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Abstract  

Chromosome organization poses a remarkable physical problem with many biological          
consequences: how can molecular interactions between proteins at the nanometer scale           
organize micron-long chromatinized DNA molecules, insulating or facilitating interactions         
between specific genomic elements? The mechanism of active loop extrusion holds great            
promise for explaining interphase and mitotic chromosome folding, yet remains difficult to            
assay directly. We discuss predictions from our polymer models of loop extrusion with             
barrier elements, and review recent experimental studies that provide strong support for            
loop extrusion, focusing on perturbations to CTCF and cohesin assayed via Hi-C in             
interphase. Finally, we discuss a likely molecular mechanism of loop extrusion by SMC             
complexes.  
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In interphase, mammalian chromosomes are folded into a series of insulated regions,            
termed topologically-associating domains (TADs), often elaborated with peaks at their          
corners, grids of peaks within and between TADs, and enriched lines (or tracks) of contact               
frequency emanating from a boundary (Fig. 1C , for review (Merkenschlager and Nora            
2016; Bonev and Cavalli 2016)). TADs (Dixon et al. 2012; Nora et al. 2012), peaks (Rao et                 
al. 2014), and tracks (Fudenberg et al. 2016) have an independent mechanistic origin from              
patterns associated with compartmental segregation of active and inactive chromatin          
(Schwarzer et al. 2017), and we discuss the interplay of these two mechanisms elsewhere              
(Nuebler et al. 2017). TAD boundaries are frequently demarcated by binding sites of the              
transcription factor CTCF, and are enriched for the Structural Maintenance of           
Chromosomes (SMC) complex cohesin . Functionally, TADs are believed to demarcate          
coherent cis neighborhoods of gene-regulatory activity and hence are crucial for           
development (Spielmann and Mundlos 2016). To explain how such neighborhoods can be            
formed, we put forward a mechanism based on a still-hypothetical process of loop             
extrusion.  
 
Here we present emerging evidence that interphase chromosomes are organized by loop            
extrusion, an active ATP-dependent process that allows nanometer-size molecular         
machines to organize chromosomes at much larger scales. We review how loop extrusion             
by cohesins can explain the formation of TADs, peaks, and tracks visible in interphase Hi-C               
maps. We then detail specific predictions made by the polymer model of loop extrusion,              
and discuss recent experimental perturbations to CTCF and cohesin that test these            
predictions and provide strong support to the loop extrusion mechanism. While we focus             
on comparisons to mammalian interphase Hi-C experiments, loop extrusion likely plays           
important roles in other organisms and parts of the cell cycle. We also discuss imaging               
experiments, single-molecule experiments, and a possible molecular mechanism of loop          
extrusion.  

Polymer model of loop extrusion with barrier elements 

We frame our discussion around how we originally implemented the mechanism of loop             
extrusion limited by barriers as a polymer model (Fudenberg et al. 2016). In the process of                
loop extrusion, loop extruding factors (LEFs ) translocate along the chromosomes, holding           
together progressively more genomically distant loci along a chromosome, thus producing           
dynamically expanding chromatin loops. LEF translocation is either halted by encounters           
with other LEFs, or probabilistically halted at specific genomic loci that contain extrusion             
barriers. We assume that if halted only on one side, a LEF may continue to extrude                
chromatin from its other side. LEFs continue to extrude until they dissociate from the              
chromatin fiber, releasing the extruded loop. 
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The minimal system of LEFs limited by extrusion barriers that we implement is defined by               
four parameters (Fig. 1A):  

● lifetime  on chromatin (sec)  
● velocity  along the chromatin fiber (kb/sec) 
● separation  between LEFs (kb) 
● permeability  of the extrusion barriers (probability) 

For comparison to ensemble-averaged Hi-C experiments, that capture a snapshot of           
contacts occurring at a particular point in time, it is also useful to define the product of                 
lifetime and velocity, processivity (kb), which indicates the average size of a loop that a               
LEF would extrude if left unobstructed. Motivated by observations of CTCF motif            
orientations at TAD boundaries and at peaks (Vietri Rudan et al. 2015; Rao et al. 2014), we                 
implement barriers as being directional , i.e. halting LEFs approaching it from only one             
side. Barriers can be modeled as either halting LEFs as long as the blocking factor is                
present, or stalling them until LEF dissociation. In our models, the permeability can be              
thought to represent the probability that a barrier locus is occupied by a blocking factor.  
 
To compare predictions from our simulations with experiments, we generate a simulated            
ensemble of chromatin conformations for a given set of parameters (Fig. 1B ). To accurately              
simulate features of chromatin folding at the scale of TADs we typically use monomers              
representing several nucleosomes to simulate 10-50Mb of chromatin (i.e. many times a            
typical TAD size). From these conformations we can extract experimentally-relevant          
observables (Imakaev et al. 2015). These include maps of contact frequency that can be              
compared to Hi-C contact maps, as well as distributions of spatial distances between pairs              
of loci, that can be compared with FISH experiments (Fudenberg and Imakaev 2017). From              
the simulated contact maps, we can then extract TADs, peaks, and contact frequency decay              
curves, P(s), as done for experimental Hi-C maps. By comparing simulated and            
experimental features, we can then define a set of wild-type parameters, from which             
perturbations, and hence predictions, can be made. 
 
