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ABSTRACT 11 

Plants are valuable resources for a variety of products in modern societies. Plant species 12 

identification is an integral part of research and practical application on plants. In parallel with 13 

high-throughput sequencing technology, the high-throughput screening of species is in high 14 

demand. Highly accurate and efficient DNA-based marker identification is essential for the 15 

effective analysis of plant species or biological constituents of a mixture of plants as well. 16 

Therefore, it is of general interests and significance to generate a comprehensive and 17 

accurate DNA-based marker sequence resource, as well as to build efficient sequence search 18 

engines, for the accurate and fast identification of plant species. 19 

 20 

In this work, we have firstly established a high-quality ITS2 sequence database of plant 21 

species containing more than 150,000 entries, through the systematical collection and 22 

manually collation of the published ITS2 sequencing data of plant species, data quality control, 23 

as well as representative sequence refinement based on clustering method. Secondly, an 24 

accurate and efficient plant species identification system based on ITS2 sequence was 25 

constructed, which is the proper combination of sequence search algorithms including BLAST 26 

and Kraken. Through the deployment of high-performance and frequently updated web service, 27 

it’s expected to serve for a wide range of researchers involving the taxonomy classification of 28 

plant species, as well as for deciphering of plant mixed systems including herbal materials in 29 

TCM preparations. 30 

 31 

The Holmes-ITS2 web service is freely accessible at: http://its2.tcm.microbioinformatics.org/. 32 

The input of this web service could be multiple sequences in a single fasta format, to search 33 

for matching ITS2 biomarker sequences already annotated in the database. This 34 

sequence-based search is based on two engines: BLAST, and k-mer based Kraken. 35 

Alternatively, users can directly search for species name for the corresponding ITS2 biomarker 36 

sequences. The web service has been put to the test by more than 50 experts from China, 37 

Denmark and US, and the average running time for the search ranges from 3-30 seconds for 38 

up to 100 sequences as a batch query. 39 

40 
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INTRODUCTION 41 

Currently, there are more than 300,000 plant species on earth that have been described (1), 42 

providing valuable resources such as food, fibers, timber and medicine, etc. to support modern 43 

societies (2). Plant species identification and taxonomy classification are the basis of ecology, 44 

botany and biology, especially related with utilization and protection of plant resources. On one 45 

hand, for those plants for consumption, including various food and drugs, the accurate 46 

identification of plants is requisite to avoid the safety issues caused by the misuse of closely 47 

related species or adulteration and ensure the theoretical efficacy (3). Researches on plants 48 

would be carried out with the aid to the knowledge accumulated through the deep examination 49 

of the plants. On the other hand, as for researches on biodiversity and conservation of 50 

endangered fauna and flora, building accurate knowledge-base of plants is essential for their 51 

rational protection, which would also aid for preventing illegal trade of endangered plants (4). 52 

Therefore, accurate and rapid identification of plants would be essential for safe and rational 53 

utilization of plant resources and effective study and protection of plant biodiversity. 54 

Besides traditional approaches to identify plants through physical characteristics or 55 

inference from chromatographic fingerprints generated by High Performance Liquid 56 

Chromatography (HPLC) or Thin Layer Chromatography (TLC) technologies, which bring 57 

difficulties to differentiate species with indistinguishable or changed morphology and chemical 58 

constitutions. DNA-based molecular markers were introduced to be an efficient and reliable 59 

means of identification of plant species(5), especially in mixtures that contain more than one 60 

species(6). DNA barcodes are based on a standardized short sequence of DNA from a small 61 

region of a species’ genome that can distinguish the species from others in the same kingdom 62 

quickly and accurately(7). As a representative marker, the internal transcribed spacer 2 (ITS2) 63 

is a fast-evolving locus of the nuclear rRNA cistron which has large variations in sequences 64 

also with features as easy amplification and high universality and is thus appropriate to be a 65 

proper DNA barcode for studies and inferences of phylogenies at low taxonomic levels(8). For 66 

plants, ITS2 has been broadly used as an effective DNA-based marker for identification of 67 

organisms at species or sub-species level(9). As the development of next generation 68 

sequencing (NGS) technology, generation of DNA-based marker sequence data is becoming 69 
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easier and easier, and the amount of relative data keeps growing, through which, 70 

