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Abstract 
 

Maternal obesity has become a growing global health concern that impacts fetal health and subsequently 

predisposes the offspring to medical conditions later in life. However, the molecular link between 

abnormal fetal metabolomic profiles and maternal obesity has not yet been fully elucidated. In this study, 

we report new discoveries from the newborn cord blood metabolomes associated with a case-control 

maternal obesity cohort, collected from multi-ethnic populations in Hawaii, including rarely reported 

Native Hawaiian and other Pacific Islanders (NHPI). This cohort displays significant maternal obesity 

disparities by subjects’ residential area average income and health insurance. An elastic net penalized 

logistic regression model was constructed to associate cord blood metabolomics and 

demographic/physiological information to maternal obesity, with accuracy as high as 0.947. We identify 

29 metabolites as early-life biomarkers manifesting intrauterine effect of maternal obesity. 

 
 
Introduction     
 
Obesity is a global health concern. While some countries have a relative paucity of obesity, in the United 

States, obesity affects 38% of adults (1, 2). As such, maternal obesity has risen to epidemic proportions in 

recent years and can impose significant risk to both the mother and unborn fetus. Recently, research has 

focused on the association of maternal health during pregnancy and the subsequent effects on the future 

health of offspring (3).  Since the inception of Barker’s hypothesis in the 1990’s, efforts to connect 

intrauterine exposures with the development of disease later in life has been the subject of many studies 

(4).  Both obesity and its accompanying morbidities, such as diabetes, cardiovascular diseases and 

cancers, are of particular interest as considerable evidence has shown that maternal metabolic 

irregularities may have a role in genotypic programming in offspring (5, 6).  Identifying markers of 
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predisposition to health concerns or diseases would present an opportunity for early identification and 

potential intervention, thus providing life-long benefits (7-9). 

Previous studies have found that infants born to obese mothers consistently demonstrate elevation of 

adiposity and are at more substantial risk for the development of metabolic disease (10). While animal 

models have been used to demonstrate early molecular programming under the effect of obesity, human 

research to elucidate the underlying mechanisms in origins of childhood disease is lacking (11). In 

Drosophila melanogaster, offspring of females given a high-sucrose diet exhibited metabolic aberrations 

both at the larvae and adult developmental stages (12, 13). Though an invertebrate model, mammalian 

lipid and carbohydrate systems show high level of conservation in Drosophila melanogaster (14, 15). In a 

mouse model of maternal obesity, progeny demonstrated significant elevations of both leptin and 

triglycerides when compared with offspring of control mothers of normal weight (5). The authors 

proposed that epigenetic modifications of obesogenic genes during intrauterine fetal growth play a role in 

adaption to an expected future environment.  Recently, Tillery et al. used a primate model to examine the 

origins of metabolic disturbances and altered gene expression in offspring subjected to maternal obesity 

(16). The offspring consistently displayed significant increases in triglyceride level and also fatty liver 

disease on histologic preparations. However, human studies that explore the fetal metabolic consequences 

of maternal obesity are still in need of investigation.  

 
Metabolomics is the study of small molecules using high throughput platforms, such as mass 

spectroscopy (17). It is a desirable technology that can detect distinct chemical imprints in tissues and 

body fluids (18).  The field of metabolomics has shown great promise in various applications including 

early diagnostic marker identification (19), where a set of metabolomics biomarkers can differentiate 

samples of two different states (eg. disease and normal states). Cord blood metabolites provide 

information on fetal nutritional and metabolic health (20), and could provide an early window of detection 

to potential health issues among newborns. Previously, some studies have reported differential metabolite 

profiles associated with pregnancy outcomes such as intrauterine growth restriction (21) and low birth 
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weight (22). For example, abnormal lipid metabolism and significant differences in relative amounts of 

amino acids were found in metabolomic signatures in cord blood from infants with intrauterine growth 

restriction in comparison to normal weight infants (21). In another study higher phenylalanine and 

citrulline levels but lower glutamine, choline, alanine, proline and glucose levels were observed in cord 

blood of infants of low-birth weight (22). However, thus far no metabolomics studies have been reported 

to specifically investigate the impact of maternal obesity on metabolomics profiles in fetal cord blood 

(21-24).  

