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ABSTRACT 

We recently described an unconventional mode of gene regulation in budding yeast by 

which transcriptional and translational interference were used in an integrated manner 

to down-regulate protein expression. Developmentally timed transcriptional interference 

inhibited production of a well translated mRNA isoform and resulted in the production of 

an mRNA isoform containing inhibitory upstream open reading frames (uORFs) that 

blocked translation of the ORF. Transcriptional interference and uORF-based 

translational repression are established mechanisms outside of yeast, but whether this 

type of integrated regulation was conserved was unknown. Here we find that, indeed, a 

similar type of regulation occurs at the locus for the human oncogene MDM2.  We 

observe evidence of transcriptional interference between the two MDM2 promoters, 

which produce a poorly translated distal promoter-derived uORF-containing mRNA 

isoform and a well-translated proximal promoter-derived transcript. Down-regulation of 

distal promoter activity markedly up-regulates proximal promoter-driven expression and 

results in local reduction of histone H3K36 trimethylation. Moreover, we observe that 

this transcript toggling between the two MDM2 isoforms naturally occurs during human 

embryonic stem cell differentiation programs.  
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INTRODUCTION 

 

Gene expression regulation enables differential decoding of the same genetic material. 

It has generally been studied as a set of sequential processes, with transcription setting 

the core pattern of expression and translational and post-translational regulation 

modulating the final output. This concept of an exclusively linear model for the 

regulation of genetic information decoding is partly the result of the largely isolated 

discovery and subsequent study of each regulatory step. This approach been necessary 

for and successful in providing a deep understanding of the biochemical mechanisms 

that mediate gene regulation, as well as for defining the types of regulatory mechanisms 

that exist at each level. Such regulatory mechanisms include, for example, 

transcriptional interference, in which transcription from one promoter locally represses 

transcription from another (HAUSLER AND SOMERVILLE 1979; ADHYA AND GOTTESMAN 

1982; CULLEN et al. 1984; EMERMAN AND TEMIN 1984; PROUDFOOT 1986; HIRSCHMAN et 

al. 1988; CORBIN AND MANIATIS 1989; BOUSSADIA et al. 1997; GREGER et al. 2000; 

MARTENS et al. 2004; KIM et al. 2012; VAN WERVEN et al. 2012; KIM et al. 2016). 

Transcriptional repression by this mechanism has been associated with cis-enrichment 

of inhibitory chromatin marks, typically by production of a noncoding transcript 

(CARROZZA et al. 2005; KIM et al. 2012; VAN WERVEN et al. 2012; KIM et al. 2016). An 

example of a similarly established translational repression mechanism is based on 

translation of upstream ORFs (uORFs) in the 5’ leader region of some mRNAs at the 

expense of ORF translation [reviewed in (WETHMAR et al. 2010; BARBOSA et al. 2013; 

WETHMAR 2014; HINNEBUSCH et al. 2016)]. Typically, uORF-mediated translational 
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repression is viewed as a switch-like mechanism, where the uORFs prevent translation 

of the downstream ORF under certain conditions, but this repression can be bypassed 

under other conditions 

 

Recently, we described a form of gene regulation that relies on the integrated use of 

transcriptional and translational regulation to repress protein expression (CHEN et al. 

2017; CHIA et al. 2017). In budding yeast meiosis, the amount of protein for the 

conserved kinetochore protein Ndc80 is determined by an unconventional mechanism 

in which mRNA production from a more distal NDC80 promoter inhibits Ndc80 protein 

production through integration of transcriptional and translational interference: the distal 

promoter-driven transcript cannot be efficiently translated into protein due to uORF 

translation and its transcription represses the proximal NDC80 promoter activity in cis. 

In this manner, production of a 5’-extended mRNA isoform inhibits Ndc80 protein 

production (CHEN et al. 2017; CHIA et al. 2017). In the case of NDC80, the uORF-

mediated repression appears to be constitutive, conditional only on the existence of the 

5’-extended transcript, rather than condition-specific like the best studied regulatory 

uORF cases [(MUELLER AND HINNEBUSCH 1986; VATTEM AND WEK 2004), for example]. As 

such, the re-expression of Ndc80 protein relies on a developmentally induced switch in 

promoter usage, from distal to proximal, during meiotic progression. Therefore, the 

coordinated expression of these two functionally distinct NDC80 mRNA isoforms 

achieves temporal control of Ndc80 protein expression during meiotic differentiation. 
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Improved methodology for genome-wide gene expression measurements have resulted 

in a more complete characterization of the set of transcripts expressed and regions 

translated than was previously possible. These studies have provided evidence for 

translation of thousands of uORFs and widespread existence of alternate transcript 

isoforms [(INGOLIA et al. 2009; INGOLIA et al. 2011; BRAR et al. 2012; DIEUDONNE et al. 