high-throughput research on plant preparations has become a trend. 71 

Compared with a single plant, the identification of mixtures that contain more than one 72 

plant species (plant mixed system) is more complicated and challenging. Such identification 73 

has practical value for quality evaluation of products in the market made of plant materials, and 74 

one typical example of these is the Traditional Chinese Medicine (TCM), which usually 75 

contains multiple plant species. The existence of DNA belonging to different plant raw 76 

materials makes it possible and convenient to identify plant species in a mixed system through 77 

methodologies that could take advantage of DNA-based markers. Identification of a plant 78 

mixed system is to recognize the taxonomy species belonging to various raw materials in 79 

essence, depending on accurate identification of DNA-based markers of plants including ITS2.  80 

Based on high-throughput sequencing and big data mining techniques, metagenomic  81 

methods have become one of the most important and effective approaches to understand and 82 

analyses the structure and functionality of a biological mixture(10), which could help to 83 

establish an accurate and efficient method for biological constituent analysis of the plant 84 

preparation or the plant mixed system. 85 

The requirements of high-throughput analyses of biological constituents of plant 86 

preparations or plant mixed systems put forward a very high standard for the precision 87 

(precision to species or subspecies level), accuracy (low false-positive rate) and efficiency 88 

(processing batch and bulk data quickly) of identification and comprehensive species 89 

coverage. The existing databases of species identification of plants such as TCMBarcode(11) 90 

and ITS2 Ribosome RNA Database(12) are more focused on the analysis of single sequence 91 

data in respect of identification of DNA-based marker sequences, which is not adapted to 92 

researches with high throughput sequencing data of plant DNA-based marker. By using ITS2 93 

as DNA-based marker and with the help of metagenomic methodologies, we designed and 94 

constructed a plant DNA-based marker database and taxonomy classification and organism 95 

identification system, Holmes-ITS2, to serve for high standards for the identification of 96 

biological constituents of plants (website: http://its2.tcm.microbioinformatics.org/). Through the 97 

process of raw data collected and the optimization of search algorithms, accurate and efficient 98 
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identification of plant species could be achieved to match the high throughput sequencing data 99 

of plant orplant mixture system for research or practical purpose. 100 

 101 

MATERIALS AND METHODS 102 

 103 

 104 

Figure 1. The whole workflow of the Holmes-ITS2 system including database, web 105 

service and search engines. (A) Raw ITS2 sequences obtained from NCBI, target sequence 106 

extraction and sequence quality filtration. (B) Database refinement by metagenomic sample 107 

clustering and representative ITS2 sequence selection. (C) The refined ITS2 database. (D) 108 

Interactive web service with (E) multiple search engines enabled. 109 

 110 

Data source and quality filter of raw sequences 111 

Raw ITS2 sequencing data were extracted from the NCBI nucleotide database 112 

(https://www.ncbi.nlm.nih.gov/nucleotide/) in Genbank format searched with key words “ITS2”, 113 

together with “Species” filtered to “Plants” in April 2016. First, extractions of target ITS2 114 

sequences of data downloaded were carried out with in-house scripts to trim boundaries of 115 

each ITS2 sequence, namely 5.8S and 28S rRNA genes which were highly conserved among 116 
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different plant species (Figure 1A). Then, manual picking of sequences was performed to 117 

collect positive entries that the script didn’t cover. Due to the absence of ITS2 location 118 

annotations of some raw data, these sequences were moved to the candidate dataset first, 119 

and then a Hidden Markov Model was trained based on well-annotated ITS2 sequences to 120 

predict the potential ITS2 regions of these candidate sequences, before these ITS2 sequences 121 

could be included into our curated database. For all ITS2 sequences extracted based on the 122 

annotations, quality filter was performed in accordance with criteria as follow (Figure 1A): (1) 123 

length below 100 bp, (2) length above 900 bp, (3) belonging to reduplicate entries, (4) with 124 

more than three ambiguous base pairs, (5) belonging to environment samples or unclassified 125 

samples. The quality control steps filtered ITS2 entries with either low sequence quality or 126 

obscure taxonomy annotation. Also, as there may be retrieval results with key words while 127 

containing no target sequence, which should be screened out. 128 

 129 

Building and applying Hidden Markov Model 130 

Due to the restriction of primers during amplification processes, ITS2 sequences obtained from 131 

the actual experiments usually contain sequences out of both boundaries, namely 5.8S and 132 