 
This study aims to investigate metabolomics changes in fetal cord blood associated with obese (BMI>30) 

and normal pre-pregnant weight (18.5<BMI<25) mothers, in a multi-ethnic population including Native 

Hawaiian and other Pacific Islanders (NHPI).  NHPI is a particularly under-represented minority 

population across most scientific studies. To ensure the quality of the study, we enrolled the mothers 

undergoing elected C-sections without any clinically known gestational diseases. In addition to the cord 

blood samples of their babies at birth, we collected comprehensive EMR records from the subjects, other 

maternal and paternal parameters such as ethnicities. This study has not only revealed the maternal health 

disparities on Oahu island, Hawaii, but also discovered the metabolomic links between cord blood and 

maternal pre pregnant obesity. These metabolites are potential early-life biomarkers affected by maternal 

obesity.  

 

Materials and methods 
 
Study population   

We performed a multi-ethnic case-control study at Kapiolani Medical Center for Women and Children, 

Honolulu, HI from June 2016 through June 2017. The study was approved by the Western IRB board 

(WIRB Protocol 20151223). To avoid confounding of inflammation accompanying labor and natural 

births (25) we recruited women scheduled for full-term cesarean section at ≥ 37 weeks gestation. All 

subjects fasted for at least 8 hours before the scheduled cesarean delivery. Patients meeting inclusion 
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criteria were identified from pre-admission medical records with pre-pregnancy BMI ≥30.0 (cases) or 

18.5-25.0 (controls). The pre-pregnancy BMIs were also confirmed during the enrollment.  Women with 

preterm rupture of membranes (PROM), labor, multiple gestations, pre-gestational diabetes, hypertensive 

disorders, cigarette smokers, HIV, HBV, and chronic drug users were excluded. Demographic and clinical 

characteristics were recorded, including residential zipcode, insurance type, maternal and paternal age, 

maternal and paternal ethinicities, mother’s pre-pregnancy BMI, net weight gain, gestational age, parity, 

gravidity and ethnicity. A total of 57 samples (28 cases and 29 controls) were collected.  

 

Sample collection, preparation and quality control    

Cord blood was collected under sterile conditions at the time of cesarean section using Pall Medical cord 

blood collection kit with 25 mL citrate phosphate dextrose (CPD) in the operating room. The umbilical 

cord was cleansed with chlorhexidine swab before collection to ensure sterility.  The volume of collected 

blood was measured and recorded before aliquoting to conicals for centrifugation. Conicals were 

centrifuged at 200g for 10 minutes, with break off, and plasma was collected. The plasma was centrifuged 

at 350g for 10 minutes, with break on, aliquoted into polypropylene cryotubes, and stored at -80�C. 

 
Metabolome profiling 

The plasma samples were thawed and extracted with 3-vol cold organic mixture of ethanol: chloroform 

and centrifuged at 4 °C at 13500 rpm for 20 min. The supernatant was split for lipid and amino acid 

profiling with an Acquity ultra performance liquid chromatography coupled to a Xevo TQ-S mass 

spectrometry (UPLC-MS/MS, Waters Corp., Milford, MA). Metabolic profiling of other metabolites 

including organic acids, carbohydrates, amino acids, and nucleotides were measured with an Agilent 

7890A gas chromatography coupled to a Leco Pegasus time of flight mass spectrometry (Leco Corp., St 

Joseph, MI). The raw data files generated from LC-MS (targeted) and GC-MS (untargeted) were 

processed with TargetLynx Application Manager (Waters Corp., Milford, MA) and ChromaTOF software 

(Leco Corp., St Joseph, MI) respectively. Peak signal, mass spectral data, and retention times were 
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obtained for each metabolite. The detected metabolites from GC-MS were annotated and combined using 

an automated mass spectral data processing (AMSDP) software package (26). The levels of lipids and 

amino acids detected from LC-MS were calculated with calibration curves established with reference 

standards.   

Metabolomics data processing  

We conducted data pre-processing similar to the previous report (27). Briefly, we used K-Nearest 

Neighbors (KNN) method to impute missing metabolomics data (28). To adjust for the offset between 

high and low-intensity features, and to reduce the heteroscedasticity, the logged value of each metabolite 

was centred by its mean and autoscaled by its standard deviation (29).  We used quantile normalization to 

reduce sample-to-sample variation (30). We applied partial least squares discriminant analysis (PLS-DA) 

to visualize how well metabolites could differentiate the obese from normal samples.  

