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species status than BPP, which tended to split subdivided
populations into species even in the face of high gene flow.

Here we examine the conditions of the simulations
of Sukumaran and Knowles (2017) and Jackson et al.
(2017) to evaluate the performance of BPP. Two features
of the simulation of Sukumaran and Knowles (2017) are
noteworthy. First, the species conversion process overlies the
population branching process and is Markovian (memoryless)
so the rate of species conversion (from incipient species
to species) is fixed and independent of the duration of
genetic isolation between incipient species. Moreover, the
PSM distinguishes between populations and species but the
species status of lineages is ignored when the gene trees
and sequence data are generated under the MSC model for
subsequent analysis using BPP. Second, the assignment of
species status in the PSM does not appear to be consistent
with current taxonomic practices or with most models of
speciation.

In Jackson et al. (2017), a heuristic criterion was used
to define species and that definition was used in PHRAPL
but not in BPP when both programs were used to infer
species status. We perform a fair comparison in which the
same heuristic species definition is used in both PHRAPL and
BPP analyses. We demonstrate that even though BPP ignores
gene flow and is based on the simplistic JC mutation model
(Jukes and Cantor, 1969), it provides more accurate parameter
estimates and inference of species status than PHRAPL when
both programs use the same heuristic definition of species.
The large sample properties of Bayesian species delimitation
are described using new asymptotic results for the statistical
behavior of BPP in delimiting species as the number of loci
increases.

PROTRACTED SPECIATION?
A defining feature of the simulation by Sukumaran and

Knowles (2017) under the PSM is that the events that
transform populations into species are independent of the
process of genetic divergence among populations and the
generation of gene trees and sequence data. The PSM
distinguishes between populations and species but when the
population tree is used to simulate gene trees and sequences
no such distinction is made. The simulation could be viewed
as representing the use of the neutral genome or noncoding
DNA to delineate species boundaries.

The likelihood principle

Sukumaran and Knowles (2017) observed that the BPP
program cannot distinguish between populations and true
species when species conversion rates are low. This inability
of the BPP program (or more precisely of the sequence
data) to distinguish between incipient and true species is
expected and obvious without simulations. It is a direct
consequence of the likelihood principle in statistics. This
states that all information about the competing models and
model parameters is contained in the likelihood function,
which is the probability of the data given the model and

parameters (O’Hagan and Forster, 2004, pp. 61-64). If two
models make the same probabilistic predictions about the
observable data and thus have identical likelihoods for all
possible data outcomes, the models are not identifiable and
the data cannot be used to distinguish them. Consider a coin-
tossing experiment, in which a sophisticated probabilistic
model is used to decide whether one should pray before every
toss. As praying does not affect the outcome of the coin toss,
the data of heads and tails will not contain any information
about whether each coin toss is magical (preceded by prayer)
or ordinary (without prayer). In a Godless universe the magic-
and ordinary-toss models make exactly the same predictions
about heads and tails, which consequently cannot be used to
distinguish those models. The species conversion process is
analogous to the prayer; it does not alter the likelihood of the
observed genetic data and is therefore not identifiable.

Going to extremes

The Sukumaran and Knowles (2017) model is extreme
in several respects and is unlikely to be realistic for the
majority of speciation processes in nature. The model
posits an exaggerated form of punctuated equilibrium –
exponentially distributed periods of stasis followed by an
instantaneous conversion to a new species. At the conversion
event, the new population and the parental population (which
is only one generation older) are deemed distinct species;
few species appear to have originated in this way. An
alternative “gradualist” model would treat the morphological
characters involved in species classification as quantitative
traits that evolve according to a diffusion model determined
by the effects of underlying mutational changes and genetic
drift of allele frequencies. Two populations are recognized
as different species if the difference in mean trait values
exceeds some threshold. The mean difference that is chosen
reflects the biologists perception of what species are and
how morphologically distinct they should be. Under such
a model there will be a strong covariance between genetic
isolation, population divergence time and species status so
that delimitation methods such as BPP should perform better.
The gradualist model is, of course, another extreme and
a more realistic model would include both morphological
“jumps” and “diffusions” (see Discussion).

The way in which the PSM assigns species status is also
problematic, contradicting prevailing taxonomic practices. In
Figure 1 of Sukumaran and Knowles (2017), the different
colors on branches signify distinct species produced by
conversion events under the PSM (Fig. 1). It is possible
for the model to generate species near the tips of the
species tree, say, < 10 generations ago. However, taxonomists
would not recognize recent divergences of only a few
generations as valid speciation events. Instead, speciation is a
consequence of an extended process of genetic isolation, and
species status is assigned retrospectively based on empirical
measures of morphological and/or genetic divergence. It is
not possible to simulate species forward in time because
the criterion of the systematist depends on the level of
divergence between populations and this is only known after
the simulation is completed (assuming that species do not
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FIGURE 1. Figure 1 of Sukumaran and Knowles (2017) redrawn
to illustrate the simulation of species (indicated by tip labels) under the
protracted speciation model. The species tree is shown with one embedded
gene tree (purple); protracted speciation events happen when the species tree
changes color.

arise instantaneously). To conclude, the PSM is unrealistic
in several respects limiting its utility for evaluating species
delimitation methods. In particular, its application may not
justify the authors’ conclusion that MSC methods “delimit
structure not species.”