28S rRNA genes in eukaryotes. With 1,000 sequences representing clean and complete ITS2 133 

without ambiguous base pairs and out-of-boundary sequences from the data set passing the 134 

quality filter, a Hidden Markov Model of ITS2 sequences was trained through multiple 135 

sequence alignments with MUSCLE(13) (Version 3.8.31) and HMMER3(14) (Version 3.1b2) to 136 

build the model with default parameters. The model was then applied to predict the boundaries 137 

of ITS2 regions(15) of the candidate data set to extract target ITS2 sequences through the 138 

HMMER3 program. Through the search process based on probabilistic inference, those 139 

potential ITS2 sequences in candidate data set could be extracted. These predicted 140 

sequences were also filtered accordance with the criteria as set above. For sequences itself or 141 

whose sub-sequences that do not match the model, they were considered as non-ITS2 142 

sequences and filtered out. 143 

 144 

Metagenomic sample clustering approach to refine the ITS2 sequence database 145 

Raw nucleotide sequences in NCBI might have a problem of their identity: taxonomy 146 
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information recorded of some sequences was not accurate or differed greatly of some 147 

sequences with high similarity. These problems would lead to deviation of organismal 148 

identification and taxonomic classification based on sequence similarity. To realize 149 

fault-tolerance and reduce impact of the problems caused by original data, as well as to refine 150 

the database, sequence clustering approach used in metagenomic sample analysis (namely 151 

the UCLUST algorithm) was introduced (Figure 1B), which was generally used in a different 152 

context to generate clusters of (uncultivable or unknown) microorganisms (Operational 153 

Taxonomical Unit, OTU), grouped by DNA sequence similarity of a specific taxonomic marker 154 

gene(16). In the clustering process, sequences whose similarities above a certain value were 155 

grouped into a cluster expected to belong to the same species or closely related species. 156 

 The sequence cluster procedure was carried out by the UCLUST program (version 157 

v1.2.22q). Sequences were sorted through their length first and processed in order one by one. 158 

If a sequence being processed matched an existing centroid, it was assigned to that cluster, 159 

otherwise it became the centroid of a new cluster(17). The similarity threshold of the ITS2 160 

sequence was set to 0.99, so that highly homologous plant species could be clustered. 161 

 After the clusters were generated each containing highly similar sequence, we have 162 

performed further filtration for each cluster. Sequences whose phylogenetic relationships of 163 

species annotated diverging obviously in a cluster would be processed by the principle that 164 

isolated sequences (below 10% of the total sequences in the cluster) would be filtered while a 165 

dominant species in a majority number (above 90%) of the total sequences in the cluster 166 

would be retained. Finally, sequences with inaccurate annotations were filtered out. 167 

 168 

Deployment and parameter setting of multiple search engines 169 

As the taxonomic classification of applying the database was based on sequence similarity 170 

search, for the consideration of high accuracy and efficiency, multiple search engines were 171 

designed as Figure 1E. For alignment-based BLAST(18) working in QIIME(19), data was 172 

formatted as two separated files containing sequences and taxonomy information, respectively. 173 

The mapping relation of ITS2 sequences and their species information was assigned. An 174 

efficient algorithm of sequence search, k-mer based Kraken(20), a fast and accurate algorithm 175 

initially used for assigning taxonomic labels to metagenomic DNA sequences, was also 176 
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applied as an efficient species classification method. The core of Kraken was a database 177 

containing records consisting of a k-mer and the LCA (the least common ancestor) of all 178 

organisms whose genomes contain that k-mer(20). Sequences were classified by querying the 179 

database for each k-mer in a sequence, and then using the resulting set of LCA taxa to 180 

determine an appropriate label for the sequence. As for Kraken, data was formatted (aligned to 181 

generate k-mers contained within the database used for Kraken) with built-in commands, and 182 

the NCBI taxonomy database was adopted as taxon information (mapped to k-mers with the 183 

GI number) for the construction of the Kraken custom database. 184 

 185 

Database Comparison 186 

With the existing ITS2 databases (Table 1) as reference, the performance of Holmes-ITS2 187 

database was tested from three aspects, including accuracy, efficiency and data coverage. For 188 

accuracy test, considering that the existing two databases couldn’t support submission of 189 

batch data (specifically, one sequence once submission of TCMBarcode and five of ITS2 190 