Classification modeling and evaluation 

To reduce the dimensionality of our data (230 metabolites vs 57 samples), we selected the unique 

metabolites associated with separating obese and normal status. To achieve this, we used a penalized 

logistic regression method called elastic net that was implemented in the glment R package (31). Elastic 

net method selects metabolites that have non-zero coefficients as features, guided by two penalty 

parameters alpha and lambda (31).  Alpha sets the degree of mixing between lasso (when alpha=1) and 

the ridge regression (when alpha=0). Lambda controls the shrunk rate of cofficients regardless of the 

value of alpha.  When lambda equals zero, no shrinkage is performed and the algorithm selects all the 

features. As lambda increases, the coefficients are shrunk more strongly and the algorithm retrives all 

features with non-zero coefficients.  To find optimal parameters, we performed 10-fold cross-validation 

that yield the smallest prediction minimum square error (MSE). We then used the metabolites selected by 

the elastic net to fit the regularized logistic regression model. Three parameters were tuned: cost, which 

controls the trade-off between regularization and correct classification, logistic loss and epsilon, which 

sets the tolerance of termination criterion for optimization.  
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To construct and evaluate the model, we divided samples into 5 folds. We trained the model on four folds 

(80% of data) using leave one out cross validation (LOOCV) and measured model performance on the 

remaining fold (20% of data).  We carried out the above training and testing five times on all folds 

combination.  We plotted the receiver-operating characteristic (ROC) curve for all folds prediction using 

pROC R package. To adjust confounding other clinical covariants such as ethnicity, gravidity and parity, 

we reconstructed the metabolomics model above by including these factors. 

Analysis on metabolite features 

We used Classification And REgression Training (CARET) R package to rank metabolites based on the 

model-based approach (32). In this approach, each metabolite was assigned a score that estimates its 

contribution to the model performance (33). These scores were scaled to have a maximum of 100. We 

performed metabolomic pathway analysis on metabolites chosen by the elastic net method using 

Consensus Pathway DataBase (CPDB). We used rcorr function implemented in Hmisc R package to 

compute the correlations among clinical metabolomics data.    

Data availability 

The metabolomics data generated by this study is deposited to Metabolomics workbench 

(ID1312).  

 

Results   
 
Cohort subjects characteristics  

Our cohort consisted of three ethnic groups: Caucasian, Asian and Native Hawaiian and other Pacific 

Islander (NHPI). Women undergoing scheduled cesarean delivery were included based on the previously 

described inclusion and exclusion criteria (Methods). Demographical and clinical characteristics in obese 

and control groups are summarized in Table 1. In the Caucasian group (10 mothers), 6 were categorized 

as non-obese and 4 as obese. In the Asian group (23 mothers), 16 were categorized as non-obese and 7 as 

obese. In the NHPI group (24 mothers), 7 (24%) were categorized as non-obese and 17 (61%) as obese.  
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The variation in recruitment of cases versus controls in each ethnic background reflects the demographics 

in Hawaii. Compared to mothers of normal pre-pregnant BMI, obese mothers have significantly higher 

pre-pregnancy BMI (33.51+/- 4.49 vs 21.89 +/- 1.86 kg/m2, p=9.18e-11). Mothers have no statistical 

difference regarding their ages (32.10 +/- 4.88 vs 32.48 +/- 5.66, p=0.7) or gestational age (39.04 

weeks+/- 0.22 vs 38.93 +/- 0.45 p=0.38), excluding the possibility of confouding from these factors. 

Babies of obese mothers have significantly (P=0.03) higher birth weight compared to the normal pre 

pregnant weight group, consistent with earlier observations (34, 35).  

 

The cohort displays disparities of maternal obesity 

In an interest to seek possible relationship between maternal obesity and social economics status, we 

retrieved the residential zip code and patient insurance from the subjects. To estimate each subject’s 

income, we used the surrogate of annual averaged personal income in that person’s zip code, based on the 

IRS data of year 2016. A 2-tail t-test analysis shows that the difference of annual income between obese 

and control group’s residential areas is statistically significant (p=0.04, Figure 1A).  Further, we looked 

into the differences of insurance carriers of the subjects. In the state of Hawaii, the lowest tier of 

insurance is Quest care, which covers medicaid and less wealthy population.  The mid-tier coverage are 

provided by HMSA HMO, HMA, TriCare, and United Health Care.  The highest and most expensive 

health coverage is under HMSA PPO, in which patients pay a premium to have more choices in picking 

healthcare providers.  Figure 1B shows the number of obese and non-obese subjects across 11 different 

working insurance companies in Hawaii. Around 57% of obese group are insured by Quest, compared to 

28% of control group with this insurance; whereas 38% of control group are insured by HMSA PPO, 

compared to 17% of the obese group with this insurance; A two-way ANOVA analysis between obesity 

vs. high and low insurance tier has almost significant p-value (p=0.06), indicating signs of social 

economial disparities among mothers.  