The mechanism of loop extrusion limited by barriers recapitulates many features of            
interphase chromosome folding visible in Hi-C maps (Fig. 1C ), including: 

● TADs, regions of enriched contact frequency between neighboring barriers 
● Tracks, lines emerging from one side of a barrier  
● Peaks and grids of peaks, occurring between proximal barriers in cis but not             

between chromosomes 
● Inwards-oriented CTCF motifs at TAD boundaries and at peak bases 

Further support comes from site-specific disruptions of TAD boundaries and peak bases,            
which respectively result in merging of adjacent TADs (Nora et al. 2012; Narendra et al.               
2015; Rodríguez-Carballo et al. 2017) and orientation-dependent losses of peaks (de Wit et             
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al. 2015; Guo et al. 2015; Sanborn et al. 2015). To our knowledge, no alternative               
mechanism of interphase chromosome organization currently agrees with all the above. 
 
While we focus here on interphase loop extrusion, we note that loop extrusion by SMCs               
appears to have important consequences in mitosis (Naumova et al. 2013; Goloborodko et             
al. 2016a; Gibcus et al. 2018), where the term was coined and first mathematically modeled               
(Alipour and Marko 2012). The closely related concepts of reeling (Riggs 1990), facilitated             
tracking (Blackwood and Kadonaga 1998), loop expansion (Kimura et al. 1999) and            
progressive loop enlargement (Nasmyth 2001) have a rich history. Loop extrusion also            
appears relevant in bacteria (Wang et al. 2017; Gruber 2014; Wang et al. 2015). There are                
also related proposals for interphase loop extrusion (Sanborn et al. 2015; Nichols and             
Corces 2015; Brackley et al. 2018; Yamamoto and Schiessel 2017), which we discuss briefly              
below. 
 
While the terms “contact”, “loop”, and “interaction” are often used interchangeably in the             
chromosome organization literature, they are often used to describe very different features            
of Hi-C contact maps (Forcato et al. 2017). To avoid ambiguity in the context of loop                
extrusion, we reserve the term “loop” in the narrow sense, for two regions of a continuous                
chromatin fiber brought together by a LEF at a given point in time. Indeed, simulations               
(Fudenberg et al. 2016; Doyle et al. 2014; Hofmann and Heermann 2015; Benedetti et al.               
2014) and data analyses (Fudenberg and Imakaev 2017; Finn et al. 2017; Cattoni et al.               
2017; Giorgetti et al. 2014) demonstrate that peaks in interphase Hi-C maps are not              
consistent with stable chromatin loops. Therefore, we refrain from using “loop” to describe             
any feature of Hi-C contact maps, as they likely emerge from sets of dynamically extruded               
loops that vary stochastically from cell-to-cell (Fig. 1C, i-iv).  
 
Challenges for testing models of loop extrusion 
The stochastic nature of loop extrusion poses an experimental challenge for testing            
predictions from the model. Extruded loops are not directly visible via population-average            
Hi-C approaches because they are located at different genomic positions in different cells at              
any given time. Even with single-cell Hi-C methods an individual pair of loci linked by an                
extruding loop would not appear particularly different from any other captured contact.            
Visualization of extruded loops by microscopy is similarly challenging due to their            
continually changing locations both along the genome and in 3D space. Direct confirmation             
that a particular chromatin loop has been extruded in vivo will require methods that can               
simultaneously track multiple DNA loci as well as the loop extruders themselves.            
Nevertheless, much of the strongest evidence to date supporting the role of loop extrusion              
in interphase comes from changes in Hi-C maps upon perturbations that affect specific             
components of the loop extrusion machinery. 
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Predictions from the model of interphase loop extrusion  

To make experimental predictions, we must first identify components of the interphase            
loop extrusion machinery with their biological candidates. Several lines of evidence make            
us hypothesize that cohesin complexes play the role of LEFs, and CTCF plays the role of an                 
extrusion barrier (Fudenberg et al. 2016). Cohesin is highly homologous to condensins, the             
main complexes responsible for compacting mitotic chromosomes, and is enriched at TAD            
boundaries in interphase. CTCF is enriched at TAD boundaries at preferentially-oriented           
motifs, and, compared with other transcriptional regulators, binds relatively stably to its            
cognate sites (for review (Hansen et al. 2018)). With these identities, we discuss how our               
model of loop extrusion predicts different outcomes for three perturbations: depletion of            
CTCF, depletion of cohesins, and increased processivity of cohesins ( Fig. 2 ).  
 
LEF depletion 
For the depletion of the loop extruding factor, cohesin, our simulations display two             
phenomena (Fig. 2B ) (i) the loss of TADs and associated Hi-C peaks; and (ii) decompaction               
of chromatin at the scales of individual loops (<200Kb). Changes in local compaction, in              
turn, can be studied by observing changes in the contact probability, P(s), as a function of                
genomic separation, s. Local compaction is seen as a region of P(s) with a shallow slope                
(~100-500kb), which we refer to as the shoulder (Fig. 2A); decompaction leads to             
reduction or loss of the shoulder region. We note that our models predict that a sharp                
decrease in LEF processivity would similarly lead to a loss of TADs, peaks, and compaction. 
 