Ribosomal RNA Database), only a small number (1,000 entries) of raw ITS2 sequences was 191 

picked at random from NCBI for testing a purpose. To test and compare the accuracy rate of 192 

the three databases, the whole dataset was inputted to the taxonomic classification pipeline of 193 

Holmes-ITS2 (Figure 1D) to get the classification result, and for the online databases, test 194 

dataset was submitted manually by the maximum amount of data acceptable to the database 195 

batch after batch and results were recorded. 196 

 197 

Table 1. Existing databases selected for database comparison. 198 

Existing Database Website 
References or 

annotations 

ITS2 Ribosomal 

RNA Database 
http://its2.bioapps.biozentrum.uni-wuerzburg.de/ 

(12) 

TCMBarcode 

Database 
http://www.tcmbarcode.cn/en/ 

(11) 

 199 

For efficiency test, different amount of raw ITS2 queries (from 100 to 200,000 queries) as test 200 
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datasets were obtained from NCBI. Time cost of two main sections of the identification process, 201 

including the HMM (Hidden Markov Model) prediction and classification of target sequences by 202 

different search engines was recorded under different data size to make the horizontal and 203 

vertical comparison and evaluate the overall identification speed of different databases. 204 

 For data coverage of databases, to gather statistics, the number of entries was counted 205 

directly for the Holmes-ITS2, and data was collected from the ITS2 Ribosomal RNA website 206 

and the TCMBarcode website (Table 1), respectively. 207 

 208 

Case study in TCM research 209 

As a typical plant mixed system in practical application, TCM preparations contain medicinal 210 

plants as the main raw materials. While misidentification of closely related species, erroneous 211 

substitution with other herbs or intentional adulteration would reduce the efficacy or harm to 212 

human beings, which were serious security issues. Thus, accurate identification of medical 213 

materials was an essential step to reduce or avoid the consequences of such problems. 214 

Accurate analysis of biological components of TCM preparations depended on high accurate 215 

identification of DNA-based markers. To measure the identification performance of actual TCM 216 

preparations of Holmes-ITS2, a case study was carried out based on the sequencing data of 217 

our previous research (21), which contributed to analysis the biological ingredients of a 218 

classical TCM preparation Liuwei Dihuang Wan (LDW). 219 

The identification was carried on the 454 sequencing data included ITS2 sequences of 3 220 

biological replicates of a reference (RE) and 9 specimens from 3 manufacturers (MH, MS and 221 

MT) each with 3 batches (A, B and C). The quality control was performed as the previous 222 

study using Mothur(22) (version 1.39.5). Sequences whose length below 150 bp and average 223 

quality score below 20 in each 5 bp-window rolling along the whole read were discarded. 224 

Those sequences containing uncorrectable barcodes, primer mismatches, ambiguous bases 225 

and homopolymer runs more than 8 bases were also removed from the datasets. With reads 226 

sorted by tag sequences, they were then identified in accordance with the pipeline of 227 

Holmes-ITS2 and summary and statistics on the results were made finally to compare the 228 

biological components of LDW specimens commercially available. In order to ensure the 229 
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consistency of the identification criteria with the previous study, ITS2 sequences for which the 230 

corresponding possible species was evidenced by 3 or less reads were filtered and BLAST 231 

search was performed with the E-value threshold set to 1E-10. 232 

 233 

Construction of web service 234 

In order to facilitate the utilization of the Holmes-ITS2 species identification services, the web 235 

service of Holmes-ITS2 taxonomy identification system was designed and built (Figure 1D) 236 

based on a high-performance computing platform. The web service features including species 237 

ITS2 sequence browsing and multi-search engines for homology search of existing sequences 238 