 

Preliminary assessment of metabolomics results  
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We detected a total of 230 metabolites, including 79 untargeted and 151 targeted metabolites (11 amino 

acids, and 140 lipids). To test if these metabolites allow clear separation between the obese and normal-

weight subjects, we used elastic net regularization based logistic regression, rather than the partial least 

squares (PLS) model, a routine supervised multivariate method which only yielded modest accuracy 

AUC=0.62 (Fig 1S). Elastic net regularization overcomes the limitation of either ridge and lasso 

regularization alone, and combines their strengths to identify an optimized set metabolites [25]. Using the 

optimized regularization parameters (Fig. 2S), we identified a total of 29 metabolite features, which 

together yields the highest predictive performance with AUC=0.97, 95 % CI=[0.904-0.986] in 20% hold-

out test dataset (Figure 2A). Among them, six metabolites have large contributions to the separations 

between case/control, with an importance score of at least 70% individually (Figure 2A). These are 

galactonic acid, butenylcarnitine (C4:1), 2-hydroxy-3-methylbutyric acid, phosphatidylcholine diacyl 

C40:3 (PC aa C40:3), 1,5-anhydrosorbitol, and phosphatidylcholine acyl-alkyl 40:3 (PC ae C40:3). Thus, 

metabolites selected by the elastic net method indeed improved the prediction power of the model. 

 
Combined predictive model for maternal obesity with consideration of confounding 
 
Some demographic and physiological factors, such as maternal/paternal ethnicity and parity (Table 1) 

may confound the metabolites signatures above. To check this, we conducted two analyses. First, we 

explored the correlations among the demographic factors and metabolomics data. It is evident that several 

metaboloties are correlated with maternal and paternal ethnicity, gravidity, and/or parity (Figure 3). For 

example, maternal ethnicity is positively correlated with 2-hydroxy-3-methylbutyric acid. Next, we built a 

logistic regression model using the above-mentioned four covariates (parity, gravidity, maternal and 

paternal ethnicity). This model yields an modest AUC of 0.701 95% CI=[0.55-0.82] (Figure 2B), again 

supporting their confounding effect to associate with maternal obesity. These observations prompted us to 

recalibrate the 29-metabolite elastic net model, by adjusting the metabolomics model using all collected 

clinical covariants (Figure 2C). The resulting model remains to have very high accuracy, with AUC= 
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0.947, 95% CI= [0.87-0.97]. In the new model, besides the original 6 metabolite features, maternal 

ethnicity and paternal ethnicity also have importance scores greater than 70% (Figure 2C).  

 

Metabolomite features and their pathway and enrichment analysis 

The 29 metabolite features selected by the model  belong to acylcarnitine, glycerophospholipid, amino 

acids and organic acids classes.  Their log fold changes ranged from -0.45 

(Hydroxyhexadecenoylcarnitine, or C16:1-OH) to 0.66 (2-hydroxy-3-methylbutyric acid) (Figure 4A). 

Among them,  15 metabolites are higher in obese associated cord blood samples, including 2-hydroxy-3-

methylbutyric acid, galactonic acid, PC ae C40:3, Propionylcarnitine (C3), PC aa C40:3, O-butanoyl-

carnitine (C4:1), Hexanoylcarnitine (C6 (C4:1 -DC)) , Phosphatidylcholine diacyl C40:2 (PC aa C40:2), 

benzoic acid, 1,5-anhydrosorbitol, Isovalerylcarnitine (C5), PC ae C40:2, L-arabitol, 

Octadecenoylcarnitine (C18:1) (Figure 4A, Table 2) . The remaining 14 metabolites are lower in obese 

associated cord blood samples: malic acid, L-aspartic acid, citric acid, PC ae C34:0, isoleucine, PC ae 

C36:2, oleic acid, PC aa C36:5, PC ae C34:3, PC ae C40:6, C5:1-DC, 2-hydroxybutyric acid, 

myoinositol, and C16:1 -OH (Figure 4A, Table 2). The individual metabolite levels of Hexanoylcarnitine 

(C6(C4:1-DC)), O-butanoyl-carnitine (C4:1), PC aa C40:3, Propionylcarnitine (C3), PC ae C40:3, 

galactonic acid, and 2-hydroxy-3-methylbutyric acid increased significantly in obese cases (p<0.05, t-

test).  