Extrusion barrier depletion 
For the depletion of site-specific extrusion barriers, as imposed by CTCF, our simulations             
also predict the loss of TADs and associated Hi-C peaks (Fig. 2C ). However, our simulations               
predict other consequences of this perturbation should be very different from depletion of             
LEFs. This is because in our model, extrusion barriers only impose an instructive function              
on LEF translocation and positioning. We therefore predict little effect on overall            
compaction, and hence little change in the P(s) curve. This differentiates our predictions for              
CTCF depletion from those for cohesin depletion.  
 
Increased LEF density and processivity 
For the depletion of a cohesin unloading factor, like Wapl, our model predicts that the               
consequent increased processivity and number of LEFs would lead to several phenotypes            
(Fig. 2D): (i) peaks at corners of TADs become stronger and appear between more distal               
barrier loci, creating extended grids of peaks; (ii) the orientational preference of barrier             
loci will become weaker, as LEFs halted at a directional barrier for long durations can stop                
traffic from the opposing direction as well. Finally, (iii), our model predicts that sufficiently              

5 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 16, 2018. ; https://doi.org/10.1101/264648doi: bioRxiv preprint 

https://paperpile.com/c/E9AcEO/dqYK
https://paperpile.com/c/E9AcEO/zJdR
https://doi.org/10.1101/264648
http://creativecommons.org/licenses/by/4.0/


 

increased loop extrusion will over-compact chromosomes. In Hi-C this would be detected            
as an extension of the shoulder in P(s), as opposed to how it recedes in the case of cohesin                   
depletion. Macroscopically, sufficient compaction results in condensation into a         
prophase-like state, resulting in a cohesin-rich central scaffold for each chromosome.  
 
Crucially, our model predicts that the loss of cohesin loop extruders and the loss of CTCF                
extrusion barriers should both lead to the loss of TADs and Hi-C peaks, yet in completely                
distinct fashions. Furthermore, increased processivity of cohesin extruders is predicted to           
manifest distinct phenotypes on Hi-C maps and macroscopic chromosome organization.  

Experimental perturbations consistent with interphase loop extrusion 

While perturbing CTCF and cohesin dynamics is crucial for testing predictions of loop             
extrusion, depletion of such essential complexes poses many experimental challenges. For           
CTCF, cells begin dying after about 4 days of stringent depletion (Nora et al. 2017). For                
cohesin, there are additional challenges related to its essential role in sister chromatid             
cohesion and chromosome segregation during mitosis (Peters and Nishiyama 2012), and           
its multiple dynamically-exchanging subunits and regulators (Rhodes et al. 2017; Peters           
and Nishiyama 2012) that can be present in different abundances and likely have unique              
impacts on loop extrusion dynamics. Despite these challenges, recent studies have achieved            
modulation of cohesin and CTCF that result in dramatic changes, consistent with            
predictions from polymer models of loop extrusion (Table 1). 
 
Cohesin depletion 

Consistent with our predictions for decreasing the number of active LEFs, depletion of the              
cohesin loader Nipbl (Scc2) (Schwarzer et al. 2017) and acute degradation of the cohesin              
kleisin Rad21 (Scc1) (Wutz et al. 2017; Rao et al. 2017) during interphase led to both: (i)                 
complete erasure of TADs and Hi-C peaks (ii) and decompaction, as evidenced by loss of the                
P(s) shoulder (Fig. 3A). Decompaction is further supported by imaging, showing a            
reduction in H2B clustering by PALM following both RNAi knockdown of NIPBL and             
AID-mediated degradation of Rad21 (Nozaki et al. 2017). We note that earlier Hi-C studies              
(Sofueva et al. 2013; Zuin et al. 2014; Seitan et al. 2013) saw limited impact following the                 
depletion of Rad21, potentially due to incomplete depletion. 
  
A corollary of the Nipbl depletion result is that cohesin must be constantly loaded on               
chromatin to maintain TADs and associated corner-peaks. Consistently, TADs and Hi-C           
peaks are both rapidly lost upon AID-mediated degradation of Rad21 (<3hrs (Wutz et al.              
2017)) and re-established after auxin washoff (40-60 minutes (Rao et al. 2017)). These             
consequences follow directly from our loop extrusion models, and the turnover time of             
cohesin (~5-30 min (Gerlich et al. 2006; Hansen et al. 2017; Wutz et al. 2017)). 
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Future studies, including a time course of Nipbl degradation, will be useful to dissect the               
dynamics of the processes and the potential role of Nipbl beyond that of a loader (Rhodes                
et al. 2017; Petela et al. 2017). In particular, while Nipbl depletion appears to have a                
dramatic effect on extrusion, knockout of its co-factor Mau2 (Scc4) appears to have a much               
weaker effect on loading yet a fairly strong effect on processivity (Haarhuis et al. 2017).               
Moreover, we note that different components of the interphase extrusion machinery could            
be limiting at different concentrations and in different contexts. We hypothesize that, via its              
consequences on loop extrusion, modulation of the levels of various cohesin subunits and             
interactors can serve to fine-tune overall gene regulation across  cell-types and tissues. 
 