(Figure 1E). 239 

 The underlying infrastructure of the web service was based on the typical LNMP 240 

architecture and the PHP framework Laravel. The running mechanism (Figure 1D) was that as 241 

a batch of fasta sequences of a TCM preparation sample was pasted as input (data in a 242 

submission to the web server was regarded as a sample), HMM model was applied to predict 243 

the ITS2 region of each sequence (Originally, it was supposed that the ITS2 region was a part 244 

on the sequence to be queried). Target ITS2 sequences would be extracted from raw queries 245 

before they will be passed to the search engine selected. For each sequence failed to be 246 

predicted, the raw sequence would also be passed to the search engine, and it would try to 247 

identify the taxonomy of the sequence. After the identifications of all sequences were 248 

completed, an analysis report would be shown including taxonomy classified of each 249 

sequence and the statistics results of species constituents of the sample (including 250 

genus-level and species-level results). 251 

 252 

Backend data update mechanism 253 

As the development of high-throughput sequencing technology, nucleotide data of species 254 

which TCM preparations comprise was exploding. In order to maintain maximum data 255 

coverage, to be specific, the plant species coverage, the data update mechanism was 256 

designed. For a defined period (usually every six months), new ITS2 sequences released on 257 

the NCBI nucleotide database would be extracted (entries sorted by ‘Data Released’) and 258 

processed in accordance with the methods designed and standards set as explained 259 
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previously. Consistency of newly released data would be ensured through the metagenomic 260 

sample clustering approach with all data that was already in the database. Finally, new entries 261 

meeting the standard would be appended into Holmes-ITS2.  262 

With updates performed periodically, newly released raw ITS2 sequencing data could be 263 

possessed and be included into Holme-ITS2 to maximize data coverage and database 264 

availability. 265 

 266 

RESULTS 267 

Quality filtration improves the sequence quality 268 

The current dataset for plant DNA-based marker based on ITS2 consisted of 169,950 269 

sequences in genbank format from the NCBI nucleotide database in April 2016. With the 270 

annotation information and the predictions by the HMM model. Out of these sequences, 271 

162,544 sequences’ (96.78% of raw data) ITS2 region was extracted (Figure 2A and Figure 272 

2C). After all quality filtration steps, 986 sequences (0.58%) with more than three ambiguous 273 

base pairs, 953 reduplicate sequences (0.56%), 565 sequences (0.33%) with bad annotation, 274 

including “environmental samples” or “unclassified”, and 1190 sequences (0.7%) with length 275 

above 900 bp or below 100 bp (accordance with Figure 2B, 99.26% of the total that included 276 

complete or partial sequences distributing in the limited region) were screened. In terms of the 277 

length of ITS2 sequences, which mainly distributed throughout the region from 200 base pairs 278 

to 300 base pairs with the peak located at the sequence length of 221 base pair, the interval 279 

cut-off was set from 100 base pairs to 900 base pairs, expected for full-length ITS2 and better 280 

performance of the cluster analysis. Overall, the maximum of data loss occurred in the 281 

trimming procedure of candidate entries with unclear annotation of gene position carried out 282 

manually (2.50%) while the minimum in the filter of entries with imprecise taxonomy annotation 283 

(0.35%), as each percentage counted was based on the result of the previous procedure. 284 

Finally, 158,850 sequences (93.5%) were retained for cluster analysis. 285 
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 286 

Figure 2. Statistics results of for each step in the procedure of data processing and 287 

sequence length distribution. (A) The number located on the left of the vertical line above 288 

the arrow represents the initial number of queries in each processing step. Pie chart displays 289 

the composition and change of the dataset during each sub-step of processing. Red fan 290 

representing the percent of retained queries, blue fan of candidate queries which would be 291 

treated in the next step (which might be filtered) and blank fan of queries filtered within the step. 292 

(B) The statistics result of length distribution of ITS2 sequences extracted and the filter 293 

thresholds, between which there were more than 90% of total sequences. The length of 294 

abscissa axis was displayed as the logarithm of the actual length to base 4 (C) Stacked 295 

column chart displaying the number of entries and its trend over the processing procedures. 296 