To elucidate the biological processes in newborns that may be effected by maternal obesity, we performed 

pathway enrichment analysis on the 29 metabolite features, using Consensus pathway database (CPDB) 

tool (36). To gain most comphrehsenive pathway list, we combined multiple pathway databases including 

KEGG, Wikipathways, Reactome, EHNM and SMPDB. A list of 10 pathways are enriched with adjusted 

p-value q<0.05 (Figure 4B). Among them, alanine and aspartate metabolism is the most significantly 

enriched pathway (q=0.004). Transmembrane transport of small molecules and SLC-mediated 

transmembrane transport are also significantly enriched (q=0.004 and q=0.01 respectively). 
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Ethinicity association of metabolites 

Our earlier correlational analysis suggested that maternal ethnicity may be correlated with 2-hydroxy-3-

methylbutyric acid level. To confirm this, we conducted 2-way ANOVA statistical tests and indeed 

obtained significant p-value (P=0.023, chi-square test). We thus stratified the levels of 2-hydroxy-3-

methylbutyric acid by ethnicity (Figure 5). There is no significant difference in normal pre pregnant-

weight subjects across the three ethnic groups (Figure 5A). However, in cord blood samples associated 

with obese mothers, the concentration of 2-hydroxy-3-methylbutyric acid is much higher in NHPI, as 

compared to Caucasians (p=0.05) or Asians (p=0.04) (Figure 5B). 2-hydroxy-3-methylbutyric acid 

originates mainly from ketogenesis through the metabolism of valine, leucine and isoleucine (37). Since 

all subjects have fasted 8 hours before the C-section, we expect the confounding from diets is minimized 

among the three ethnical groups. Thus the higher 2-hydroxy-3-methylbutyric acid level may indicate the 

higher efficiency of ketogenesis in babies born from obese NHPI mothers. 

 

Discussion 
 
This study aims to distinguish key cord blood metabolites associated with maternal pre-pregnancy 

obesity. The novelty of the study is manifested in several folds. First, we have collected a unique multi-

ethnic population in Hawaii, which includes Asian, NHPI and Caucasians. Secondly, this is the first 

human metabolomics study that is also connected to maternal obesity disparities, demonstrated by 

geographical and health insurance analyses. Thirdly, we utilize state of the art metabolomics technology 

platform coupling GC-MS and LC-MS platforms, which allows us to detect hundreds of metabolites 

simultaneously. Lastly, we use the state of art method called elastic net based logistic regression that 

drastically improves the classification accuracy on cord blood metabolomics data.  

 

We conducted rigorous statistical modeling and found that metabolites can distinguish the two maternal 

groups with accuracy as high as AUC=0.97 (or 0.947 after adjusting for confounding effects). 

Metabolomics pathway analysis on the metabolite features in the model identified 10 significant 
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pathways.  Among them, alanine and aspartate metabolism was previously reported to be associated with 

obesity (38). Transmembrane transport was identified as another significant pathway. The transmembrane 

transport pathway corresponds to the acylcarnitine metabolites in the features. Acylcarnitines are known 

transmembrane transporters of fatty acids across the mitochondrial membrane (39). Among all 

metabolites and physiological/demographic features selected by the combined model, galactonic acid has 

the largest impact on the model performance (importance score =86%). Galactonic acid, was previously 

shown to be associated with diabetes in a mouse model, due to a proposed mechanism of oxidative stress 

(40).  On the other hand, maternal ethnicity has the largest impact among physiological factors 

(importance score =84%).  

