	texture	fractions	of	mud	(-0.37)	and	sand	(0.35),	pH	(0.33),	and	P	content	396	

(-0.33).		397	

	 	398	
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	399	

Figure	 2:	 a)	 Principal	 components	 analysis	 (PCA)	 representing	 environmental	400	

variation	 between	 samples,	 and	 Kriging	 predictions	 of	 spatial	 patterns	 of	401	

environmental	variation	based	on	b)	PC1	and	c)	PC2	scores	across	the	sampling	area	402	

(n=59).	 	403	
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	404	

Microbial	community	composition	405	

	 Bacterial	sequences	grouped	to	a	total	of	45	phyla	or	candidate	phyla,	and	11	406	

phyla	were	represented	at	>1	%	of	 the	 total	community	(Figure	S3).	Based	on	 the	407	

average	 number	 of	 sequences	 in	 each	 sample	 grouping	 to	 bacterial	 phyla,	408	

communities	were	dominated	by	Proteobacteria	(23.9	%)	(particularly	Beta-	(10.9	409	

%),	 Alpha-(5.9	 %),	 Delta-	 (5.3	 %),	 and	 Gamma-	 (1.5	 %)	 proteobacteria),	410	

Acidobacteria	 (16.9	 %),	 Verrucomicrobia	 (13.4	 %),	 Actinobacteria	 (9.9	 %),	411	

Chloroflexi	 (9.8	 %),	 Bacteroidetes	 (8.5	 %),	 Gemmatimonadetes	 (5.0	 %),	412	

Planctomycetes	(1.9	%),	Nitrospirae	(1.5	%),	Parcubacteria	(1.4	%),	and	Firmicutes	413	

(1.1	%).	 	Bacterial	sequences	grouping	to	other	phyla	and	bacterial	sequences	that	414	

could	not	be	classified	at	the	phylum	level	represented	4.8	%	and	0.8	%	of	the	total	415	

sequences,	respectively.		416	

Approximately	1.2	%	of	sequences	were	classified	as	Archaeal,	with	79	%	of	417	

these	 sequences	 grouping	 to	 the	 phylum	 Euryarchaeota.	 Sequences	 within	 the	418	

Euryarchaeota	 grouped	 predominantly	 within	 the	 Methanomicrobia	 and	419	

Methanobacteria.	420	

		421	

Patterns	of	community	composition	422	

Community	 composition	 showed	 non-random	 spatial	 structure	 (Figure	 3),	423	

and	was	 explained	 by	 both	 environmental	 variables	 (PCs)	 and,	 to	 a	 lesser	 extent,	424	

spatial	variables	(PCNMs).	Stepwise	model	selection	supported	a	model	with	fifteen	425	

variables,	 which	 fit	 the	 data	 with	 an	 adjusted	 R2=0.48;	 however,	 variance	426	
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partitioning	showed	that	many	of	these	variables	contributed	only	incrementally	to	427	

improving	model	fit	(Figure	S4).	A	model	incorporating	the	first	two	variables	from	428	

the	selected	model	(PC2,	PC1)	fit	the	data	with	an	adjusted	R2=0.34,	and	subsequent	429	

addition	 of	 the	 remaining	 variables	 retained	 in	 the	 selected	model	 improved	 the	430	

adjusted	R2	by	0.02	(PCNM4)	or	 less	(all	other	variables)	(Figure	4).	We	therefore	431	

focused	 our	 interpretation	 on	 the	 model	 including	 PC2,	 PC1,	 and	 PCNM4.	 The	432	

variable	loadings	on	the	PCs	selected	in	the	model	indicated	several	environmental	433	

factors	 were	 related	 to	 community	 composition	 (see	 Figure	 2	 for	 relationships	434	

between	environmental	factors	along	PC1	and	PC2).	435	

Univariate	 regression	 of	 factors	with	 the	 strongest	 loadings	 along	 PC1	 and	436	

PC2	showed	that	alpha	diversity	and	the	relative	abundances	of	particular	taxa	were	437	

significantly	 associated	with	one	or	more	of	 these	 environmental	 variables	 (Table	438	