Is a new delimitation method needed?

The PSM does not require the development of new
approaches for delimitation. Implementing the PSM in
BPP requires only a modification to the prior on species
delimitation models used by the program. The likelihood of
the sequence data under the MSC remains unchanged. Let
πi be the prior for species delimitation model i and Mi its
marginal likelihood, which is the probability of the sequence
alignments at multiple loci, averaged over the gene trees and
over the parameters of the MSC model (τs and θs) through
the prior. The posterior probability for delimitation model i is
then

Pi ∝ πiMi. (1)

If we change the prior to π ′i , the new posterior will be

P′i ∝ π
′
i Mi ∝

(
π ′i
πi

)
Pi. (2)

The use of the new prior simply modifies the posterior by a
correction factor π ′i/πi, although the posteriors for all models
need to be rescaled to sum to 1. Thus, the PSM can be
specified by using a new prior (π ′i ), just like other priors
on species delimitation models already implemented (Yang,
2015). From this argument, it is clear that the posterior
probabilities for the species delimitation models can be
extremely sensitive to the prior. It is equally obvious that the
PSM, even if correctly implemented, will not be useful for
reliable delimitation of species status, in the same sense that
a correctly implemented model of stochastic prayers (e.g., a
binomial model) will not allow us to use counts of heads and

tails to distinguish between magic and ordinary coin tosses
with any reliability.

ASYMPTOTIC BAYESIAN SPECIES DELIMITATION
Jackson et al. (2017) simulated data under the MSC

model with migration (Hey, 2010, the so-called isolation-
with-migration or IM model) for two species/populations
and analyzed them using BPP to calculate the posterior
probabilities for the one-species and two-species models.
They observed that the posterior probability for the two-
species model increases when the number of loci increases.
Here we investigate the asymptotic behavior of Bayesian
posterior model probabilities and confirm that this is the
expected behavior of Bayesian model selection and of the
program.

Choosing among wrong models

The asymptotic dynamics of Bayesian model selection
depends on how wrong the two competing models are relative
to the true data-generating model (Yang and Zhu, 2018). Here
we consider independent and identically distributed (i.i.d.)
models only, under which the data points xi (i = 1, · · · ,L)
are i.i.d., with xi ∼ q(xi). Let X = {xi}. The distance from
any model p(x|φ) with parameters φ to the true model q is
measured by the Kullback-Leibler (K-L) divergence

D =
∫

q(x) log
q(x)

p(x|φ ∗)
dx, (3)

where φ ∗ is the limiting maximum likelihood estimate (MLE)
of φ under the model when the data size L→∞, and is known
as the best-fitting parameter value under the model (White,
1982). The K-L divergence D = 0 if the model encompasses
the true model (or, in other words, is true), and D > 0 if the
model is wrong.

Here the true model q is the MSC model with migration
(the IM model). Under the model, the gene trees and sequence
alignments are i.i.d. among loci, so that the datasize is the
number of loci (L). Currently BPP does not accommodate
migration or introgression and implements the complete
isolation model only. The two models under comparison are
then the one-species model (H1) with a single population-
size parameter φ1 = {θ} and the two-species model (H2)
with parameters φ2 = {τ,θA,θB,θAB}, where τ (for τAB) is
the divergence time between the two species, and the θs are
the population size parameters for the two modern species
A and B and for the ancestral species AB, with θ = 4Nµ

(Fig. 2a). Both θ and τ are measured in the expected number
of mutations per site. As the true model involves migration,
both models H1 and H2 are wrong, with D1 > 0,D2 > 0.
Note that H1 is a special case of H2 since the two models
are equivalent when τ = 0 in H2, in which case parameters
θA and θB in H2 are unidentifiable. The dynamics of the
posterior probabilities for H1 and H2 depends on whether H1
and H2 are equally wrong (in which case D1 = D2 > 0) or H2
is less wrong than H1 (with D1 > D2 > 0), or equivalently
on whether the best fitting parameter value for τ in H2 is
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FIGURE 2. (a) A species tree for two species (A and B) and three
gene trees for two sequences (a and b), used to illustrate the asymptotics
of Bayesian model selection. The coalescence between the two sequences
occurs before species divergence in the brown and purple gene trees (with
t < τ) and after in the green gene tree (with t > τ). (b) A species tree for
two species (A and B) and two gene trees for three sequences (a1 and a2
from species A and b from species B), used to illustrate the computation of
the gdi. Both gene trees have the same topology G1 = ((a1,a2),b), but the
coalescence between a1 and a2 occurs before species divergence (in species
B) in the green tree (with ta < τAB) and after in the brown tree (with ta > τAB).

τ∗ = 0 or > 0. If τ∗ = 0, the two models will be equally
wrong, and they are also unidentifiable in the limit of infinite
data. Then H1, with fewer parameters, dominates, with its
posterior probability approaching 100% when the number
of loci L increases. In contrast, if τ∗ > 0, H2 is less wrong
than H1, and H2 will dominate. While an analytical proof
is not available, we analyze increasingly larger datasets to
examine the asymptotic behavior of the MLEs numerically.
Our calculations suggest that the second case applies: when
the true model is the MSC model for two populations with
migration, the two-species isolation model is less wrong than
the one-species model and dominates in the posterior when
the number of loci increases.