2015; FLOOR AND DOUDNA 2016; WANG et al. 2016), for example], including during the 

yeast meiotic program. Despite their prevalence, the significance of both alternative 

transcript production and uORF translation to gene expression output in most of these 

newly identified cases has been unclear. Using analyses of parallel global mRNA, 

translation, and protein datasets, we found that many of the uORFs and alternate 

transcripts seen during the yeast meiotic program were indicative of the mode of 

coordinate regulation seen for NDC80, with at least 379 other genes showing protein 

levels that are driven by this type of integrated transcriptional and translational control 

over time through meiotic development (CHENG et al. 2018). It was also recently found 

that this mode of regulation functions to mediate down-regulation of proteins involved in 

aerobic respiration as a core part of the unfolded protein response [UPR; (Van Dalfsen 

et al., 2018)]. While these studies were exclusively performed in yeast, we noted that 

some of the hallmarks of the integrated mode of gene repression that were seen for 

NDC80 regulation, and thus used to annotate new cases in yeast, are also known to be 

common in mammals. For example, almost half of human genes show evidence of 

alternative promoter usage, resulting in transcript isoforms that differ in their 5’ leader 

(WANG et al. 2016). Additionally, transcripts with extended 5’ leaders that contain 

uORFs result, in some cases, in a poorly translated transcript compared to isoforms 
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with shorter 5’ leaders (LAW et al. 2005; FLOOR AND DOUDNA 2016). Alternative uORF-

containing transcripts were also previously defined for several individual mammalian 

genes, including Mouse double-minute 2 homolog (MDM2), an oncogene and repressor 

of the tumor suppressor p53 (ARRICK et al. 1994; BARAK et al. 1994; BROWN et al. 1999; 

HUGHES AND BRADY 2005). The MDM2 transcript isoform produced from the distal P1 

promoter contains a longer 5’ leader than the one produced from the proximal P2 

promoter (Figure 1B) and this P1-derived MDM2 isoform specifically is poorly translated 

due to the presence of two uORFs in its extended 5’ leader, as established by polysome 

analyses and reporter assays (LANDERS et al. 1997; BROWN et al. 1999; JIN et al. 2003).  

 

The integrated mode of repression seen for NDC80 in yeast relies on three key features 

[Figure 1A, (CHEN et al. 2017; CHIA et al. 2017)]. First, a developmentally regulated 

switch between alternative promoters for the same gene leads to the usage of different 

transcription start sites (TSSs). Second, due to upstream open reading frame (uORF)-

mediated translational repression, the distal promoter-generated transcript is 

inefficiently translated. Third, transcription from the distal promoter represses the 

expression of the canonical mRNA isoform through transcriptional interference 

associated with co-transcriptional histone modifications. When all three features exist 

together, and only then, the activation of NDC80 transcription can result in a decrease 

in translation from this locus. We termed the distal promoter-generated transcript 

“NDC80LUTI” for long undecoded transcript isoform, because, despite containing the 

entire NDC80 ORF, NDC80LUTI is not efficiently translated into protein (CHEN et al. 2017; 

CHIA et al. 2017). We noted that the regulation at the MDM2 locus shared features with 
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this LUTI-based mechanism, with the important exception that it was not clear if there 

was transcriptional interference between the two MDM2 promoters.  

 

It is well established that MDM2 P2 can be activated by p53 (WU et al. 1993; BARAK et 

al. 1994; HONDA et al. 1997), but little is known about the factors that activate P1 and 

whether transcription from the P1 promoter affects P2 activity had not been explored. 