S3).		439	

	 	440	
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	441	

Figure	 3:	 a)	 Non-metric	 multidimensional	 scaling	 (NMDS)	 plot	 representing	 the	442	

Bray	 Curtis	 dissimilarity	 in	 microbial	 community	 composition	 between	 samples,	443	

with	environmental	vectors	overlaid,	and	Kriging	predictions	of	spatial	patterns	of	444	

community	 composition	 based	 on	 b)	 NMDS1	 and	 c)	 NMDS2	 scores	 across	 the	445	

sampling	area	(n=59).		446	
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	448	

Figure	 4:	 The	 proportion	 of	 variation	 in	 microbial	 community	 composition	449	

explained	by	the	environmental	and	spatial	variables	selected	in	forward	stepwise	450	

model	building	(n=59):	 including	additional	variables	 improved	 the	adjusted	R2	of	451	

the	model	by	<0.02.	452	

	 	453	
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	454	

Null	model	analyses	455	

	 Null	modeling	revealed	signals	for	variable	selection	(bNTI>2),	homogenous	456	

selection	 (bNTI<-2),	 dispersal	 limitation	 (2>bNTI>-2	 and	 RCbray>0.95),	457	

homogenizing	dispersal	(2> bNTI>-2	and	RCbray<-0.95),	and	processes	undominated	458	

by	 dispersal	 or	 selection	 (2> bNTI>-2	 and	 0.95>	 RCbray>-0.95)	 (Figure	 5).	 Values	459	

from	 0	 to	 1	 indicating	 the	 relative	 influence	 of	 each	 process	 on	 the	 observed	460	

variation	in	community	composition	revealed	the	strongest	signal	was	for	dispersal	461	

limitation	(0.36),	and	the	lowest	signal	was	for	homogenizing	dispersal	(0.05).		The	462	

signal	 for	 homogenous	 selection	 (0.21)	 was	 slightly	 higher	 than	 for	 variable	463	

selection	 (0.16),	 contributing	 to	 a	 signal	 of	 0.37	 for	 total	 selection.	 Variation	 not	464	

accounted	for	by	dispersal	or	selection	accounted	for	the	remaining	signal	of	0.23.		465	

	 Regression	 model	 selection	 indicated	 Fe(II)	 was	 the	 most	 important	466	

environmental	 variable	 influencing	 variable	 selection,	 and	 Fe(II)	was	 significantly	467	

associated	 with	 the	 relative	 influence	 of	 total	 selection	 by	 univariate	 regression	468	

(R2=0.14,	p=0.003).	469	

	 	470	
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	471	

Figure	5:	Histograms	representing	the	observed	distribution	of	comparisons	based	472	

on	 a)	 bNTI	 and	 RCBray.	 Red	 lines	 represent	 the	 significance	 thresholds,	 whereby	473	

values	 outside	 their	 bounds	 are	 significantly	 different	 from	 the	 null	 distribution	474	

(n=59).		475	
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	477	

Path	analysis	478	

	 Given	 the	 relationship	 observed	 between	 Fe(II)	 and	 total	 selection,	 we	479	

proposed	 a	 path	 model	 in	 which	 variables	 that	 reflect	 energetic	 constraints	 on	480	

microbial	 activity	 may	 influence	 total	 selection	 indirectly,	 through	 relationships	481	

mediated	 by	 Fe(II)	 content	 (See	 Figure	 S1).	 Our	 initial	 model	 was	 not	 consistent	482	

with	 the	 data	 (X2=37.2,	 d.f.=9	 p=2.4x10-5),	 and	 was	 revised	 to	 better	 reflect	483	

relationships	between	the	variables.	All	paths	in	the	initial	model	were	retained	in	484	

the	final	model,	and	modification	indices	supported	the	addition	of	a	path	from	soil	485	

carbon	content	 to	nitrate	content.	The	 final	model	did	not	differ	significantly	 from	486	

the	 data	 (X2=10.3,	 d.f.=8,	 p=0.25)	 and	 explained	 14.5	 %	 of	 the	 variation	 in	 total	487	

selection	and	between	37	and	68	%	of	the	variation	in	other	endogenous	variables	488	