 297 

Hidden Markov Model further improves the quality of entries 298 
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1,000 high-quality sequences were selected from the data set after the quality filter to perform 299 

multiple alignments with MUSCLE program. These sequences would meet the following 300 

requirements: (a) complete ITS2 sequence with length in range from 200 bp to 300 bp, (b) 301 

without ambiguous base pairs, and (c) with clear taxonomy annotation,. An HMM model was 302 

constructed for ITS2 from the alignment result with HMMER. The candidate dataset after 303 

manual pick, which has to lack of the ITS2 gene annotation, was predicted by the HMM model 304 

to extract potential ITS2 sequences for maximum utilization of the data. By utilizing the trained 305 

model on the 13,116 candidate queries, 75.87% (9,951) potential ITS2 sequences were 306 

predicted based on the HMM model (Figures 2A and 2C), which has actually improved the 307 

availability of the overall dataset. 308 

 309 

Metagenomic sample clustering approach refines the sequence set 310 

According to the principle that sequences with high similarity of the same gene belong to the 311 

same or closely related species, a metagenomic clustering analysis based on sequence 312 

similarity was carried out on the dataset after quality filter by UCLUST program (Figure 1B). 313 

With the threshold of sequence similarity set to 0.99 (sequences with similarity above 0.99 314 

would be assigned to the same cluster), 36,765 clusters were aggregated. In theory, 315 

sequences within the same cluster should belong to the same or closely related species 316 

(belonging to the same genus). By careful manual check, 913 sequences with taxonomy 317 

annotated not correspond to the taxonomy represented by most sequences (over 90%) in their 318 

clusters were screened out (Figures 2A and 2C), which may have influence on the 319 

classification. Finally, sequences that were left were highly consistent within each cluster, and 320 

a refined and highly consistent dataset was obtained. 321 

 322 

After the processing and filtering procedures, there were 157,937 clean plant ITS2 sequences 323 

(92.93% of raw data) with high-quality bases and taxonomy annotations. The taxonomy 324 

hierarchical structure to the database was shown as Figure 3, in which there were 2 phyla, 38 325 

classes, 169 orders, 501 families, 8,385 genera and 65,281 species, uniquely. 326 

 327 
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Multiple search engines improve search accuracies 328 

Two search engines were deployed for organismal identification and taxonomic classification 329 

with the database (Figure 1E). For the BLAST working in QIIME, an in-house script was used 330 

to format the data in order to enable the software to invoke directly. For the Kraken custom 331 

database, NCBI taxonomy containing the GI number to taxon map, as well as the taxonomic 332 

name and tree information was downloaded in September 2016. The database was built by 333 

the built-in command of Kraken. And it was noted that when the k-mer was adjusted to 31-mer 334 

it showed the relatively best performance with the proportion of sequences unclassified rising 335 

slightly (Figure 4). As a result, for the best classification accuracy, the k-mer in the Kraken 336 

custom database was adjusted to 31-mer. 337 

 338 

 339 

Figure 3. Classification accuracy comparison based on different k-mers for Kraken 340 

search engine. As the increase of k-mer set for the database, the accuracy of Kraken search 341 

has shown a growing trend at different levels, with a slightly increase for unclassified results, 342 

which was the basis for choosing the final k-mer value. 343 

 344 

ITS2 database and search system comparison 345 

 Classification accuracy: To compare Holmes-ITS2’s accuracy to the other two databases 346 

(Table 1), 1,000 raw entries as testing dataset were selected randomly from NCBI was 347 
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classified and genus-level and species-level accuracies, sensitivity and precision were 348 

measured (Figure 4). Here, as Holmes-ITS2 would only return the best-match taxonomy of a 349 

sequence while there may be more than one result scoring equally of the two databases. It 350 

was considered a right classification only if the real taxonomy of a sequence was in the 351 

best-match result set of the classification. Furthermore, sensitivity referred to the ratio of 352 

queries assigned to the correct genus or species, and precision referred to the ratio of correct 353 

classifications in genus-level or species-level out of the total number of classifications tried. 354 

The classification accuracy, precision and sensitivity of three databases were investigated 355 

in genus-level and species-level, respectively. For genus-level accuracy and precision, 356 

Holmes-ITS2 database with BLAST as search engine appeared to be the highest of all three 357 

databases (Figure 4A), which was up to 95.5%. Furthermore, those of Holmes-ITS2 with 358 

Kraken as search engines were very close to BLAST, which was within 0.1 percent while 359 

TCMBarcode and ITS2 Ribosomal RNA database only did so for 73.4% and 77.6%. For 360 

species-level accuracy and precision, all three databases were not that high of the genus-level, 361 

which was caused by the resolving power of ITS2 itself. Similarly, Holmes-ITS2 database with 362 