To our knowledge, this was true of all other individually and globally defined examples 

of alternative transcripts of differential translatability, as transcriptional interference and 

uORF-based translational control have been topics studied independently, and typically 

by different labs. Transcriptional interference is an essential feature of the LUTI 

mechanism, because it causes a toggle between the two transcript isoforms, which is 

necessary for effective gene expression repression. Transcriptional interference also 

enables efficient developmental regulation in the case of NDC80.  Evidence of 

transcriptional interference from nearby transcription has been previously been 

established in human cells (reviewed in (SHEARWIN et al. 2005; PALMER et al. 2011), but 

these cases have not involved production of ORF-encoding mRNAs. Nevertheless, we 

hypothesized that the type of integrated regulation that we described to be common in 

yeast might occur at the MDM2 locus. Here, we report evidence that this is indeed the 

case, based on observed transcriptional interference between the two promoters at this 

locus. We also observe developmental regulation of the two MDM2 transcript isoforms 

and conclude that the type of integrated transcriptional and translational regulation that 

we described as a developmental gene regulatory strategy in yeast is also seen in 

human cells. These findings suggest value in considering translational and 
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transcriptional regulation not only as independent steps, but rather, as potential 

collaborators in gene expression outcomes. 

RESULTS  

 

A key prediction, if MDM2 were regulated by a LUTI-based mechanism, would be an 

inverse relationship between the two MDM2 transcript isoforms, such that reduction in 

transcription from P1 should lead to increased transcription from P2. We were able to 

reliably assay the levels of the P1- and P2-derived transcripts by Real-Time quantitative 

PCR (RT-qPCR) owing to differential splicing of the two transcripts that results in unique 

5’ sequences for both P1 and P2 (Figure S1). To directly test this prediction, we 

inhibited transcription from P1 by using CRISPRi (GILBERT et al. 2013; QI et al. 2013). 

We first examined MCF-7 breast cancer cells stably encoding the catalytically dead 

Cas9 (dCas9), which is thought to interfere with PolII elongation when targeted near 

transcription start sites (LARSON et al. 2013; QI et al. 2013). Expressing each of four 

different single guide RNAs (sgRNAs) targeting the P1 promoter region led to modest 

but significant increases, of up to 2-fold, in the P2-derived MDM2PROX transcript levels, 

which was associated with the expected reduction of transcription from P1 (Figure 2A 

and Figure S2A). This result was notable, given that the maximal knockdown of P1 

activity was only 40% relative to control cells in these lines (Figure 2A). We tried to 

enhance the P1 transcriptional knockdown by using CRISPRi in MCF-7 cells that carry 

a version of dCas9 fused to the Krüppel-associated box (KRAB) transcriptional 

repression domain (GILBERT et al. 2013). However, targeting of dCas9-KRAB to the P1 

promoter led to repression of both the P1 and P2 promoters (Figure S3). This finding is 
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consistent with the long-range effect of the KRAB domain up to 1Kb (GILBERT et al. 

2014), beyond the 845 bp distance between the P1 and P2 regulated transcription start 

sites. Therefore, we performed all subsequent experiments using cell lines that stably 

expressed dCas9 without the KRAB domain, as this first-generation version of CRISPRi 

allowed us to achieve promoter-specific repression. 

 

We further probed the relationship between P1 and P2 by knockdown of the gene 

encoding p53 (TP53) in MCF-7 cells using CRISPRi. Given that p53 is a well-

characterized transcriptional activator for P2, it was not surprising that TP53 knockdown 

resulted in a significant, 43% reduction of the P2-derived MDM2PROX transcript (Figure 

2B, left panel). However, additional CRISPRi knockdown of the P1-derived transcript, 

hereon referred to as MDM2LUTI, still resulted in the transcriptional activation of P2, as 

evidenced by the 2- to 3-fold increase in MDM2PROX levels in this background compared 

to the TP53 knockdown alone (Figure 2B, right panel; Figure S2B; Figure S4).  The 

observation that MDM2LUTI repression leads to an increase in MDM2PROX expression, 

even in cells with reduced p53 levels, suggests that transcription from P1 actively 

represses P2 activity and that relief of this repression alone can lead to increased 

expression of MDM2PROX independent of p53, consistent with transcriptional 

interference at this locus. 

 

To test whether transcriptional interference based on MDM2LUTI occurs in a different cell 

type, we performed similar experiments in K562, a TP53-/- myeloid leukemia cell line 

that routinely shows robust CRISPRi-based repression (GILBERT et al. 2014). Inhibition 
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of MDM2LUTI transcription in these cells resulted in a dramatic increase (up to 10-fold) in 

MDM2PROX expression (Figure 3A and Figure S2C). A range of MDM2LUTI knockdown 

efficiencies were achieved in this cell line. Consequently, the degree of P1 down-

regulation generally correlated with the degree of P2 activation (Figure 3A), suggesting 

tunability of the  transcriptional interference at this locus.  