(Figure	6).	The	direct	effect	of	Fe(II)	was	the	strongest	total	effect	on	total	selection,	489	

while	organic	acid	content	had	the	strongest	indirect	effect	on	total	selection	(Table	490	

1).	491	

	 	492	
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	493	

Figure	 6:	 Final	 structural	 equation	 model	 (X2=10.3,	 d.f.=8,	 p=0.25)	 representing	494	

relationships	 between	 variables	 hypothesized	 to	 deterministically	 influence	495	

community	 composition	 (n=59).	 Values	 alongside	 arrows	 represent	 standardized	496	

path	coefficients,	and	the	variation	explained	for	endogenous	variables	is	indicated	497	

above	each	variable.	All	paths	are	significant.	498	

	499	

Table	 1:	 Standardized	 direct	 effects,	 indirect	 effects,	 and	 total	 effects	 of	500	

environmental	factors	on	total	selection.	501	

	 Direct	Effects	 Indirect	Effects	 Total	Effects	
DG°Cox(H2O)	 	 -0.023	 -0.023	
Carbon	 	 -0.039	 -0.039	
Acetate+Formate	 	 -0.315	 -0.315	
Nitrate	 	 0.211	 0.211	
Fe(II)	 -0.381	 	 -0.381	
	 	502	

DG°Cox(H2O) C Acetate+Formate

NO3

Fe(II) Total Selection
0.823 0.788 0.412

-0.749 -0.5550.99

-0.381
R2=0.68 R2=0.62

R2=0.37

R2=0.46 R2=0.15
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	503	

Discussion	504	

Previous	 studies	 have	 demonstrated	 that	 permafrost	 soils	 contain	 diverse	505	

and	varied	communities	that	are	likely	active	in	situ;	however,	studies	of	permafrost	506	

microbiology	typically	suffer	from	low	sample	sizes,	limiting	the	ability	to	examine	507	

ecological	 relationships	 that	may	 influence	 community	 structure	 and	 function.	 To	508	

address	 this	knowledge	gap,	we	characterized	patterns	of	environmental	variation	509	

and	 microbial	 community	 composition	 in	 a	 boreal	 forest	 ecosystem	 across	510	

landscape	 gradients.	 By	 employing	 a	well-replicated	 and	 geostatistically-informed	511	

sampling	design,	we	have	provided	the	first	characterization	of	ecological	processes	512	

driving	 landscape	 scale	 spatial	 structure	 of	 permafrost	 microbial	 community	513	

composition.	 Through	 this	 work,	 we	 show	 that	 patterns	 of	 both	 environmental	514	

characteristics	 and	microbial	 community	 composition	 can	 be	 highly	 variable	 over	515	

short	 distances	 and	 exhibit	 non-random	 spatial	 structure,	 with	 patterns	 of	516	

community	 composition	 driven	 by	 deterministic	 and	 neutral	 processes	 that	 arise	517	

primarily	from	the	physical	constraints	of	the	permafrost	environment.		518	

	519	

Spatial	structure	of	permafrost	physicochemistry	520	

The	 degree	 of	 heterogeneity	 in	 soil	 physicochemical	 and	 organic	 matter	521	

characteristics	observed	over	the	study	area	was	striking,	likely	reflecting	spatially	522	

structured	variation	in	thaw	history	and	organic	matter	deposition.	We	observed	a	523	

non-linear	 spatial	 trend	 in	 environmental	 variation,	 with	 samples	 at	 the	 extreme	524	

ends	 of	 the	 transects	 found	 to	 be	more	 similar	 to	 each	 other	 than	 to	 those	 in	 the	525	
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middle	 of	 the	 transects,	 most	 notably	 in	 terms	 of	 water	 content,	 pH,	 carbon	 and	526	

nitrogen	 content,	 DG°Cox(H2O),	 and	 organic	 acid	 content	 (acetate	 and	 formate).	527	