CTCF depletion 
Consistent with our predictions for the loss of site-specific barriers to extrusion, acute             
auxin-induced degradation of CTCF in mESCs (Nora et al. 2017) and HeLa cells (Wutz et al.                
2017) led to a dramatic loss of TADs and Hi-C peaks (Fig. 3B ). However, the P(s) curve did                  
not change, implying that while demarcation of contact-insulating boundaries in Hi-C maps            
was lost, the same degree of chromatin compaction was maintained. In support of the              
dynamic exchange of LEFs in our model, the effect of CTCF depletion was fully reversible               
following a two-day washoff period (Nora et al. 2017). We note that stringent dosage              
depletion was necessary to observe dramatic insulation defects: even a 15% preservation            
of CTCF showed a relatively mild phenotype (Nora et al. 2017). Similar loss of TADs and                
peaks were reported for in vivo inducible CTCF knockout in cardiomyocytes (Lee et al.               
2017). Weaker effects have also been reported recently (Kubo et al. 2017; Rosa-Garrido et              
al. 2017) and earlier (Zuin et al. 2014), but this may have been due to relatively inefficient                 
depletion or lower starting levels of CTCF.  
 
The predicted lack of decondensation following CTCF depletion is further supported by            
imaging. PALM shows little difference in H2B clustering (Nozaki et al. 2017). Imaging of              
FISH probes at selected loci upon CTCF degradation show that inter-TAD distances            
increased while intra-TAD distances remained the same (Nora et al. 2017). Together these             
results are consistent with global compaction levels being unchanged but with diminished            
insulation across CTCF sites. Importantly, the lack of chromatin decompaction in CTCF            
depletion rules out models in which CTCF is strictly required for the loading (Nichols and               
Corces 2015) of chromatin-bound cohesin and any ensuing cohesin-mediated loops.          
Instead, the differences in imaging and Hi-C maps upon CTCF versus cohesin depletion are              
consistent with the loop extrusion model we describe (Fudenberg et al. 2016), where CTCF              
barriers serve an instructive function (Wendt and Peters 2009), and cohesin is loaded onto              
chromatin and can compact chromosomes through extrusion even in the absence of CTCF. 
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Wapl Depletion 
Consistent with our predictions for increasing the processivity and density of active LEFs,             
depletion of the cohesin unloader Wapl led to multiple phenotypes observed in Hi-C maps              
(Haarhuis et al. 2017; Wutz et al. 2017; Gassler et al. 2017) and by imaging (Tedeschi et al.                  
2013). For Hi-C (Fig. 3C ) this includes (i) strengthened peaks at TAD corners, (ii)              
emergence of new peaks between boundaries at greater separations, creating extended           
grids of corner-peaks; (iii) a weakened correspondence between these features and CTCF            
motif orientation. Increased local compaction upon Wapl depletion is reflected by (iv)            
extension of the shoulder in the P(s) curve and, (v) the emergence of prophase-like              
vermicelli chromatids via imaging (Tedeschi et al. 2013). This remarkable observation           
provides further evidence for a universal molecular mechanism -- loop extrusion--           
underlying both metaphase and interphase chromosome organization (Imakaev et al. 2015;           
Dekker and Mirny 2016). 
 
Depletion of another component of the cohesin unloading machinery, Pds5A and Pds5B            
(Pds5A/B), led to many of the same phenotypes (Wutz et al. 2017), consistent with the               
increased the amount and residence time of chromatin-bound cohesin upon its depletion.            
However, there were also intriguing differences which may prove instructive for           
determining exactly how CTCF halts the progression of cohesin along the chromosome, e.g.             
Pds5 may instruct directional cohesin stalling (Petela et al. 2017; Wutz et al. 2017), and               
competition between the two HAWK family proteins, Nipbl and Pds5, may regulate cohesin             
translocation velocity (Petela et al. 2017). The observation that Wapl depletion appears to             
largely rescue the Hi-C phenotype of Mau2 depletion provides further support to the             
proposal that the Nipbl/Mau2 ‘loading complex’ also has roles in promoting cohesin            
processivity for loop extrusion (Haarhuis et al. 2017). Finally, consistent with loop            
extrusion simulations with increased processivity, the joint depletion of Wapl and Pds5A/B            
showed even stronger effects in terms of shifting the shoulder in P(s) and in the emergence                
of vermicelli. 
 
Collectively, the congruence of both Hi-C and imaging experiments following the           
perturbation of CTCF and cohesin dynamics strongly supports the role of loop extrusion in              
interphase. Future simulations and experiments will be valuable for probing the           
consequences of multiple simultaneous perturbations (Busslinger et al. 2017; Wutz et al.            
2017).  
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Perturbation Prediction from Loop   

Extrusion 

Effect on Hi-C  Effect on compaction 

ΔCTCF Barriers become more   

permeable 

Loss of TADs & peaks, same P(s) 

(Nora et al. 2017; Wutz et al. 2017) 

Little change in overall compaction     

(Nozaki et al. 2017) 

ΔNipbl Increase separation, possibly   

decrease velocity 

Loss of TADs, peaks & P(s) shoulder       

(Schwarzer et al. 2017) 

De-compaction (Nozaki et al. 2017) 

ΔRad21 Increase separation Loss of TADs, peaks & P(s) shoulder       

(Rao et al. 2017; Wutz et al. 2017;        

Gassler et al. 2017) 

De-compaction (Nozaki et al. 2017) 

ΔWapl  Increase processivity,  

possibly decrease separation  

New peaks, extend P(s) shoulder 

(Haarhuis et al. 2017; Wutz et al.       

2017) 

Vermicelli (Tedeschi et al. 2013;     

Haarhuis et al. 2017; Wutz et al. 2017) 

Table 1 : list of recent experimental perturbations, prediction from loop extrusion,           

effects in recent Hi-C experiments, and effect on overall chromatin density. 