 

H3K36me3 is a co-transcriptionally established modification that occurs in regions 

downstream of active promoters (XIAO et al. 2003; BANNISTER et al. 2005; MIKKELSEN et 

al. 2007), and in budding yeast is associated with a decrease in spurious transcription 

initiation from within transcribed genes	(LI et al. 2003; XIAO et al. 2003; CARROZZA et al. 

2005; KEOGH et al. 2005; KIM et al. 2016) and in noncoding RNA transcription-

dependent repression of gene promoters (KIM et al. 2012; VAN WERVEN et al. 2012). 

H3K36me3 is enriched at the proximal NDC80 promoter as a result of NDC80LUTI 

transcription and is involved in the transcriptional interference seen at the NDC80 locus 

(CHIA et al. 2017). In mammalian cells, H3K36me3 has been implicated in silencing, 

including the repression of spurious intragenic transcription [(DHAYALAN et al. 2010; XIE 

et al. 2011; WAGNER AND CARPENTER 2012; BAUBEC et al. 2015; SUZUKI et al. 2017), but 

its involvement in promoter repression has been less clear. We found that down-

regulation of MDM2LUTI expression resulted in a greater than 3-fold decrease in the 

H3K36me3 signal over the P2 promoter (Figure 3B, Figure S5). In contrast, H3K36me3 

signal remained high within the MDM2 gene body, likely due to increased MDM2PROX 

transcription under these conditions. These data are consistent with a mechanism 

whereby MDM2LUTI expression represses transcription from the P2 promoter through 
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co-transcriptional histone modifications, and provide further support for a model in which 

the proximal MDM2 promoter is controlled by a similar mechanism to that defined in 

yeast.  

 

In budding yeast, developmentally controlled switching between the LUTI and canonical 

mRNA isoforms occurs pervasively during meiotic differentiation (CHENG et al. 2018). To 

begin to test whether such transcript toggling naturally occurs in human cells, we used 

two different human Embryonic Stem Cell (hESC) differentiation models. In human 

hESCs, both MDM2 transcript isoforms were expressed (Figure 4A). When these cells 

were induced to undergo neuronal differentiation, a transient switch in transcript isoform 

expression from MDM2PROX to MDM2LUTI was evident between hESCs and neuronal 

precursors (NPCs) (Figure 4B). We also observed an anti-correlation between 

MDM2PROX and MDM2LUTI expression as hESCs differentiated into an endodermal fate, 

as determined by endoderm-specific markers (Figure 4C, Figure S6). This inverse 

pattern of proximal and distal promoter usage seen during hESC differentiation 

suggests that the LUTI-based mechanism regulates MDM2 expression during normal 

cellular differentiation.  

 

DISCUSSION 

 

We report here that an integrated transcriptional and translational regulatory strategy, 

initially defined for NDC80 in yeast, also occurs in humans. Based on the ubiquitous use 

of alternative promoters and uORF translation in humans (INGOLIA et al. 2011; FLOOR 
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AND DOUDNA 2016; WANG et al. 2016; TRESENRIDER AND UNAL 2018), this type of 

regulation may control the expression of many mammalian genes. Both the type of 

transcriptional control described here and the uORF-based translational regulation 

already established for the distal promoter-derived MDM2 transcript are known modes 

of gene regulatory control. Our study shows that transcriptional interference can be 

integrated with production of alternate transcripts of differential translatability in 

mammals, in a manner that resembles the LUTI-based regulation seen in yeast. These 

findings suggest value in revisiting the linear model of gene expression control that 

dominates the interpretation of past and current data in favor of a more holistic view of 

the interplay between different levels of gene expression control.  

 

Canonical models to explain the prevalence of mammalian alternative promoter usage, 

for example, suggest that one promoter might serve as a “back-up” or that the use of 

two promoters could simply allow activation by different transcription factors that are 

present in different cell types (DAVULURI et al. 2008). However, in the case of MDM2, we 

argue that its two promoters are fundamentally different in function. The P1 promoter 

produces a poorly translated MDM2LUTI transcript and the production of MDM2LUTI from 

this promoter interferes with P2 activity in cis, reducing the transcription of the well-

translated MDM2PROX isoform. Therefore, P1-driven MDM2LUTI mRNA production serves 

to downregulate MDM2 expression. Further, this repression occurs in a tunable manner. 

(Figure 5). A similar trend was also observed for the Adh gene in fruit fly, which is 

expressed from two distinct promoters (JORGENSEN et al. in preparation). Both findings 
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are consistent with the notion that transcriptional interference can be used to tune gene 

expression, rather than acting as an on-off switch. (CHIA et al. 2017). 