Higher	water	content,	which	was	observed	predominantly	through	the	middle	of	the	528	

transects,	may	represent	ice	inclusions	in	the	transition	zone	near	the	surface	of	the	529	

permafrost,	 formed	during	more	recent	 thaw	events	 53.	Total	 carbon	and	nitrogen	530	

content,		DG°Cox(H2O),	and	the	abundance	of	organic	acids	were	also	highest	through	531	

the	 middle	 of	 the	 transects,	 which	 may	 reflect	 more	 substantial	 deposition	 of	532	

undecomposed	plant	material	from	the	active	layer	into	the	upper	permafrost.	The	533	

proportion	 of	 organic	 compounds	 grouping	 to	 lignins,	 carbohydrates,	 and	 amino	534	

sugars	 were	 highest	 in	 water	 extracts	 from	 the	 middle	 of	 the	 transects,	 and	535	

substantial	 deposits	 of	 fibric	 material	 were	 observed	 in	 many	 of	 these	 same	536	

samples.	 This	 undecomposed	 plant	 matter	 likely	 contributes	 high	 DG°Cox	537	

compounds,	 such	 as	 lignin-like	 compounds,	 increasing	 the	 average	 DG°Cox	 of	 the	538	

carbon	pool.		539	

We	 suggest	 that	 the	 higher	 organic	 acid	 concentrations	 observed	 in	 the	540	

middle	 of	 the	 spatial	 domain	 arise	 from	 the	 fermentation	 of	 labile	 organic	541	

compounds	 derived	 from	 deposited	 plant	 matter.	 If	 the	 most	 thermodynamically	542	

favorable	compounds	are	preferentially	fermented,	this	would	further	increase	the	543	

average	DG°Cox.	In	sediments,	a	net	accumulation	of	organic	acids	is	observed	when	544	

fermentation	 rates	 exceed	 respiration	 rates	 54,	 and	acetate	 and	C1	 compounds	 are	545	

the	dominant	organic	products	of	anaerobic	metabolism	in	northern	wetlands	and	546	

bogs	 55,56.	These	products	of	anaerobic	metabolism	may	accumulate	 in	permafrost	547	

through	equivalent	processes.		548	
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	549	

Microbial	community	composition	and	environmental	correlates	550	

Community	 composition	 across	 our	 study	 site	 shared	 similarities	 with	551	

permafrost	 communities	 reported	 previously	 from	 across	 the	 Arctic,	 suggesting	 a	552	

core	 permafrost	 microbiome	 may	 be	 selected	 for	 by	 shared	 environmental	553	

constraints	 across	 disparate	 locations.	 We	 observed	 high	 representation	 of	554	

Acidobacteria	 and	 Proteobacteria,	 consistent	 with	 permafrost	 communities	555	

reported	 from	 Sweden	 30,	 and	 parts	 of	 Alaska	 31,	 and	 high	 representation	 of	556	

Chloroflexi,	which	has	recently	been	reported	in	other	Alaskan	permafrost	samples	557	

28,31.	Archaeal	communities	represented	only	a	small	percentage	of	the	libraries	and	558	

were	 dominated	 by	 taxa	 grouping	 to	methanogens	 in	 the	 phylum	 Euryarchaeota,	559	

which	is	consistent	with	previous	reports	from	across	the	Arctic	28,30,31,57.	In	contrast	560	

with	 previous	 studies,	we	 saw	high	 representation	 of	 Verrucomicrobia,	which	 are	561	

globally	 abundant	 in	 soils	 58,	 but	 have	 not	 been	 previously	 reported	 as	 dominant	562	

members	 of	 permafrost	 communities.	 Further	 comparisons	 of	 geographically	563	

distinct	 permafrost	 communities	 will	 require	 an	 increased	 number	 of	 studies	564	

employing	 well-replicated	 sampling	 designs	 and	 the	 adoption	 of	 standardized	565	

analytical	techniques	within	the	field	7,10.	566	

Permafrost	 communities	 across	 the	 study	 site	 were	 influenced	 by	 similar	567	

drivers	 to	 non-permafrost	 soil	 communities,	 however	 several	 relationships	 were	568	

indicative	of	 the	unique	 constraints	of	 the	permafrost	 environment.	Diversity	was	569	