Single-molecule experiments support active loop extrusion 

While providing strong support for chromosome folding by loop extension in vivo, the             
studies discussed above do not directly probe the molecular details of loop extrusion.             
Molecularly realizing the process of loop extrusion presents a considerable challenge,           
namely that the protein complexes performing loop extrusion need to track consistently in             
cis along chromatin, over large distances (up to tens-of-thousands of nucleosomes) without            
falling off. Moreover, the substrate, chromatin, is highly disordered due to nucleosomes and             
other DNA-bound proteins, likely posing a greater challenge than tracking along           
microtubules performed by cytoplasmic motors. Here we discuss how recent single           
molecule experiments argue that loop extrusion likely occurs via an active process, driven             
by molecular motors. While many of these observations were made with condensin and             
bacterial SMCs, they illustrate that loop-extrusion is a plausible mechanism of action for the              
whole family of SMC proteins, including cohesin. 
 
ATP-dependent Translocation  
Recently, (Terakawa et al. 2017) demonstrated that a single yeast condensin has motor             
activity and is able to translocate processively along naked DNA in vitro. Using a DNA               
curtain assay, they found individual condensin complexes travel unidirectionally, rapidly          
(~4kb/min) and processively (~10kb) in an ATP-dependent manner with 10nm steps           
(30bp on naked DNA). As previous single-molecule studies only reported sliding dynamics            
of SMCs ((Stigler et al. 2016; Davidson et al. 2016; Kanke et al. 2016; Kim and Loparo                 
2016), for review (Eeftens and Dekker 2017)), the directional translocation observed by            
Terekawa et al. is incredibly important. 
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The high structural homology of cohesin to condensin makes it likely that the same              
physical mechanism would govern its processive motion, in addition to its established role             
of mediating sister chromatin cohesion (Peters and Nishiyama 2012). Indeed, the ability of             
these SMCs to compact chromosomes appears to be remarkably coherent over           
evolutionary timescales and cellular contexts (Schalbetter et al. 2017). Due to its dual roles,              
and more elaborate set of subunits, however, reconstituting this activity for cohesin may be              
more difficult in vitro. Nevertheless, we believe that the in vitro observations of ATP-driven              
processive condensin translocation argue against the likelihood of motor-free mechanisms          
(Brackley et al. 2018; Yamamoto and Schiessel 2017) of SMC processivity in general,             
including for cohesin.  
 
While strongly supporting the loop extrusion mechanism, the single-molecule experiments          
leave open several questions of how loop extrusion can work in vivo: 

● How can SMCs translocate on chromatinized rather than naked DNA? 
● How can translocation result in loop extrusion? 
● Is the measured speed of translocation sufficient to generate TADs and peaks? 
● Do cells have sufficient ATP budgets to support extrusion during interphase? 

 
Walking hypothesis 
In particular, it remains to be understood how SMC complexes can translocate on             
chromatin fibers rather than naked DNA. Translocations while maintaining constant          
contact with DNA may not always be possible due to the complexity of chromatin fiber and                
abundance of DNA-bound proteins. Although the size of an SMC complex (~50nm) exceeds             
that of a single nucleosome (~10nm), nucleosomes would constitute challenging obstacles           
for SMC translocation if maintaining constant contact with DNA is required for            
translocation.  
 
A possible solution comes from the structural similarity of SMC domain organization to that              
of kinesin and myosin motors (Peterson 1994; Guacci et al. 1993) that walk on              
microtubules and actin, which suggests that SMCs can similarly walk on chromatinized            
DNA. Importantly, a walking mechanism would allow translocation where obstacles such           
as nucleosomes and other DNA-bound proteins can be passed over, avoiding disruptions of             
the underlying nucleosomal array. During each step of the walking process, one SMC head              
can remain DNA-bound, while the other hops forward and rebinds nearby DNA (Fig. 4A).              
SMC walking is consistent with the rapid and flexible dynamics of their arms (Eeftens et al.                
2017), and the 10nm step size (Terakawa et al. 2017) would allow passing over              
nucleosomes (e.g. by hopping from linker to linker) and other DNA-bound complexes,            
avoiding the need for unwinding nucleosomal DNA or nucleosome eviction (Fig. 4B ).  
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A walking mechanism would be greatly aided by the known ability of SMCs to              
topologically entrap DNA (Peters and Nishiyama 2012), which can ensure that the walker             
tracks in cis, along the same chromatin fiber (Fig. 4C ). Pseudo-topological (Srinivasan et al.              
2017) entrapment can similarly help maintain extrusive cohesins on the same DNA            
molecule over long genomic distances (Kschonsak et al. 2017). In other words, SMC             
complexes may translocate along the chromatin fiber as shackled walkers (Fig. 4A). Below             
we discuss how translocation DNA can result in loop extrusion. 
 
An important open question is how CTCF, and possibly other chromatin-bound proteins,            
can halt cohesin translocation while nucleosomes do not, when they are fairly similar in              
size. While they probed diffusive sliding rather than processive tracking dynamics,           
(Davidson et al. 2016) report that cohesin can rapidly slide over some DNA-bound proteins              
and nucleosomes, but becomes obstructed by DNA-bound CTCF and transcriptional          
machinery; a similar, yet more restrictive, dependence of sliding on the size of DNA-bound              
factors has been reported in other single-molecule studies probing sliding dynamics           
(Davidson et al. 2016; Kanke et al. 2016). This suggests that CTCF blocks translocation of               
cohesin by a specific mechanism rather than by steric exclusion, e.g. by inhibiting the              
ATPase action of the cohesin machinery (Petela et al. 2017; Wutz et al. 2017) directly or via                 
other cohesin interactors (e.g. via Pds5) and potentially in concert with co-factors (Hsu et              
al. 2017). Alternatively, CTCF may recruit additional co-factors to increase its physical size             
or pose a greater challenge for walking due to its DNA binding geometry (Hashimoto et al.                
2017). 
 