 

Contrary to traditional gene regulatory models, mRNA and protein abundances 

generally show poor correlations over developmental programs in genome-scale yeast 

and vertebrate studies (PESHKIN et al. 2015; CHENG et al. 2018). In yeast, hundreds of 

such cases can be explained by LUTI-based regulation, whereby developmentally 

regulated transcript distal and proximal promoter usage drives final protein output levels 

(CHENG et al. 2018). In these conditions, we found that a single developmentally 

regulated transcription factor could drive distinct sets of canonical and LUTI targets, 

which resulted in coordinate up- and down-regulation of protein levels for the two target 

sets (CHENG et al. 2018). We propose that this mechanism may be advantageous for 

developmental programs, which are typically characterized by multiple transcription-

factor driven switches in cell stage, because of the ability to temporally coordinate up- 

and down-regulation of gene sets at each transition. In principle, whether a gene is in 

one set or another could be defined simply by the position of the binding site for a given 

transcription factor relative to the ORF and uORF sequences (CHIA et al. 2017; CHENG 

et al. 2018; OTTO AND BRAR 2018; TRESENRIDER AND UNAL 2018). The natural toggling 

between MDM2 isoforms during differentiation shown here suggests that the broad use 

of this type of regulation for developmental modulation of gene expression may be 

conserved.  
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MDM2 levels are elevated in a variety of cancers (reviewed in (RAYBURN et al. 2005) 

and this elevation has been attributed in some cases to an increase in translation of the 

pool of MDM2 transcripts, based on increased transcription from the P2 (LANDERS et al. 

1997; CAPOULADE et al. 1998; BROWN et al. 1999). Much research has focused on 

identifying alternate transcription factors that can activate P2—as it is clear that 

transcription can occur from this promoter in the absence of p53—and several have 

been found (PHELPS et al. 2003; ZHANG et al. 2012), but relatively little is known about 

P1 regulation. Our study argues that MDM2 expression levels could be modulated by 

changes in activation of P1 alone, suggesting a promising new general area for the 

development of gene regulatory tools that modulate P1 activity, and the activity of other 

yet-to-be-identified LUTI mRNA promoters, as a means to fine tune gene expression. 

 

MATERIALS AND METHODS 

 

Cell lines 

MCF-7-dCas9 and -dCas9-KRAB cells were cultivated at 37°C with 5% CO2 in high 

glucose Dulbecco’s modified Eagle media (GlutaMax, Gibco) supplemented with 10% 

FBS and 1% penicillin-streptomycin. K562-dCas9 cell lines were cultivated at 37°C with 

5% CO2 in RPMI1640 media (Gibco) supplemented with 10% FBS and 10mM HEPES. 

hESCs (WIBR3 NIH#0079) were maintained in culture as described in (LENGNER et al. 

2010). The differentiation into definitive endoderm was performed using the STEMdiff™ 

Definitive Endoderm Kit (Stem Cell Technologies) following the manufacturer's 

instructions. MCF-7-dCas9 and -dCas9-KRAB cells were kindly provided by Howard Y. 
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Chang (Stanford University). K562-dCas9 cells were kindly provided by Jonathan 

Weissman (University of California, San Francisco). Cell lines were authenticated by 

STR profiling and were tested to be negative for mycoplasma (MycoAlert™ 

Mycoplasma Detection Kit, Lonza). 

 

RNA isolation, cDNA synthesis and quantitative polymerase chain reaction 

Total RNA from hESCs differentiating into definitive endoderm and hESCs 

differentiating into neurons, MCF-7-dCas9, MCF-7-dCas9-KRAB and K562-dCas9 cells 

was isolated using Trizol (Life Technologies) according to the manufacturer’s 

instructions. Equal amounts of RNA were primed with random hexamers and reverse 

transcribed using SuperScript II Reverse Transcriptase (Thermo Fisher) according to 

the manufacturer’s instructions. RNA levels were quantified using SYBR Green/Rox 

(ThermoFisher) and the StepOnePlus Real-time PCR system (ThermoFisher).  