best	 described	 by	 a	 positive	 linear	 relationship	with	 pH,	which	 is	 consistent	with	570	

trends	 observed	 in	 non-permafrost	 soils	 11-13.	 The	 overall	 variation	 in	 community	571	
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composition	 showed	 a	 clear	 relationship	 with	 environmental	 variation	 (PCs),	572	

although	 the	 particular	 environmental	 variables	 influencing	 community	 variation	573	

were	not	clear	from	the	RDA	model	selection.	Despite	a	relatively	broad	range	of	pH	574	

values	 across	 samples,	 no	 strong	 relationship	 between	 pH	 and	 community	575	

composition	 was	 observed.	 	 The	 relative	 abundance	 of	 the	 dominant	 phyla	 also	576	

varied	 significantly	 with	 numerous	 environmental	 variables,	 however	 these	577	

relationships	were	atypical	of	 trends	observed	 in	 surveys	of	non-permafrost	 soils.	578	

For	example,	at	 the	phylum	level,	Acidobacteria	are	typically	negatively	associated	579	

with	 pH,	 while	 Bacteroidetes	 and	 Actinobacteria	 typically	 have	 positive	580	

relationships	 with	 pH	 11;	 however,	 we	 observed	 the	 opposite	 trends	 for	 both	581	

Acidobacteria	 and	 Bacteroidetes	 and	 no	 trend	 for	 Actinobacteria	 with	 soil	 pH.	582	

Selective	 constraints	 of	 the	 permafrost	 environment	 may	 limit	 the	 phylogenetic	583	

breadth	 of	 these	 taxa,	 altering	 phylum	 level	 trends	 from	 those	 observed	 in	 other	584	

soils.	Additionally,	other	deterministic	factors,	such	as	soil	redox	conditions	and	soil	585	

organic	matter	composition,	which	also	showed	strong	univariate	relationships	with	586	

the	 relative	 abundance	 of	 particular	 taxa,	 may	 be	 more	 important	 drivers	 of	587	

community	structure	in	permafrost-affected	soils.	588	

	589	

Ecological	processes	influencing	community	composition	590	

We	 employed	 a	 null	 modelling	 approach	 to	 evaluate	 the	 degree	 to	 which	591	

deterministic	 processes	 drive	 community	 variation	 and	 to	 resolve	 the	 variables	592	

most	 likely	 to	 be	 causally	 influencing	 composition.	 Patterns	 of	 community	593	

composition	arise	from	a	combination	of	deterministic	and	stochastic	process	59	and	594	
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the	 relative	 importance	 of	 these	 processes	 vary	 between	 systems.	 Null	 modeling	595	

provides	 a	 valuable	 tool	 to	 disentangle	 the	 influence	 of	 individual	 processes	 on	596	

patterns	 of	 microbial	 distribution	 50,60.	 	 This	 approach	 has	 significant	 advantages	597	

over	 the	 RDA	 models,	 which	 cannot	 estimate	 relative	 contributions	 of	 assembly	598	

processes	 and	 did	 not	 reveal	 specific	 environmental	 variables	 that	 drive	 spatial	599	

variation	in	community	composition.	600	

Null	modeling	revealed	a	strong	signal	for	dispersal	limitation	combined	with	601	

a	 very	 weak	 signal	 for	 homogenizing	 dispersal,	 indicative	 of	 very	 restricted	602	

movement	 of	 microorganisms	 within	 the	 permafrost.	 The	 signal	 for	 dispersal	603	

limitation	was	stronger	than	for	either	homogenous	or	variable	selection,	and	was	604	

effectively	equivalent	to	the	value	for	total	selection.	Dispersal	limitation	may	be	an	605	

especially	 important	 process	 in	 permafrost-affected	 soils,	 where	 microorganisms	606	

remain	 frozen	 in	 place	 for	 prolonged	 periods.	 Significant	 dispersal	 events	 may	607	

therefore	be	restricted	to	the	limited	movement	that	occurs	through	cryoturbation.	608	