As an example, we simulate large datasets with many
loci, each of 500 sites, under the symmetrical IM model for
two species with τ = 0.01 for the species divergence and
θA = θB = θAB = θ = 0.01 for all populations, and with
migration rates between the two populations to be MAB =
MBA = M = Nm = 10 immigrants per generation (Fig. 2a).
In this paper, the (scaled) migration rate is defined as Mi j =
N jmi j, the expected number of immigrants in population j
from population i per generation, with mi j to be the proportion
of immigrants in population j. The MCCOAL program, in the
BPP package, was used to generate gene trees and sequence
alignments under the JC model (Jukes and Cantor, 1969).
Each locus has two sequences, a and b, from species A and
B, respectively. At those parameter values, sequences a and
b coalesce before species divergence (with t < τ , as in the
brown and purple gene trees of Fig. 2a) at 62.75% of loci,
which is very similar to the probability for t < τ (63.21%) if
the two sequences are from the same population.

The data are then analyzed using the 3S program to obtain
the MLEs for the two parameters (θAB and τ) under the two-
species MSC model with no migration (H2) (Dalquen et al.,

2017; Yang, 2002). The estimate of θAB is 0.0158. The MLE τ̂

ranged from 0.00033-0.00036 over ten replicates for L = 105

and over 0.000329-0.000348 for L = 2× 105. Based on the
stability of the estimates among the replicate datasets and
between the large values of L, we suggest that at the limit
of infinitely many loci, the best-fitting parameter value is
τ∗ = 0.00034. We note that the best-fitting parameter value
depends on the configuration of the data such as the number
of sequences per locus and the number of sites, as well as
the parameters of the MSC model with migration (τs, θs, and
M’s). If the sequence length is 250 sites instead of 500, we
obtain τ∗∼ 0.00062 instead of 0.00034. Those results provide
numerical evidence that at the limit of infinite data, τ∗ > 0,
so that the two-species model will dominate the posterior,
even though the migration rates are so high between the two
populations that they should be considered one species by any
species definition.

Including a migration model

Note that if Bayesian model selection is conducted
under the IM model, incorporating migration, the two-
species model with migration will be correct (with D2 =
0), while the one-species model will be wrong (with D1 >
0). Then the two-species model will dominate with the
posterior probability approaching 100% as the number of loci
increases. This is the case even if the migration rate M = Nm
is very large (but finite). Thus if we use Bayesian model
selection to infer species status (treating a population split as
a speciation event) then incorporating migration into the MSC
model will not correct the problem of over-splitting.

In conclusion, the concern that Bayesian model selection as
implemented in BPP may over-split and recognize too many
species in subdivided populations with ongoing gene flow is
legitimate. Over-splitting may be of particular concern when
hundreds or thousands of loci are analyzed. If two populations
are truly panmictic, the model with fewer parameters will be
favored, and the populations will be correctly lumped into
one species. However, if there is partial subdivision (even
with relatively high levels of gene flow) the method will
prefer the two species model asymptotically as the number
of loci increases. One possible solution is to include a model
with gene flow and use model selection to choose among 3
models: (1) a single population; (2) two completely isolated
populations; and (3) two populations with gene flow. A choice
of model 1 strongly suggests a single species; a choice of
model 2 suggests two species but a final decision should be
based on a consideration of the population divergence time
and other relevant information (morphology, etc); a choice
of model 3 allows either one species or 2, depending on
considerations such as the degree of gene flow, distinctness
of morphology, and so on.

HEURISTIC SPECIES DELIMITATION
Jackson et al. (2017) suggested a heuristic criterion for

species delimitation based on a genealogical divergence
index (gdi) between populations that can be calculated using
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estimates of parameters under the MSC model with migration
(τ , θ , and M). Suppose one samples two sequences (a1 and
a2) from population A and one sequence (b) from population
B (see Fig. 2b). Let the probability that the two sequences
from population A coalesce first, so that the gene tree is
G1 = ((a1,a2),b), be

P1 = P(G1|τ,θA,θB,θAB,MAB,MBA). (4)

Obviously P1 ranges from 1
3 (when the three sequences are

interchangeable, as in the case of MAB = MAB = ∞) to 1.
Jackson et al. (2017) rescaled P1 so that the genealogical
divergence index,

gdi = (3×P1−1)/2, (5)

ranges from 0 to 1 when P1 goes from 1
3 to 1. In the special

case of no migration (with MAB = MBA = 0), we have P1 =
1− 2

3 e−2τ/θA and

gdi = 1− e−2τ/θA , (6)

where 2τ/θA is the population divergence time in coalescent
units (with one coalescent time unit to be 2NA generations)
and e−2τ/θA is the probability that the two sequences
from population A (a1 and a2) do not coalesce before
reaching species divergence (τ) when we trace the genealogy
backwards in time.

The gdi heuristic for species identification

Jackson et al. (2017) calculated the gdi as defined in
equations 4 and 5 by simulating 10,000 gene trees under the
MSC model with migration. Here we provide its analytical
computation, using the Markov chain characterization of
the coalescent process with migration (Dalquen et al. 2017;
Hobolth et al. 2011; Zhu and Yang 2012). For two populations
(A and B) with gene flow and three sequences (a1, a2, and
b), the genealogical process of coalescent and migration
when one traces the history of the sample backwards in time
can be described by a Markov chain with 21 states. The
state of the chain is specified by the number of sequences
remaining in the sample and the populations in which they
reside, or by the population IDs (A and B) and the sequence
IDs (a1,a2,b, etc.). For example, the state Aa1Aa2Bb means
that the three sequences a1,a2, and b are in populations A,
A, and B, respectively. We also write this as ‘AAB’. This
is the initial state. State Aa1a2Bb, abbreviated ‘ABb’, means
that two sequences remain in the sample, with the ancestor
of sequences a1 and a2 in population A and sequence b in
population B.