 

A very few cord blood metabolomics studies have been carried out to associate with maternal obesity 

directly, or birth weight (22, 41, 42). In a recent Hyperglycemia and Adverse Pregnancy Outcome 

(HAPO) Study, Lowe et al. reported that branched-chain amino acids such as valine, phenylalanie, 

leucine/isoleucine and AC C4, AC C3, AC C5 are associated with maternal BMI in a meta-analysis over 

4 large cohorts (400 subjects in each) (42). In another study to associate cord blood metabolomics with 

low birth weight (LBW), Ivorra et al. found that newborns of LBW (birth weight < 10th percentile, n = 

20) had higher levels of phenylalanine and citrulline, compared to the control newborns (birth weight 

between the 75th-90th percentiles, n = 30) (22). They also found lower levels of choline, proline, 

glutamine, alanine and glucose in new borns of LBW, however, there was no significant differences 

between the mothers of the two groups.  In our study, isoleucine is also identified as one of the 29 

metablite features related to maternal obesity; although alanine iteself is not selected by the model to be a 

maternal obesity biomarker in cord blood, we did find that alanine and aspartate metabolism are enriched 

in the cord blood samples associated with maternal obesity group. 

 

Notably, our study has identified 5 metabolites which are previously not reported in the literature with 

association to obesity or maternal obesity: galactonic acid, L-arabitol, indoxyl sulfate, 2-hydroxy-3-
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methylbutyric acid and citric acid. Except citric acid, all the other four metabolites are increased in obese 

associated cord blood samples. 2-hydroxy-3-methylbutyric acid concentrations varied by ethnicity, but 

only in babies born from obese pre-pregnant mothers. 2-hydroxy-3-methylbutyric acid is known to 

accumulate in high levels during ketoacidosis and fatty acid breakdown. Therefore, the higher elevation 

of 2-hydroxy-3-methylbutyric acid is likely due to increased cellular ketoacidosis and fatty acid 

breakdown in new borns from obese pre-pregnant mothers. To the best of our knowledge, this is the first 

study that shows differences in the 2-hydroxy-3-methylbutyric acid concentration levels among different 

ethnicities. Additionally, Indoxyl sulfate is a metabolite of the amino acid tryptophan. As tryptophan is 

commonly found in fatty food, red meat and cheese, it is possible that high levels of indoxyl sulfate 

detected in the cord blood associated with obese pre-pregnant mothers could be due to the maternal high 

fat diet. Oppositely, citric acid, a compound associated with the citric acid cycle (43), is decreased in the 

cord blood associated with obese pre-pregnant mothers. This could be related to the lower vegitable and 

fruit consumptions among obese pre-pregnant mothers. In all, the data suggest that maternal obesity may 

impact offspring cord blood metabolites. Further research into the specific mode of action of these 

metabolites would be beneficial in understanding its association with maternal obesity. 

 
One limitation of the study was the modest sample size, given the stringent inclusion and exclusion 

crtieria. To avoid the confounding from labor and vaginal delivery, we only targeted mothers having 

elective C-sections. We also excluded obese mothers who had known complications during pregnancy, 

such as pre-gestational diabetes, smoking, and hypertension. These criteria helped to improve the qualtiy 

of the metabolomics data, at the tradeoff of the sample size. Awaring of this potential issue, we assessed 

the regression model using cross-validation and hold-out testing dataset, rather than using another 

validation cohort. The second caveat is that the extent of confounding due to maternal diet is unknown, 

although all subjects fasted 8 hours before the Cesarean section.  Fasting states are commonly employed 

in metabolomics studies.  Thirdly, we determined the subjects’ ethnicity by self-reporting rather than 

genotyping, due to the restriction of the currently approved IRB protocol. Additionally, there has been 
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debates on the use of BMI as an indicator of obesity (44), and more direct measures of body fat could be 

considered such as skin-fold thickness measurements, bioelectrical impedance and energy x-ray 

absorptiometry (45, 46). Lastly, a longitudinal follow-up study on the developmental trajectory of 

offspring of obese mothers would provide further insights. We plan to conduct a larger-scale maternal-

offspring obesity study by addressing all the issues above. Neverthless, this study has established 

relationships between cord blood metabolomics with maternal pre-pregnant obesity, which in turn is 

associated with socialeconomical disparties.   