These	 constraints	 likely	 limit	 community	mixing	 over	 very	 short	 distances,	which	609	

would	 lead	 to	 the	 strong	 signal	of	dispersal	 limitation	observed	 in	our	null	model	610	

analyses.		611	

Given	 strong	 dispersal	 limitation,	 we	 expected	 that	 the	 spatial	 PCNM	612	

variables	 would	 explain	 significant	 variation	 in	 community	 composition,	613	

independent	 of	 environmental	 variation.	 This	 expectation	 was	 not	 met,	 however,	614	

with	PCNM	axes	explaining	 little	variation	 in	 the	RDA	model.	The	 lack	of	 a	 strong	615	

spatial	 signal	 in	 the	 RDA	 model	 indicates	 that	 the	 influence	 of	 spatial	 processes	616	
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manifest	 below	 the	 spatial	 resolution	 of	 our	 sampling,	 consistent	 with	 very	617	

restricted	movement	of	microorganisms	through	permafrost.		618	

We	 found	37	%	of	 the	 total	 community	variation	 in	permafrost	 community	619	

composition	 was	 explained	 by	 selective	 processes,	 and	 that	 soil	 characteristics	620	

associated	 with	 Fe(II)	 content	 are	 likely	 the	 most	 important	 environmental	621	

variables	 deterministically	 influencing	 community	 composition.	 Soil	 Fe(II)	622	

accumulates	in	anaerobic	soils	through	the	reduction	of	Fe(III),	and	iron	reduction	623	

can	contribute	 substantially	 to	 respiration	 in	Arctic	 soils	 61,62.	A	 recent	multi-omic	624	

analysis	of	Alaskan	permafrost	reported	high	representation	of	proteins	annotated	625	

to	iron-reducing	taxa	and	the	expression	of	genes	annotated	as	cytochromes	central	626	

to	 iron-reduction,	 suggesting	 iron-reducing	 taxa	 were	 likely	 active	 in	 situ	 31.	627	

Importantly,	 Fe(III)	 reduction	 competes	 with	 other	 anaerobic	 processes,	 and	628	

suppresses	 less	 thermodynamically	 favorable	 methanogenic	 pathways	 63.	 The	629	

relationship	between	Fe(II)	and	 total	selection	 indicates	 that	soil	 redox	conditions	630	

and	 thermodynamic	 constraints	 on	 microbial	 metabolism	 are	 likely	 to	 be	 the	631	

primary	selection	pressures	that	deterministically	govern	community	composition.		632	

These	 findings	 suggest	 that	 the	 stability	 of	 the	 permafrost	 environment	633	

strongly	 influences	 community	 structure	 and	 function,	 directly	 by	 restricting	634	

community	mixing	and	indirectly	by	influencing	the	selective	landscape,	as	electron	635	

donors	 and	 acceptors	 are	 depleted	 and	 infrequently	 replenished.	 This	 contrasts	636	

strongly	with	non-permafrost	soils,	in	which	communities	are	presumed	to	be	well-637	

dispersed	through	aeolian	64	and	hydrologic	process	65,	nutrient	fluxes	are	dynamic	638	

66,67,	 and	 communities	 are	 thought	 to	 be	 shaped	 predominantly	 by	 selection	 68,69.	639	
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Permafrost	 community	 structure	 and	 function,	 therefore,	 appear	 to	 be	 uniquely	640	

influenced	 by	 a	 balance	 between	 dispersal	 limitation	 imposed	 by	 frozen	 soil	 and	641	

deterministic	selection	arising	primarily	from	thermodynamic	constraints.	642	

	643	

Thermodynamic	constraints	644	

The	thermodynamic	constraints	driving	selection	arise	from	the	composition	645	

of	both	the	organic	matter	and	terminal	electron	acceptor	pools,	as	outlined	in	our	646	

final	SEM.	We	suggest	that	total	carbon	content	accrues	in	the	form	of	less	favorable	647	

organic	 matter,	 as	 stocks	 of	 more	 favorable	 organic	 compounds	 are	 depleted;	 in	648	

turn,	 a	 relationship	 emerges	 wherein	 soil	 carbon	 content	 increases	 with	 DG°Cox	649	