The transition rate matrix of the Markov chain Q = {qi j} is
given in table 1. The transition probability matrix over time t
is then P(t) = {pi j(t)} = eQt , where pi j(t) is the probability
that the Markov chain is in state j at time t in the past given
that it is in state i at time 0 (the present time). Suppose Q has
the spectral decomposition

qi j =
21

∑
k=1

uikvk jλk, (7)

where λk are the eigenvalues of Q, columns in U = {ui j} are
the corresponding right eigenvectors, and rows in V = {vi j}=
U−1 are the left eigenvectors. Then

pi j(t) =
21

∑
k=1

uikvk jeλkt . (8)

Gene tree G1 = ((a1,a2),b) can be generated in two ways.
The first is for sequences a1 and a2 to coalesce before
reaching the ancestral population, with t < τ (as in the green
gene tree of Fig. 2b). Sequence b then joins the ancestor of
sequences a1 and a2 either before species divergence at τ , in
which case the root of the gene tree is younger than species
divergence, or after, in which case the root of the gene tree is
older than τ (the latter case is illustrated in the green gene tree
of Fig. 2b).

The probability density that sequences a1 and a2 coalesce
at time t < τ is given by

f (t) = [pAAB,AAA(t)+ pAAB,AAB(t)]×
2

θA

+ [pAAB,BBA(t)+ pAAB,BBB(t)]×
2

θB
, t < τ. (9)

This is a sum of two terms, corresponding to the first
coalescent (between sequences a1 and a2) occurring in
populations A and B, respectively. The first term is the
probability, pAAB,AAA(t)+ pAAB,AAB(t), that sequences a1 and
a2 are in population A right before time t, times the rate
for them to coalesce ( 2

θA
). Similarly the second term is the

probability density that sequences a1 and a2 coalesce at time
t in population B (Fig. 2b, green gene tree).

The second way of generating gene tree G1 is for
sequences a1 and a2 to coalesce after population divergence,
with t > τ (as in the brown gene tree of Fig. 2b).
This occurs with probability PAAB,S3(τ) ×

1
3 , where S3 =

{AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB} is the set of
states with three sequences, and PAAB,S3(τ) is the probability
that no coalescent event occurs during the time interval (0,τ).
In this scenario, the gene tree root must be older than τ .

Thus combining the two possibilities for generating gene
tree G1, we have

P1 =
∫

τ

0
f (t) dt +PAAB,S3(τ)×

1
3
, (10)

where f (t) is given in equation 9. To calculate the integral in
equation 10, note that from equation 8,∫

τ

0
pi j(t)dt =

21

∑
k=1

uikvk j
1
λk

(
eλkτ −1

)
. (11)

We calculated P1 under the symmetrical migration model
with θA = θB = θ and MAB = MBA = M = Nm. Figure 3b
shows P1 plotted against 2τ/θ (population divergence time
in coalescent units) and M under the symmetrical migration
model. This is a more accurate calculation than Fig. 6 of
Jackson et al. (2017), which was based on simulating gene
trees, even though the two approaches are equivalent if a huge
number of replicates is used in the simulation.
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FIGURE 3. Probability P(G1) of gene tree G1 = ((a1,a2),b), plotted
(a) as a function of population divergence in coalescent units (2τ/θ ) in a pure
isolation model for two populations without gene flow, and (b) as a function
of population divergence in coalescent units (2τ/θ ) and scaled migration rate
M = Nm. According to Jackson et al. (2017), the lower and upper limits of
P1 for species delimitation are 0.47 and 0.8.

Based on the meta-analysis of Pinho and Hey (2010),
Jackson et al. (2017) suggested the rule of thumb that gdi
values < 0.2 suggest a single species and gdi values > 0.7
suggest distinct species, while gdi values within the range
indicate ambiguous delimitation. The limits of 0.2 and 0.7 for
gdi correspond to 0.47 and 0.8 for P1, and, in the case of no
migration, to 0.22 and 1.20 for the population divergence in
coalescent units (2τ/θ ) (Fig. 3a).

SUBJECTIVELY DEFINED SPECIES
Jackson et al. (2017) simulated data under the MSC model

with migration for two populations and analyzed the data
using PHRAPL and BPP. While the true model used in the
simulation always had two populations, the gdi was used to
define species status. This criterion was used in the PHRAPL
analysis of the simulated data to infer species status, but not
in BPP. It was then found that PHRAPL out-performed BPP
(Jackson et al. 2017, Fig. 4), and that BPP tended to over-split,
identifying too many species.

A fair comparison

Both BPP and PHRAPL can estimate the parameters of
the MSC model, although PHRAPL accommodates gene flow
while BPP in its current implementation assumes no gene
flow. Here we apply the gdi definition of species status in
BPP, so that the same criterion is used by BPP and PHRAPL.
A simple approach is to use the posterior means of the
parameters under the MSC generated by BPP to calculate
the gdi (equation 6). We use this method here. A more
sophisticated approach, which we use later in the analysis of
the empirical datasets, is to generate a posterior distribution of
gdi using the sample of parameters taken during the MCMC.