From translocation to loop extrusion 
Multiple possibilities exist as to how the translocation of motor complexes along a             
chromosome can realize the process of loop extrusion. These include: (1) a single             
translocating motor attached to a chromatin anchor; (2) two connected motors           
translocating in opposite directions; (3) a single motor that switches between two            
chromatin fiber substrates (Fig. 4D). These architectures for the action of SMC motors can              
lead to different consequences for the processive dynamics of extrusion. Uni-directional           
extrusion could result from a single motor-and-anchor architecture. Bi-directional         
extrusion would emerge from the latter two possibilities. We note there are multiple             
possibilities for how many SMC complexes are required to realize motor activity (Fig. 4E),              
either as monomers or, potentially, oligomers (Keenholtz et al. 2017). One advantage of             
two-motor extrusion is that it naturally allows one motor to continue extruding if the other               
becomes blocked. Since models discussed here and in (Fudenberg et al. 2016; Sanborn et al.               
2015; Goloborodko et al. 2016a, 2016b) assumed independent bidirectional extrusion, it           
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remains unclear if one-sided loop extrusion is sufficient to form TADs, peaks, and tracks, as               
well as for compacting mitotic chromatids.  
 
Velocity of loop extruders 
The measured rates of stepping and step sizes for condensin (Terakawa et al. 2017) agree               
well with the expectations of the loop extrusion theory in interphase for cohesin. Using ~2               
steps per second and ~10nm step size measured in vitro, this gives ~18kb/min if cohesin               
moves one nucleosome per step (~150bp). This is further doubled if cohesin extrusion             
occurs via a two-motor mechanism, yielding ~36kb/min. These values are compatible with            
the ~10-30kb/min predicted by polymer models as sufficient to generate TADs and corner             
peaks in vivo. There are several ways to arrive to this estimate. The first involves dividing                
the size of the largest TADs (~1Mb, (Bonev and Cavalli 2016)) by time to re-establish of                
TADs following exit from mitosis (~0.5-2h (Naumova et al. 2013), ~30min (Nagano et al.              
2017)) or following auxin wash-off (~30min (Rao et al. 2017)). Alternatively, one can use              
the processivity of cohesin estimated from fitting Hi-C data with loop extrusion models             
(~200-400Kb (Fudenberg et al. 2016)), and divide this by the cohesin turnover time             
(~5-30min (Gerlich et al. 2006; Hansen et al. 2017; Wutz et al. 2017)).  
 
We note that pushing by RNA Pol II alone, at its reported velocities, would be too slow                 
(~1.5-3kb/min (Veloso et al. 2014; Jonkers et al. 2014; Danko et al. 2013)). The              
observation of cohesin-dependent features in both active and inactive chromatin          
(Schwarzer et al. 2017; Haarhuis et al. 2017), as well as the transcriptionally inactive              
maternal zygotic pronucleus (Gassler et al. 2017), further argues against Pol II providing             
the primary motive force for loop extrusion. 
 
Energy Budget 
A simple estimate shows that the energy burden of ATP consumption by loop-extruding              

cohesins in interphase is negligible as compared to ATP production in a mammalian cell.              
Again using 2 ATP per sec per SMC complex (Terakawa et al. 2017), and the total number of                  
actively extruding cohesin molecules, either measured (~30,000-100,000 per cell (Hansen          
A.S., personal communication)) or estimated from fitting simulations to Hi-C data (~1            
loop-extruder per 200Kb, i.e. ~60,000 per diploid G2 cell), one obtains a very low rate of                
ATP consumption (<2.105 ATP per sec). This constitutes less than 0.02% of the 109 ATP/sec               
production rate by a fibroblast (Flamholz et al. 2014). Thus the energy burden of              
chromosome organization by cohesin is marginal.  

Conclusions 

While the key role of molecular motors in the cytoplasm is broadly appreciated (Phillips et               
al. 2012), there is now a growing appreciation for loop extrusion by SMC complexes as an                
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active processes organizing and compacting chromatin in the nucleus (Nasmyth 2017;           
Haarhuis and Rowland 2017). Analogous to the myriad uses for the contractile dynamics of              
active actin and tubulin networks, we hypothesize that the interphase loop extrusion has             
been repurposed for a variety of biological ends (Fudenberg et al. 2016; Dekker and Mirny               
2016), including targeting VDJ recombination, and regulation of enhancer-promoter         
interactions.  
 