 

Samples for total RNA isolation from hESCs differentiating into neurons (hESC, NPC, 

neurons D14, neurons D50) were a gift from Helen Bateup [University of California, 

Berkeley] 

 

CRISPRi knockdowns 

sgRNAs targeting MDM2LUTI were designed and cloned into the lentiviral pU6-sgRNA 

EF1Alpha-puro-T2A-BFP vector. Lentivirus was packaged by co-transfecting sgRNA-

expression plasmids and the packaging vectors pCMV-dR8.91 and pMD2.G into 293T 

cells using the TransIT®-LT1 Transfection Reagent (Mirus). Cells were treated with 
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ViralBoost (Alstem) to allow for efficient lentivirus production and lentivirus was 

harvested 72 hours post-transfection. CRISPRi-directed gene knockdown was achieved 

by transducing MCF-7-dCas9, -dCAS9-KRAB and K562-dCas9 cell lines with sgRNA-

containing lentivirus in the presence of 8µg/ml polybrene (Millipore Sigma). Successfully 

transduced cells were puromycin-selected (ThermoFisher; 1.3µg/ml for MCF-7 and 

3µg/ml for K562 cells) and harvested 7 days post-infection. The pU6-sgRNA EF1Alpha-

puro-T2A-BFP vector was a gift from Jonathan Weissman (Addgene plasmid # 60955). 

 

H3K36me3 Chromatin immunoprecipitation (ChIP) 

K562-dCas9 cells (5 x 15cm2 plates per sample) were treated with 1% formaldehyde 

(16%, methanol free, Ultra Pure, Polysciences) for 10 minutes at room temperature to 

crosslink DNA and protein. The crosslinking reaction was stopped by adding 0.125M 

PBS-glycine and cells were harvested by centrifugation. Cells were subsequently 

resuspended in ice-cold PBS containing 0.25mM PMSF and 10ug/ml aprotinin 

(Millipore) and pelleted by centrifugation. Chromatin immunoprecipitation of these 

pellets was performed as previously described (TESTA et al. 2005) with minor 

modifications.  Chromatin was sonicated 50 x 30 seconds ON/30 seconds OFF with a 

Bioruptor® Pico (Diagenode) to obtain fragment sizes of ~200 bp.  The sheared 

samples were incubated in RIPA buffer II (10 mM Tris-Cl, pH 8.0, 1 mM EDTA, pH 8.0, 

0.5 mM EGTA, 1% Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate, 140 mM NaCl) 

containing protease inhibitors and PMSF, with Dynabeads® Protein A (Invitrogen) for 2 

h at 4 °C on rotation. After removal of Dynabeads® Protein A, precleared lysates were 

immunoprecipitated overnight with 4 ug of rabbit anti-mouse IgG (Ab46540, Abcam) or 
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anti-Histone H3 tri methyl lysine 36 (Ab9050, Abcam).  Immunoprecipitates were 

recovered by incubation for 2 h at 4 °C with previously blocked Protein A Dynabeads in 

RIPA buffer II (1 µg/µl bovine serum albumin, protease inhibitors, and PMSF).  Reverse 

crosslinked input DNA and immunoprecipitated DNA fragments were amplified with 

SYBR Green/Rox (ThermoFisher) and quantified with StepOnePlus Real-time PCR 

system (ThermoFisher).  

 

Data availability 

All the reagents generated in this study are available upon request. 
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FIGURE LEGENDS 
 
 
 
Figure 1. Illustrations of LUTI-based gene repression and MDM2 gene locus 

A. Model for LUTI-based gene repression. Top panel: LUTI mRNA production causes 

an increase in the co-transcriptional H3K36me3 marks at the proximal gene promoter 

and transcriptional repression of the canonical mRNA isoform. Because LUTI mRNA is 

not well translated due to uORFs in its extended 5’ leader and because the well-

translated canonical mRNA is repressed, the net effect of LUTI mRNA production is the 

downregulation of translation from the LUTI target gene locus. Bottom panel: In the 

absence of LUTI expression, transcription from the canonical gene promoter occurs, 

leading to translation. B. Illustration of the MDM2 gene structure. MDM2 is transcribed 

from two different transcription start sites (TSS1 and TSS2) regulated by two different 

promoters (P1 and P2). Transcription from the distal TSS1 produces a 5’-extended, 
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uORF-containing transcript, which is poorly translated. Hereafter, the P1 promoter-

driven transcript isoform is referred to as MDM2LUTI, while the P2-driven isoform, 

transcribed from the proximal TSS2 is referred to as MDM2PROX. The arrows describe 

the location of the isoform-specific primers used for the RT-qPCR analyses in this figure 

and all the subsequent figures (blue arrows: MDM2LUTI specific primers; yellow arrows: 

MDM2PROX specific primers). p53 RE refers to the location of p53 response element 

within the P2 promoter.  