We thus repeated the simulation of Jackson et al. (2017,
fig. 4), applying gdi to BPP parameter estimates. The true
species tree is ((A,B),C), with six sets of species divergence
time parameters, with τAB = 0.05θ ,0.125θ ,0.25θ ,1θ ,2θ ,
4θ , and τABC = 2.5θ ,2.5θ ,2.5θ ,2.5θ ,5θ ,10θ , with θ =
0.005. Note that τABC is much larger than τAB, so that
species C is a distant outgroup, and the focus is on whether
populations A and B are one or two species. Migration is
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assumed to occur between A and B, with 4Nm = 0,0.5,2, and
5, where Nm is the number of immigrants per generation.
The sequence data were simulated under the HKY model
(Hasegawa et al., 1985), with base frequencies 0.3, 0.2, 0.3,
and 0.2 (for T, C, A, and G) and transition/transversion rate
ratio κ = 3. For each of the 4× 6 parameter combinations
for M and τ , 50 replicate datasets were simulated. There
are 50 loci in each dataset, with 20 sequences from each of
the three species, and 500 sites in the sequence. The data
were simulated using the MCCOAL program, part of the BPP
release, as detailed in Zhang et al. (2011). We used BPP
version 4.0 to estimate the parameters in the MSC model
on the fixed species tree ((A,B),C) (this is the A00 analysis
of Yang, 2015). Version 4.0 of the program assigns inverse-
gamma priors on parameters. We used the shape parameter
3 in the inverse-gamma priors, while the prior means are
set to match the true values: θ ∼ IG(3, 0.01) with mean
0.01/(3− 1) = 0.005, and τABC ∼ IG(3, 0.025), IG(3, 0.05),
and IG(3, 0.1), for the three true τABC values. Note that
the value 3 for the shape parameter means that the inverse-
gamma priors are diffuse, with the coefficient of variation to
be 1/

√
α−2= 1. Estimation of parameters under the MSC is

known to be fairly robust to the priors, for example, to a one
order-of-magnitude change to the prior means (Burgess and
Yang, 2008). After BPP generated the posterior distribution of
the parameters, we used the posterior means to calculate gdi
using equation 6, with τ = τAB and θ = (θA +θB)/2.

The results are shown in figure 4. Even though it ignores
migration and uses an overly simplistic JC mutation model
(while the true model is HKY), BPP performed better than
PHRAPL in delimiting species status defined by the gdi,
especially at high migration rates (with 4Nm = 2 or 5).
This result may seem counterintuitive, since the data were
simulated with migration and PHRAPL allows for migration so
that there is no model violation, while BPP ignores migration
so that its model is violated.

Shortcomings of approximate methods

We suggest that two factors may account for the poorer
performance of PHRAPL in this simulation. First, PHRAPL is
a summary method for estimating parameters, and it relies on
gene tree topologies and ignores branch lengths. As a result,
parameter estimates may be biased or even inconsistent due to
phylogenetic errors of gene tree reconstruction (Yang, 2002).
Second, use of the gene tree topologies while ignoring the
branch lengths leads to information loss and may even cause
identifiability problems. In the simple case of three species
and three sequences, with one sequence from each species,
there is only one degree of freedom in the data of gene
tree topologies, which is the proportion of the most common
gene tree topology. Under the complete-isolation model (with
M = 0), this allows one to estimate the internal branch length
on the species tree in coalescent units, 2(τABC − τAB)/θAB,
while other parameters in the model are unidentifiable (Xu
and Yang, 2016). Even the internal branch length is estimated
inconsistently because phylogenetic reconstruction errors
tend to inflate gene tree-species tree mismatches (Yang,
2002).
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FIGURE 4. Accuracy of species delimitation using the gdi with
parameters estimated from data of 50 loci using (a) PHRAPL and (b) BPP.
Species status is defined using the gdi at different cutoffs (L and U). This
is calculated by simulating 10,000 gene trees under the MSC model with
migration for PHRAPL, and analytically for BPP. Along the x-axis, each group
of bars gives results for different gdi cutoffs. Below the lower bound (L),
populations A and B are defined as a single species; above the upper bound
(U), A and B are defined as separate species, while between the bounds, the
species status is ambiguous. The six bars within each group represent the
six sets of species divergence times (τs). The bar shadings are white = the
inferred delimitation outcome matched the true outcome; light green/gray
= ambiguity was inferred when the true delimitation is known (insufficient
power); dark green/gray = delimitation was inferred (whether one or two
species) when the truth was ambiguous (excessive confidence); and black
= one species was inferred when there were two, or vice versa. The results
for PHRAPL are recreated using the R code from Jackson et al. (2017, Fig. 4).