(higher	values	indicate	lower	favorability	38).	Further,	organic	acids	are	expected	to	650	

accumulate	 in	 these	 soils	 through	 anaerobic	 metabolism,	 as	 labile	 carbon	 is	651	

fermented.	 We	 suggest	 that	 these	 organic	 acids	 support	 nitrate	 and	 Fe(III)	652	

reduction,	such	that	organic	acid	content	 is	negatively	associated	with	nitrate,	and	653	

positively	 associated	 with	 Fe(II).	 Additionally,	 a	 negative	 relationship	 between	654	

nitrate	 and	 Fe(II)	 likely	 arises	 because	 Fe(III)	 reduction	 is	 less	 energetically	655	

favorable	 than	 nitrate	 reduction.	 Modification	 indices	 supported	 a	 positive	656	

association	 between	 total	 soil	 carbon	 and	 nitrate	 content	 in	 the	 final	 model:	 the	657	

positive	 association	 between	 total	 carbon	 and	 nitrate	 is	 consistent	 with	 our	658	

interpretation	 of	 higher	 carbon	 content	 resulting	 from	 accumulation	 of	 organic	659	

molecules	that	are	less	thermodynamically	favorable	for	microbially-driven	organic	660	

carbon	 oxidation.	 In	 this	 case,	 higher	 total	 carbon	 reflects	 less	 favorable	 carbon,	661	

which	would	result	in	lower	rates	of	nitrate	reduction	that	depend	on	the	oxidation	662	
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of	organic	carbon,	and	thus	a	positive	carbon-nitrate	relationship.	We	note	that	such	663	

inferences	should	be	 interpreted	as	speculative,	given	 that	controlled	experiments	664	

were	not	conducted.	665	

	666	

Conclusions	667	

Our	findings	support	the	hypothesis	that	permafrost	microbial	communities	668	

are	 shaped	 by	 factors	 that	 are	 distinct	 from	 those	 governing	 non-permafrost	 soil	669	

communities.	 We	 found	 that	 microbial	 distributions	 in	 permafrost	 are	 driven	670	

primarily	by	dispersal	limitation	imposed	by	frozen	soil	and	deterministic	selection	671	

arising	 from	 thermodynamic	 constraints	 of	 the	 permafrost	 environment.	 This	672	

contrasts	sharply	with	non-permafrost	soil	communities,	which	are	driven	primarily	673	

by	soil	pH	11-13.	These	findings	underscore	the	need	for	different	mechanistic	models	674	

predicting	microbial	 community	 characteristics	 in	permafrost	 and	non-permafrost	675	

soils,	 given	 the	 different	 processes	 governing	 these	 systems.	 Our	 findings	 suggest	676	

that	predictive	models	of	permafrost	community	composition	will	need	to	account	677	

for	 organic	 carbon	 thermodynamics,	 organic	 acid	 concentrations,	 and	 redox	678	

conditions,	which	may	 be	 informed	 by	 knowledge	 of	 landscape	 history.	 However,	679	

efforts	 to	 accurately	 predict	 community	 composition	 at	 the	 landscape-scale	 based	680	

solely	on	environmental	characteristics	may	be	limited	due	to	the	strong	influence	681	

of	dispersal	limitation.		682	

Our	 findings	 additionally	 suggest	 that	 changes	 in	 permafrost	 microbial	683	

community	 structure	 and	 function	 are	 likely	 to	be	drastic	 in	 response	 to	 thaw,	 as	684	

hydrologic	changes	mobilize	organisms	and	nutrients,	thereby	relieving	the	primary	685	
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constraints	on	 communities.	 Community	 responses	 to	 change	are	 also	 likely	 to	be	686	

highly	 varied	 across	 landscapes,	 given	 the	 environmental	 and	 microbiological	687	

heterogeneity	of	permafrost-affected	soils.	Identifying	how	pre-thaw	environmental	688	

and	community	 characteristics	 influence	post-thaw	responses	will	be	essential	 for	689	

accurately	predicting	ecosystem	level	responses	to	environmental	change.		690	

	 	691	
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