Additional interactive media available at:  

http://mirnylab.mit.edu/projects/emerging-evidence-for-loop-extrusion . 
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Figure 1. Polymer model of loop extrusion with barrier elements recapitulates features of             

interphase chromosome folding. 
a. Illustrations of the four key parameters governing the dynamics of interphase loop extrusion              
with barrier elements: LEF velocity, LEF lifetime, LEF separation, and barrier strength.            
Characterizing how changes to these parameters affect Hi-C maps in silico allows us to make               
experimental predictions for perturbations. 
b. To compare our models with Hi-C experiments, we generate ensembles of conformations for each               
set of parameters, and then compute average contact maps. To compare with imaging experiments              
we can calculate other observables from the conformational ensemble. 
c. Interphase Hi-C data from mouse neural progenitor cells (Bonev et al. 2017), annotated with 
features that can emerge via loop extrusion with barrier elements in blue (i-iv). Arc diagrams 
depict how stochastic configurations of LEF-mediated loops in distinct nuclei can lead to the 
population-averaged features. Chromatin loops directly held by LEFs are depicted with yellow arcs, 
while dashed grey arcs depict ‘effective loops’ from sets of adjacent LEFs. HiGlass views (Kerpedjiev 
et al. 2017): http://mirnylab.mit.edu/projects/emerging-evidence-for-loop-extrusion. 
i. Insulation, observed as squares along the diagonal of Hi-C maps (i.e. TADs), arises when extrusion                
barriers halt LEF translocation. LEFs then facilitate additional contacts within TADs, but not             
between TADs.  
ii. Flames (or tracks), observed as straight lines often emerging from the borders of TADs, arise                
naturally in the loop extrusion model when LEFs become halted on one side at a barrier locus, while                  
continuing to extrude from the other side (termed “lines” in (Fudenberg et al. 2016)).  
iii. Peaks of enriched contact frequency often appear at the corners of TADs, and also often coincide                 
with intersection points of flames. These peaks emerge as a result of LEFs being halted on both                 
sides by extrusion barriers. 
iv. Peak grids can emerge either when internal boundaries are skipped, or via transitive sets of                
LEF-mediated loops.  
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Figure 2. Loop extrusion polymer simulations predict the consequences of cohesin and CTCF             

perturbations. 

Top row: simulated Hi-C maps for indicated perturbations. Bottom row: P(s) for indicated             
perturbation compared to WT P(s). All simulations considered a 36Mb chain (3600 monomers)             
with the same positions and orientations of CTCF barriers (separated by 300kb) and the same LEF                
velocity (250 3D-per-1D steps).  
a. WT simulations used processivity 200kb, separation 200 kb, and barrier strength 0.995. The               
shoulder in P(s), indicative of comparction via loop extrusion, is indicated in grey. 
b. For ΔCohesin, our simulations predict the loss of TADs, peaks, flames, and the shoulder of P(s).                 
ΔCohesin was simulated using: processivity 200kb, separation 2Mb, and boundary strength 0.995.            
This can represent the loss of actively extruding cohesins via ΔNipbl, ΔRad21, or other cohesin               
subunits. 
c. For ΔCTCF, our simulations predict the loss of TADs, peaks, flames, yet no discernible change to                 
P(s). This arises because CTCF plays an instructive role for the activity of extrusion. ΔCTCF was                
simulated using processivity 200kb, separation 200kb, and boundary strength 0.9. 
d. For ΔWapl, our simulations predict the emergence of additional peaks, including at further              
genomic separations, as well as an extension of the shoulder in P(s). ΔWapl was simulated using                
processivity 1Mb, separation 150kb, and boundary strength 0.995. 
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Figure 3. Experimental phenotypes are consistent with predictions from loop extrusion           

simulations  

Top row: unperturbed experimental Hi-C maps, replotted from indicated studies (see Methods, for             
interactive HiGlass displays see:  
http://mirnylab.mit.edu/projects/emerging-evidence-for-loop-extrusion.).  
Middle Row: Hi-C maps for indicated perturbations.  
Bottom row: P(s) for indicated perturbation compared to unperturbed P(s) normalized to contact             
frequency at 10kb.  
a. Schwarzer et al. used tissue-specific CRE-inducible gene deletion in mouse liver cells to deplete               
Nipbl (Schwarzer et al. 2017).  
b.  Nora et al. used an auxin-inducible degron system to deplete CTCF in mESCs (Nora et al. 2017).  
c. Haarhuis et al. deleted Wapl in the Hap1 haploid human cell line, via CRISPR (Haarhuis et al.                  
2017).   
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Figure 4. 

a. Walking as a possible mechanism of SMC translocation, with SMC arms in yellow and orange,                
kleisin in blue, creating a shackled walker .  
b. Walking along a chromatin fiber, by hopping from linker-to-linker without disrupting            
nucleosomal DNA. 
c. Benefit of topological entrapment: an SMC walker without a kleisin can step from one chromatin                
strand (grey) to another in its vicinity (black), whereas a shackled SMC walker with a kleisin is able                  
to track in cis over long distances.  
d. Two possible mechanisms for converting translocation to extrusion; the first involves a single              
translocating motor attached to an anchor, leading to single-sided extrusion. The second involves             
two motors translocating in opposite directions, leading to two-sided extrusion.  
e. Possible realizations of motor activity by SMCs (i-iii). i. a single SMC acting as single motor that                  
switches between entrapped chromatin strands, effectively performing two-sided extrusion; ii.          

dimerized SMCs performing two-sided extrusion; iii. alternatively dimerized SMCs performing          
two-sided extrusion.  
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Methods 

Hi-C analysis 
Published Hi-C datasets were re-processed using the Distiller workflow         
(https://github.com/mirnylab/distiller-nf), producing filtered pairs files     
(https://github.com/4dn-dcic/pairix/blob/master/pairs_format_specification.md) and  
Cooler contact matrix files (https://github.com/mirnylab/cooler, (Abdennur et al. 2017)).         
P(s) curves were calculated on Hi-C pairs using logarithmically increasing genomic distance            
bins. For display, filtered bins were imputed via nearest-neighbor interpolation. Interactive           
HiGlass (Kerpedjiev et al. 2017) displays for relevant datasets are provided at            
http://mirnylab.mit.edu/projects/emerging-evidence-for-loop-extrusion . 
 