The cases with more than three sequences per locus
and with migration may be more complex, but it should
not be surprising that approximate methods that rely on
summary statistics such as gene tree topologies will suffer
from an information loss. In contrast, BPP is a full-likelihood
method and makes use of information in the gene tree
branch lengths (coalescent times) as well as topologies,
while accommodating phylogenetic uncertainties due to the
limited number of informative sites at each locus (Xu and
Yang, 2016; Yang, 2014). Even though BPP operates under
a wrong model that ignores migration, the sequence data at
multiple loci may be informative about the expected gene
tree configurations. Nevertheless, extension of BPP to allow
for gene flow will provide more accurate estimation of
parameters in the MSC model, which should lead to more
accurate species delimitation using heuristic criteria such as
gdi.
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HEURISTIC SPECIES DELIMITATION USING BPP
Here we describe how Bayesian parameter estimation

under the MSC model can be combined with gdi to
delimit species using a hierarchical procedure based on a
species/population tree. This is similar to the use of a ‘guide
tree’ for species delimitation by Yang and Rannala (2010), in
that an ancestral node on the guide tree is merged into one
species only if its descendant nodes are merged. However,
here we rely on Bayesian parameter estimation on a fixed
species/population tree while Yang and Rannala (2010) used
reversible-jump algorithms to calculate posterior probabilities
for different speciess delimitation models (represented by
merging nodes on the guide tree). We first demonstrate the
procedure using a simulated dataset and then apply it to the
analysis of three empirical datasets analyzed previously by
Jackson et al. (2017). The gdi is only one of many possible
heuristics with rough correspondences to different species
definitions.

We use a species/population tree for five populations,
((((X ,A),B),C),D), to simulate data (Fig. 5a). ABCD
represents a large paraphyletic species with a broad
geographic distribution arranged in a stepping-stone design,
with migration between any two adjacent populations
including the ancestors (for example, between D and the
ancestral population XABC after the first population split, and
then between C and D and between C and XAB after the
second split, etc.). The scaled migration rate is M = Nm = 2
for any pair of adjacent populations. X is a new species,
having separated from population A (with τXA = 0.01), and
there is no gene flow involving X . The divergence times
(τs) are at 0.04, 0.03, 0.02, and 0.01. The population size
parameter is θ = 0.01 for all populations. We simulated 100
loci, each of 500 sites, for four samples per species (20
sequences per locus).

To generate a working species/population tree (the guide
tree), we run a joint analysis of species delimitation and
species tree estimation (the A11 analysis in BPP, Yang,
2015). The parameters in the MSC model are assigned diffuse
inverse-gamma priors θ ∼ IG(3,0.02) and τ ∼ IG(3,0.08),
with shape parameter 3 and with the prior means matching
the true values. We used a burnin of 40,000, sample frequency
of 10, and collected 50,000 samples. We conducted four
separate runs for each analysis, with convergence ensured
mainly by checking consistency between runs. The posterior
probabilities for the species delimitation models calculated
in the A11 analysis provided strong support for five species,
and the inferred species tree incorrectly placed species X
sister to ABCD (Fig. 5b). This incorrect topology may be
expected, as populations exchanging genes tend to form
clades in species tree analyses that ignore migration (Leaché
et al., 2013). Next, we run an A00 analysis, estimating
parameters on the inferred guide tree (Fig. 5b) to generate the
posterior distribution for the gdi for the most recent species
divergences, between A and B and between C and D (Fig. 5c).
Note that 2τAB/θA is used to decide whether population A is
a species distinct from B, while 2τAB/θB is used to decide
whether population B is a species distinct from A. Low gdi
values of < 0.2 indicate that A and B are one species, as
are C and D. Next, we collapse A and B, and C and D, and
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FIGURE 5. Species delimitation applying heuristic index gdi to
parameter estimates from BPP. a) Species tree used for simulation allows
migration between populations A,B,C, and D and their ancestors (indicated
by arrows), but no gene flow involving species X . b) Species (guide) tree
inferred from A11 analysis of BPP. In panels b–g, gdi is used to collapse
populations on guide tree into same species in a hierarchical procedure,
with BPP used to estimate MSC parameters (θ and τ) and generate posterior
distribution of gdi. For example, gdi calculated using population A of panel
b, based on 2τAB/θA (equation 6), is shown in panel c (labeled ‘sp. A’).
Sister populations inferred to belong to same species by gdi are collapsed,
and resulting species tree is used to conduct a new BPP analysis. Procedure
is repeated until distinct species are inferred or until root of tree is reached.
According to Jackson et al. (2017), gdi < 0.2 indicates a single species, gdi
> 0.7 indicates distinct species, and gdi values between 0.2 and 0.7 represent
ambiguous species status.

conduct another A00 analysis to estimate θ and τ for putative
species AB and CD (Fig. 5d). The posterior distribution of
gdi obtained suggest that AB and CD belong to the same
species (Fig. 5e). The final iteration fits a two-species model
containing species X and species ABCD (Fig. 5f). The gdi
value for species ABCD is ambiguous (with 0.2 < gdi < 0.7),
while the evidence for species X is strong (gdi > 0.7, Fig. 5g).
Here the gdi shows an ambiguity of the species status of X and
ABCD, depending on which population size (θX or θABCD) is
used to calculate the index.

Next, we re-analyzed the three empirical datasets of
Jackson et al. (2017) using the hierarchical procedure
described above. The three empirical datasets include eight
nuclear loci from three populations of North American
ground skinks (Scincella lateralis), 20 loci from three
populations of southeastern United States pitcher plants
(Sarracenia alata), and 50 loci from four population of
Homo sapiens. In the analysis of Jackson et al. (2017),
PHRAPL supported a single species of Scincella lateralis and
two species of Sarracenia alata, and grouped the human
populations into one species, while Bayesian model selection
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by BPP inferred the maximum number of species in each
dataset.