 

Conclusion 
 
In this study, we identified 29 metabolites that are associated with maternal obesity, 5 of which are 

previously unreported in the literature. These metabolites have the potential to be maternal obesity-related 

bio-markers in newborns that warranty dietary interventions in early-life.  
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Figure 1: Maternal obesity disparity among subjects. (A) Violin plot of the average annual income from 

the zip codes where obese and normal pre pregnant weight subjects live. B) Bar plot of insurance 

companies among subjects. The highest tire of health insurance is HMO PPO; the lowest tire is Quest; 

and the remaining health insurances are the middle tier (Hawaii Medical Assurance Association (HMAA), 

Hawaii Medical Service Association (HMSA HMO), Kaiser HMO, Pacific Administrators Inc (PAI), 

Self-pay, TRICARE, UHA Health Insurance (UHA), United Health Care (UHC). 
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Figure 2: Accuracies of logistic regression models and important features selected by the models. Model 

accuracy is represented by classification Receiver Operator Curves (ROCs). The contributions 

(percentage) of selected features in each model are ranked from high to low. (A) Metabolomics data 

based model. (B) Physiological/demographic data based model. (C) Combined model with metabolomics 

and physiological/demographic data.   

 

 

Figure 3: Correlation coefficients among demographical/physiological factors and the metabolomics data. 

Blue colors indicates positive correlations and red indicated negative correlations.  
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Figure 4: Analysis of the 29 selected metabolites.  (A) Heatmap of selected metabolites separated by 

maternal group. * indicates metabolites that shows significant p-values (P<0.05, t-test) individually. (B) 

Pathway analysis of the 29 metabolites. X-axis shows size of metabolomic pathway. Y-axis shows the 

adjusted p-value calculated from CPDB tool. The size of the nodes represents the size of metabolomic 

pathway (number of metabolites involved in each pathway). The color of the nodes represents the source 

of these pathways.  
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Figure 5: Violin plot of 2-hydroxy-3-methylbutyric acid among 3 ethnic groups. Association between 2-

hydroxy-3-methylbutyric acid and the ethnicity in (A) normal (n=29) and (B) obese (n=28) subjects.  

 

 

Tables  
 
 

Table 1: Demographical and clinical characteristics in obese and control groups  
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 Control(n=29) Case(n=28) P-value* 
 Mean (SD)   
Maternal age, years 32.48 (5.66) 32.10 (4.88) 0.78 
Paternal age, years 34.68(7.14) 35.21(6.43) 0.79 
Pre-pregnancy BMI, kg/m2 21.89(1.86) 33.51(4.49) 1.12  e-14 
Gestational Age, Weeks 39.04(0.218) 38.93(0.45) 0.3812 
Net weight gain  30.85(10.92) 29.4(13.55) 0.7335 
Baby weight (kg) 3.29(0.32) 3.54(0.5) 0.03 
Head Circle (cm) 34.89(1.10) 35.55(1.36) 0.05 
Baby length (cm) 51.3(1.9) 51.4(2.36) 0.8 
Parity   
                  0 
                  1 
                  2 
                  3 and above  
                   

 
5 
16 
7 
1 
 

 
2 
7 
10 
9 
 

0.03 

Gravidity  
                  1 
                  2 
                  3 
                  4 and above 
                 

 
5 
12 
7 
5 
 

 
1 
5 
8 
14 
 

0.12 

Maternal Ethnicity 
Caucasian  
Asian 
Pacific island 

 
6 
16 
7 

 
4 
7 
17 
 

0.01 

Paternal Ethnicity 
Caucasian  
Asian 
Pacific island 

 
8 
14 
7 
 

 
3 
9 
16 
 

0.03 

 
*Categorical variables were compared using chi-square test, whereas continuous variables were compared using t 
test. 

  
 
Table 2: A list of metabolites associated with obese-control maternal status and selected by elastic net 

regularization based logistic regression. The metabolites are sorted by the average log fold change of 

cases over controls. 