 

Figure 2. Downregulation of MDM2LUTI leads to an increase in the expression of 

MDM2PROX in MCF-7 cells, independent of p53 expression. 

A. RT-qPCR data displaying the changes of MDM2LUTI and MDM2PROX mRNA 

expression in MCF-7-dCas9 stable cells. The transcription of MDM2LUTI was inhibited by 

CRISPRi using four different sgRNAs (#1-4). Data were normalized to GAPDH, and the 

fold change relative to the expression of MDM2LUTI and MDM2PROX in the cells 

transfected with an empty vector was calculated. Data points represent the mean of at 

least 3 independent biological replicates. Error bars represent standard error of the 

mean (SEM). Two-tailed Student’s t-test was used to calculate the P-values in this 

figure and all of the subsequent figures. B. RT-qPCR data showing the change in the 

expression level of TP53, MDM2LUTI and MDM2PROX in MCF-7-dCas9 cells after 

CRISPRi-mediated TP53 knockdown (left) or CRISPRi-mediated p53- and MDM2LUTI-

double knockdown (right, sgRNA #1 through #4), relative to the cells transfected with an 

empty vector. Data were normalized to GAPDH. Data points represent the mean of four 

biological replicates. Error bars represent SEM.  
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Figure 3.  Downregulation of MDM2LUTI reduces repression-associated histone 

marks at the P2 promoter.  

A. RT-qPCR data displaying the changes in MDM2LUTI and MDM2PROX expression levels 

in a stable K562-dCas9 cell line in which the transcription of MDM2LUTI had been 

inhibited by CRISPRi using four different sgRNAs (#5, #6, #1, and #7). Data were 

normalized to GAPDH, and the fold change relative to cells transfected with the empty 

vector was calculated. Data points represent the mean of at least 3 independent 

biological replicates. Error bars represent SEM. B. Chromatin immunoprecipitation 

(ChIP) data displaying H3K36 trimethylation (H3K36me3) enrichment around the 

proximal TSS (TSS2) in K562-dCas9 cells after CRISPRi-mediated inhibition of 

MDM2LUTI expression. Location of the four different primer pairs (A, B, C, and D) are 

shown in the schematic above the graph Arrowheads indicate the location of uORFs in 

exon 1 and yellow box indicates the p53 response element. Data points represent the 

mean of 4 independent biological replicates. Error bars represent SEM. n.s. = not 

significant 

Figure 4. P1 and P2-driven MDM2 transcript isoform toggling can be seen during 

human embryonic stem cell differentiation. 

A. RT-qPCR data showing the fold differences of MDM2LUTI and MDM2PROX transcript 

levels relative to GAPDH expression levels x1000 in human embryonic stem cells 

(hESCs). Error bars represent the range measured for two biological replicates. B. RT-

qPCR data sowing the relative expression of MDM2LUTI and MDM2PROX transcripts in 

human embryonic stem cells (hESCs), neural progenitor cells (NPCs), Day 14 and Day 
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50 neurons (D14 and D50). Data were normalized relative to MDM2LUTI or MDM2PROX 

transcript abundance in hESCs. Error bars refer to the range measured for two 

biological replicates. C. RT-qPCR data showing the changes in the expression of 

MDM2PROX and MDM2LUTI in hESCs differentiating into endoderm. D1-D4 refers to days 

after transfer of the hESCs to endoderm differentiation medium. Data were normalized 

relative to MDM2LUTI or MDM2PROX transcript abundance in hESCs. 

 

Figure 5. Model of the LUTI mRNA based mechanism of the MDM2 gene.  

The MDM2 gene has two promoters, P1 and P2. MDM2PROX is regulated by P2 whereas 

MDM2LUTI is regulated by P1. In comparison to MDM2PROX, MDM2LUTI is poorly 

translated because of the existence of two upstream open reading frames (uORFs) in 

its extended 5’-leader. Top panel: When P1 promoter is active (“ON”), MDM2LUTI 

transcription establishes H3K36 trimethylation at the downstream P2 promoter and 

causes repression of P2 (“OFF”). As a result, MDM2LUTI becomes the predominant 

transcript product from the MDM2 locus. Bottom panel: When P1 promoter is “OFF”, 

transcriptional repression of the downstream P2 promoter is relieved, culminating in the 

expression of MDM2PROX. MDM2PROX is efficiently translated, resulting in higher MDM2 

translation. 