Here we used the MCMC samples generated in the BPP
analysis (Yang, 2015, analysis A00) to estimate the posterior
distribution of the gdi. We used inverse-gamma priors on
parameters (θs and τs), with the shape parameter 3 and with
the same prior means as used by Jackson et al. (2017). For
each dataset, we conducted four separate runs with a burnin
of 10,000, sample frequency of 5, and collected 100,000
samples. The guide species trees are fixed at the previously
published topologies from Jackson et al. (2017) (Fig. 6).
We applied the hierarchical procedure to calculate gdi for
population pairs by collapsing populations into a single
species and conducting new MCMC analyses. Using BPP to
calculate posterior distributions for gdi, we find no support for
multiple species (gdi > 0.7) in any of the empirical datasets
(Fig. 6).

DISCUSSION

Subjective allopatric species delimitation

We take it for granted that the neutral genome contains
useful information about the population divergence history
and about species status. In clear-cut cases, population
divergence parameters should be sufficient to determine
species status. For example, distantly related species can be
reliably identified using a simple genetic distance threshold
as in DNA-barcoding analysis (Hebert et al., 2004). The
difficulty is in identifying the species boundary (the so-
called boundary conditions, Moritz and Cicero, 2004) for
allopatric populations with low levels of genetic divergence
and possibly frequent gene flow. The inherent subjectivity
of allopatric species delimitation is clearly illustrated by
the distinction between statistical significance and biological
significance made by Jackson et al. (2017). Consider by
analogy the estimation of the probability of heads in a coin-
tossing experiment to determine the possible bias of the coin.
Powerful statistical methods may detect a small bias in the
coin, with p = 0.51, say. However, the bias of 0.01 is said to
be statistically significant but not biologically significant, and
it is considered incorrect to suggest that the coin with p= 0.51
is biased. Similarly, the definitions of races, subspecies and
species are often subjective, and the neutral genome cannot
provide unambiguous resolution of species status (Rannala,
2015).

How to simulate if you must

The PSM specifies a process of population splits (incipient
species formation) as well as conversions of such incipient
species (populations) into true species. However, with time
running forward, simulation under the PSM produces a
new species (a conversion event) instantaneously. At a
conversion event, the new true species and its parental
incipient species (population) are deemed distinct species.
As stated previously, this process does not realistically
model the biological process, nor does it mimic the way
taxonomists identify new species. We consider two alternative

0.0 0.2 0.4 0.6 0.8 1.0

10
5

0
15

20
25

gdi

D
en

si
ty

10
5

0
15

20
40

30
20

10
0

W
es

te
rn

Ce
nt

ra
l

Ea
st

er
nScincella lateralis

Homo sapiens

Sarracenia alata

W
es

t (
S.

 R
ed

)
W

es
t (

N.
 R

ed
)

Ea
st

As
ia

Am
er

ica
Eu

ro
pe

Af
ric

a
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(gdi), generated in BPP analysis of three real datasets of Jackson et al.
(2017). Silhouettes of species are from phylopic.org http://phylopic.org.
Colored ancestral branches were analyzed by collapsing descendent species
and conducting new MCMC analyses.

approaches for simulating the process of population splits
and species assignments, and discuss their implications
for the development of methods for species delimitation
using genomic sequence data. A clear specification of
the simulation procedure implies a probabilistic model
of data generation and statistical inference methodology,
because given the model, full-likelihood methods (maximum
likelihood and Bayesian inference) are known to have certain
statistical properties (Rannala, 2015).

In the first approach, one can simulate population splits
under a branching model, such as a variable-rate birth-death
process. The random birth and extinction events specify a
probabilistic distribution of the population tree topology and
divergence times (τs), and a certain model may be used to
sample the population sizes (θs) and migration rates (Ms).
Gene trees (topologies and coalescent times) can then be
generated using the population tree with parameters (τs, θs,
Ms), and are then used to simulate sequence alignments.
At the end of this simulation, the populations at the tips of
the population phylogeny are assigned species status using
heuristic criteria of divergence times and migration rates. This
is very similar to the simulation approach of Jackson et al.
(2017).

In the second approach, one may simulate population
splits as in the first approach, but in addition simulate the
evolution of a continuous character along the branches of
the generated population phylogeny. The difference in the
continuous character between two populations is a measure of
genetic incompatibility and a threshold can be used to identify
species status: if the continuous character has measurements
xi and x j in two populations, they are considered distinct
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species if and only if |xi− x j| > d. The model for simulating
the evolution of the continuous character may be a mixture of
a small probability for ‘catastrophes’ (mimicking large events
that may establish reproductive isolation at an instance, such
as chromosomal rearrangements or polyploidizations) and a
large probability for Brownian motion-like drift over time
(mimicking the accumulation of genetic incompatibilities
over time). At the end of the simulation, species status is
assigned for populations at the tips of the tree based on the
continuous character.

In both approaches, we assume that the process of
sequence evolution is independent of population split
events, and of the evolution of the continuous character,
as expected if the neutral genome is used for species
delimitation. Both scenarios seem to suggest that the only
inference possible using the neutral genome is the population
history and the population divergence parameters (θs, τs,
and Ms). Assignment of species status will then depend
on our empirical knowledge about the level of genetic
divergence between good species, or the amount of genetic
incompatibility that can be accumulated over a given time
period.