Simulations of loop extrusion with extrusion barriers 
Loop extrusion with barrier element dynamics were modeled as described previously           
(Fudenberg et al. 2016), using an updated translocator        
(https://bitbucket.org/mirnylab/openmm-polymer/src/8534bc3183e0727a83cdcb9b552
5736774035884/examples/loopExtrusion/smcTranslocator.pyx , described in (Fudenberg    
and Imakaev 2017)). Polymer dynamics were simulated using OpenMM (Eastman et al.            
2013; Eastman and Pande 2010), as described previously (Fudenberg et al. 2016). All             
simulations considered a 36Mb chain (3600 monomers) with the same positions and            
orientations of CTCF barriers (separated by 300kb) and the same LEF velocity (250             
3D-per-1D steps). WT simulations used processivity 200kb, separation 200 kb, and pausing            
barrier strength 0.995. To simulate perturbations, simulations were run with modified           
parameters. ΔCohesin was simulated using: processivity 200kb, separation 2Mb, and          
boundary strength 0.995. ΔCTCF was simulated using processivity 200kb, separation          
200kb, and boundary strength 0.9. Δ Wapl was simulated using processivity 1Mb,           
separation 150kb, and boundary strength 0.995.  
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Perturbation Putative 

function 

Study Perturbation method Cell type Reported effects 

 
ΔRad21 

 
extruder subunit 

Sofueva et al., 2013 conditional Cre-mediated deletion   
(Cre-ERT2 or transfected Cre) 

NSCs and ASTs derived from     
mouse ESC line 

Mild effect on Hi-C ma, including relaxed       
domain structure” 

Seitan et al., 2013 conditional Cre-mediated deletion   
(CD4-Cre) 

Differentiating mouse T-cells Mild effect on Hi-C map, and resilience of        
compartment assignments 

Zuin et al., 2014 HRV protease-induced cleavage HEK239T human hepatocyte   
cell line 

Mild effect on Hi-C map, though with       
reduced interactions within TADs 

Gassler et al., 2017 conditional Cre-mediated deletion   
(Zp3-Cre) 

Fertilized mouse oocytes 
 

Loss of aggregate TADs and peaks. Loss of        
P(s) shoulder 

Rao et al., 2017 auxin-inducible degron HCT-116 human colorectal   
carcinoma  

Loss of TADs and peaks. 

Wutz et al., 2017 auxin-inducible degron  HeLa Loss of TADs, peaks and P(s) shoulder 

ΔNipbl loader Schwarzer et al.,   
2017 

conditional tissue-specific  
Cre-mediated deletion  
(Ttr-Cre/Esr1) 

mouse liver Loss of TADs, peaks, and P(s) shoulder. 

ΔMau2 loading cofactor Haarhuis et al., 2017 CRISPR-mediated knockout HAP1 haploid human cell line Weakening and shortening of detectable     
TADs and peaks. P(s) shoulder recedes. 

 
ΔCTCF 

 
barrier 

Zuin et al., 2014 RNAi HEK239T human hepatocyte   
cell line 

Mild effect on Hi-C map, though with an        
increase in interactions between    
neighboring domains 

Nora et al., 2017 auxin-inducible degron E14TG2a mouse ESC line Loss of TADs and peaks, same P(s) 

Kubo et al., 2017    
(bioRxiv) 

auxin-inducible degron F123 mouse ESC line Weakened TADs, reduced interaction    
frequency at peaks 

Lee et al., 2017    
(bioRxiv) 

conditional tissue-specific  
Cre-mediated deletion (transfected   
cTnt-Cre) 

mouse heart Loss of TADs & peaks 

Rosa-Garrido et al.,   
2017 

conditional tissue-specific  
Cre-mediated deletion  
(MerCreMer) 

mouse heart Loss of some peaks, maintenance of TADs 

Wutz et al., 2017 auxin inducible degron  HeLa Loss of TADs & peaks, same P(s) 

ΔWapl unloader Haarhuis et al., 2017 CRISPR-mediated knockout HAP1 haploid human cell line Increased extent of TADs and peak grids,       
stronger peaks, P(s) shoulder shifts to the       
right. 

Gassler et al., 2017 conditional Cre-mediated deletion   
(Zp3-Cre) 

Fertilized mouse oocytes Stronger aggregate TADs and peaks. P(s)      
shoulder shifts to the right 

Wutz et al., 2017 RNAi HeLa  Increased extent of TADs, peak grids,      
stronger peaks, P(s) shoulder shifts to the       
right. 

ΔPds5A/B unloading 
cofactor 

Wutz et al., 2017 RNAi HeLa  Increased extent of TADs, peak grids,      
stronger peaks, P(s) shoulder shifts to the       
right. 

Table S1 : list of experimental perturbation, likely consequences for loop extrusion, cell            
type and reference where Hi-C for this perturbation was performed.  
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