 

SUPPLEMENTAL FIGURE LEGENDS 

 

Figure S1. Information about the location of the single guide RNAs (sgRNAs) 

used for the MDM2 locus in this study. Binding sites of the sgRNAs (red lines) used 
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for the CRISPRi-mediated knockdown of MDM2LUTI within the MDM2 gene. Locations of 

primers used to amplify MDM2LUTI (green) and MDM2PROX (purple) in RT-qPCRs. 

 

Figure S2. Downregulation of MDM2LUTI expression increases levels of MDM2PROX.  

RT-qPCR data showing changes in MDM2PROX and MDM2LUTI expression upon 

CRISPRi-mediated knockdown of MDM2LUTI relative to GAPDH expression levels x1000 

in MCF-7-dCas9 WT cells (A), MCF-7-dCas9 cells in which the expression of TP53 was 

downregulated (B), and K562-dCas9 cells (C). Error bars represent the SEM of at least 

three independent biological replicates. 

 

Figure S3. Both MDM2PROX and MDM2LUTI levels are reduced upon CRISPRi 

targeting of MDM2LUTI transcription start site in MCF-7-dCas9-KRAB cell lines. RT-

qPCR data showing the changes in MDM2PROX and MDM2LUTI expression upon 

CRISPRi-mediated knockdown of MDM2LUTI in MCF-7-dCas9 (solid bars) and MCF-7-

dCas9-KRAB cell lines (checkered bars), using two different sgRNAs (#1 and #3). Data 

were normalized to GAPDH and the fold change relative to cells transfected with the 

empty vector was calculated.  

 

Figure S4. MDM2PROX can be up-regulated upon MDM2LUTI downregulation, even 

under conditions with low p53 levels. RT-qPCR data showing the expression of 

MDM2PROX and MDM2LUTI in the MCF-7-dCas9 cells treated with different sgRNAs (#1-

4) targeting MDM2LUTI in the presence (+) or absence (-) of a sgRNA targeting TP53. 

Data were normalized to GAPDH and the fold change relative to cells transfected with 
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the empty vector (with our without sgRNA targeting TP53) was calculated. Data points 

represent the mean of at least 3 independent biological replicates. Error bars represent 

SEM.  

 

Figure S5. Quality assessment for the H3K36me3 ChIP. qPCR analysis of chromatin 

immunoprecipitation performed with IgG or anti-H3K36me3. Same primers sets were 

used as in Figure 3C. Note that the H3K36me3 data are the same as shown in Figure 

3C. Data points represent the mean of 4 independent biological replicates. Error bars 

represent SEM. 

 

Figure S6. Validation of endodermal differentiation of human embryonic stem 

cells. RT-qPCR data showing the changes in expression of hESC- specific genes 

(NANOG, SOX2, and OCT4) and endoderm-specific genes (SOX17 and CXCR4) during 

endodermal differentiation (Endo D1 through D4). Values normalized to the expression 

in hESCs. 
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Table 1. Primers used in this study 
 
 

Target gene 
 

Primer 
 

5’-3’ sequence 

   

MDM2prox MDM2PROX forward GTGGCGATTGGAGGGTAGAC 

 MDM2PROX reverse TTGTGCACCAACAGACTTTA 

MDM2LUTI MDM2LUTI forward AAACTGGGGAGTCTTGAGGG 

 MDM2LUTI reverse CAGACATGTTGGTATTGCACAT 

GAPDH GAPDH forward AATCCCATCACCATCTTCCA 

 GAPDH reverse TGGACTCCACGACGTACTCA 

NANOG NANOG forward CCAACATCCTGAACCTCAGCTAC 
 

NANOG reverse GCCTTCTGCGTCACACCATT 

SOX2 SOX2 forward CACACTGCCCCTCTCACACAT 
 

SOX2 reverse CATTTCCCTCGTTTTTCTTTGAA 

OCT4 OCT4 forward TCGAGAACCGAGTGAGAGGC 
 

OCT4 reverse CACACTCGGACCACATCCTTC 
CXCR4 

CXCR4 forward AGTGAGGCAGATGACAGATA 
 

CXCR4 reverse ACAATACCAGGCAGGATAAG 
SOX17 

SOX17 forward GCCGAGTTGAGCAAGATG 
 

SOX17 reverse GGCCGGTACTTGTAGTTG 

MDM2 (ChIP) MDM2 A forward GAGTGGAATGATCCCCGAGG 

 MDM2 A reverse GGTTTTCGCGCTTGGAGTC 

 MDM2 B forward CAGACACGTTCCGAAACTGC 
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