The limited scope of BPP analyses

The MSC model was developed for comparative analysis
of the ‘neutral’ genome to estimate parameters that
characterize the history of population divergences, under
the assumption that natural selection has not significantly
altered the genealogical histories of genomic regions (gene
tree topologies and coalescent times). The MSC model
does not aim to identify speciation genes or genes
responsible for establishing reproductive barriers (which
may be under species-specific directional selection), even
though identifying such genes, however rare they are,
may greatly enrich our understanding of the origin and
maintenance of species. For example proteins involved in
female and male reproduction are well-known to evolve at
accelerated rates, apparently driven by natural selection due
to ecological adaptations and sexual selection maintaining
species boundaries (Swanson and Vacquier, 2002). In a
few cases where the MSC model was applied to exons
or the coding genome, it was noted to produce results
highly consistent with the noncoding regions of the genome
(Dalquen et al., 2017; Ebersberger et al., 2007; Shi and
Yang, 2018). This is apparently due to the fact that most
protein-coding genes are performing the same conserved
functions in closely related species so that the effect of
purifying selection removing nonsynonymous mutations is
predominantly a reduction of the neutral mutation rate. The
MSC model treats genomic regions as neutral markers to
extract information concerning genealogical histories of the
populations, reflected in population divergence parameters,
such as population sizes, divergence times, and migration
rates.

If species divergence is due to very few genes (in
the so-called speciation islands) while the rest of the
genome is homogenized due to widespread interbreeding,
the overall divergence between species will be similar to the

polymorphism within species (Nadeau et al., 2012). In such
cases the neutral genome may not be informative about the
species status and use of other kinds of data, such as evidence
of ecological adaptation, or identification of speciation genes,
etc., may be necessary to determine species status.

Hypothesis tests versus parameter estimation

In this paper we have made a distinction between two
kinds of analysis under the MSC model as implemented
in BPP: (i) Bayesian model selection to calculate posterior
probabilities for different species delimitation models (the
A10 and A11 analyses in Yang, 2015) and (ii) Bayesian
parameter estimation when species/population assignment
and phylogeny are fixed (the A00 analysis in Yang, 2015). In
theory, model selection can also be conducted in a Frequentist
framework using a likelihood ratio test with the one-species
model formulated to be the null hypothesis (with τ = 0) while
the two-species model is the alternative hypothesis (with τ >
0). This is similar to testing the null hypothesis of a fair coin
(with p = 1

2 ) against the alternative hypothesis of a biased
coin (with p 6= 1

2 ). With sufficient data, model selection can be
very powerful in identifying population splits even if the age
of the divergence event (τ) is very young. This is analogous to
the use of a large number of coin tosses to detect a very small
bias of heads versus tails.

We suggest that Bayesian model selection is appropriate
for identifying morphologically cryptic species. Even if
the genomic data or the BPP program cannot distinguish
populations and species, the genetic distinctness of the
populations signifies the presence of reproductive barriers or
isolation mechanisms. There seems to be no controversy in
assigning species status to populations that exist in sympatry
and are genetically distinct.

Species delimitation by Bayesian parameter estimation
aims to estimate the population-divergence parameters (θs,
τs, and Ms) and then apply a heuristic species definition,
such as a minimum divergence criterion, 2τ/θ > 1, maximum
migration M < 1, or the gdi. Using the coin-tossing analogy,
this approach is like estimating the probability parameter
p using the counts of heads and tails, and then applying
whatever definition of bias one assumes heuristically.

The gdi attempts to use the overall genetic divergence
between two populations affected by the combined effects of
genetic isolation and gene flow. The index appears to have
weaknesses. First, the criterion depends on the population
divergence time relative to the population size (2τ/θA in the
case of no gene flow). If the population is established by a
few founder individuals, NA and θA may be very small, and
the use of gdi may lead to claims of species status even if
the populations diverged very recently. It may be necessary
to consider the (absolute) population divergence (τ) (Yang
and Rannala, 2014) as well as the divergence relative to the
population size. Second, there may be ambiguity when the
two populations concerned have drastically different sizes. If
NA � NB, the use of gdi may lead to the awkward solution
that A is a distinct species from B (if one uses sequences
a1,a2 and b to calculate the index) but B is not a distinct
species from A (if one uses sequences a, b1,b2). This is the
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case in the analysis of the simulated data in Fig. 5g. Third,
gdi has a large range of indecision (0.2-0.7), although this
may reflect the arbitrary nature of species delimitation rather
than a weakness of the index itself. We suggest there may be
a need to propose heuristic criteria for species delimitation
given the near absence of objective criteria.

Concluding remarks

The MSC model and its implementation in BPP provides
a powerful method for inferring population divergence
histories and estimating evolutionary parameters using the
fast-accumulating genomic sequence data. With accurate
estimates of important population parameters, one can
apply any empirical criterion for defining species that the
evolutionary biologist entertains. For these reasons, the MSC
model and BPP will continue to be essential tools in the
analysis of genomic data to better understand biodiversity
despite the fact that the interpretation of these results in
assessing species status may be debated.

SUPPLEMENTARY MATERIALS
Data available from the Dryad Data Repository:

http://dx.doi.org/???.
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