 

Metabolites Chemical name Fold change a (case-
control)  Univariate Analysis b 
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logFC P_value Cofficient P_value 
2-hydroxy-3-
methylbutyric acid 

2-hydroxy-3-methylbutyric acid 0.6609 0.0119 0.65592 0.062950865 

Galactonic acid Galactonic acid 0.6337 0.0158 0.640515 0.06565148 

PC ae C40:3 
Phosphatidylcholine acyl-alkyl 
C40:3 

0.6249 0.0173 0.762691 0.035189439 

C3 Propionylcarnitine 0.5598 0.033 -0.1467 0.648143485 

PC aa C40:3 
Phosphatidylcholine diacyl 
C40:3 

0.5561 0.0342 -0.33489 0.318665241 

C4:1 
O-butanoyl-carnitine, 
butenylcarnitine 

0.556 0.0342 -0.44274 0.168989046 

C6 (C4:1 -DC) 
Hexanoylcarnitine, 
Fumarylcarnitine 

0.5355 0.0414 -0.28551 0.337718 

PC aa C40:2 
Phosphatidylcholine diacyl 
C40:2 

0.4793 0.0679 0.532796 0.113517583 

Benzoic acid Benzoic acid 0.4549 0.0831 0.279734 0.350259256 

1,5-Anhydrosorbitol 1,5-Anhydrosorbitol 0.3664 0.1628 0.636374 0.24536415 

C5 
Isovalerylcarnitine, 
Valerylcarnitine, 
Methylbutyrylcarnitine 

0.3654 0.1638 -0.38664 0.196793118 

PC ae C40:2 
Phosphatidylcholine acyl-alkyl 
C40:2 

0.3242 0.2168 -0.71475 0.042908449 

L-Arabitol L-Arabitol 0.2685 0.3062 0.360549 0.266082992 

C18:1 Octadecenoylcarnitine 0.228 0.385 0.253734 0.427416515 

Indoxyl sulfate Indoxyl sulfate 0.1792 0.4948 -0.06239 0.827985019 

Malic acid Malic acid -0.006 0.9811 0.010217 0.977502972 

L-Aspartic acid L-Aspartic acid -0.036 0.8899 -0.18507 0.549849292 

Citric acid Citric acid -0.058 0.8242 -0.08235 0.790831897 

PC ae C34:0 
Phosphatidylcholine acyl-alkyl 
C34:0 

-0.091 0.7295 0.712 0.058228623 

Isoleucine Isoleucine -0.158 0.5473 -0.56607 0.089720981 

PC ae C36:2 
Phosphatidylcholine acyl-alkyl 
C36:2 

-0.193 0.4629 -0.1802 0.553764206 

Oleic acid Oleic acid -0.2 0.4465 0.183252 0.536574067 

PC aa C36:5 
Phosphatidylcholine diacyl 
C36:5 

-0.218 0.4059 -0.4694 0.174139565 
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PC ae C34:3 
Phosphatidylcholine acyl-alkyl 
C34:3 

-0.22 0.4008 0.319963 0.31966488 

PC ae C40:6 
Phosphatidylcholine acyl-alkyl 
C40:6 

-0.261 0.3193 0.741937 0.01875932 

C5:1-DC 
Glutaconylcarnitine, 
Mesaconylcarnitine 

-0.271 0.3021 -0.26351 0.409158971 

2-Hydroxybutyric 
acid 

2-Hydroxybutyric acid -0.323 0.219 0.250888 0.404894782 

Myoinositol Myoinositol -0.386 0.1416 0.47233 0.144462991 

C16:1 -OH Hydroxyhexadecenoylcarnitine -0.447 0.0884 0.809254 0.093896414 

     aFold change was calculated as mean (log2 (obese)) – mean (log2 (control))   
 

bUnivariate logistic regression of each Elanet-selected metabolite adjusted for maternal age, ethnicity, parity, and gravidity. 

 
 

Supplementary Materials 
 
Supplementary Figure 1: Discrimination of obese and normal groups by Partial Least Squares (PLS) 

method. (A) Discriminant analysis score plot for obese cases (Green) and normal (Red). (B) The accuracy 

of the 10 fold cross-validation of the PLS-DA model. R2 is the sum of squares captured by the model; Q2 

is the cross-validation of R2. 

Supplementary Figure 2: Selection of metabolites using elastic net regularization. (A) Tuning alpha 

parameter, the parameter representing the degree of mixing between lasso and the ridge regularization.  

Y-axis is the root mean square error of the 10-fold cross-validation. X-axis is the range of alpha values, 

with the optimal alpha =0.22. (B) Tuning lambda, the parameter controlling the shrunk rate of coefficients 

in the linear model. Y-axis is the misclassification error of the 10 fold cross validation. X-axis is the range 

of lambda, with the optimal lambda=0.008. (C) The shrinkage coefficients of the metabolites using tuned 

alpha and lambda.   
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