BLAST as search engine got the highest classification accuracy and precision (73.1%) among 363 

all three databases with a clear superiority. To be specific, there were 8.6%, 18.9% and 23.6% 364 

gap between that of Holmes-ITS2 with Kraken as search engine, ITS2 Ribosomal RNA 365 

database and TCMBarcode database, respectively. In view of the overall situation, 366 

Holmes-ITS2 showed the best performance in classification accuracy among the three 367 

databases with certain advantages. 368 
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 369 

Figure 4. Comparison of classification accuracy, precision and sensitivity of three ITS2 370 

databases. (A) Genus-level accuracy, precision and sensitivity and (B) species-level accuracy, 371 

precision and sensitivity were shown for three databases. For each of the horizontal histogram, 372 

the number within each bar representing the number and rate of sequences classified correctly 373 

in target taxonomy level. For each of the scatter plot, x-axis represents the species 374 

identification precision, and y-axis represents the species identification sensitivity. 375 

 376 

Classification speed: As the increase as the data sizes of recent researches, efficiency 377 

classification in acceptable time was also an important issue to consider. Time cost to the 378 

classification process under a different number of queries was calculated with timing datasets 379 

including the different amount of sequences created with raw queries obtained from NCBI. To 380 

reduce the accidental error, the time cost was measured by averaging the results of tests 381 

under a certain number of sequences repeated 5 times and carried out on the server during 382 

off-hours. For the other two ITS2 databases, since the online service supported only a small 383 
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number of sequences submitted for classification each time, the classification speed test was 384 

only carried out on Holmes-ITS2 in the period of HMM prediction and taxonomy classification 385 

with different search engines. This was also a short board in existing ITS2 databases, which 386 

was not appropriate for actual applications aiming at high-throughput data. 387 

 388 

 389 

Figure 5. Classification speed comparison of Holmes-ITS2 with BLAST and Kraken as 390 

search engines on the test datasets with different number of queries. Two most 391 

time-consuming partsto the classification process, including (A) HMM prediction and (B) 392 

identification with BLAST and Kraken search engines. Each solid horizontal bar represented 393 

the time cost in a procedure of the whole classification under a different number of queries. 394 

Trend lines of time cost of different procedures were shown by broken lines. The classification 395 

time cost of different step remained a linear increase trend in general and thus the time cost 396 

under 1 million and 1 hundred million queries were estimated shown as dotted bars. 397 

 398 

 Classification speed of two main procedures was evaluated as Figure 5. Basically, time 399 

cost of HMM prediction (Figure 5A) and search by BLAST (Figure 5B) showed a linear 400 

increasing trend as the increase with the  number of queries, and averagely, the speeds of 401 

the two procedures were 250 queries and 15 queries per second on our web server. It was 402 

noteworthy that the time cost of classification by Kraken, which didn’t rise significantly in the 403 
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range from the number of queries tested with an average classification speed of more than 404 

6,000 sequences per second. During classification of the small amount of data, the fluctuation 405 

of time cost was caused by that it was far from the maximized classification speed of Kraken. 406 

In general, classification with Kraken had a significant advantage over the legacy BLAST, 407 

especially for the large size of data. Based on the previous result, that was at the expense of a 408 

little of classification accuracy. In conclusion, classification with BLAST could yield a more 409 

accurate result of taxonomy identification, while the use of Kraken would be able to reduce 410 

time consumed greatly by the overall classification procedure, especially for large quantities of 411 

sequence data. 412 

Analysis of data coverage of databases: As the statistics results shown as Figure 6 There 413 

were 2 phyla, 38 classes, 169 orders, 501 families, 8,385 genera and 65,281 species uniquely 414 

in Holmes-ITS2. Compare with ITS2 Ribosomal RNA database (114,733 queries in total 415 

belonging to not only plant species but also animals, etc.) and TCMBarcode (12,221 queries 416 

for not only plant species, both statistics results were obtained in September 2016). 417 

Holmes-ITS2 also had advantages in the overall data coverage of ITS2. 418 

 419 

Figure 6. Comparison of data coverage of three databases and taxonomy hierarchical 420 

structure of the Holmes-ITS2. (A) The number of entries (plant DNA-based marker 421 

sequences) contained in each database (blue) and data component of Holmes-ITS2 (red and 422 

green). (B) From inside to outside of the taxonomy hierarchical tree, each node representing a 423 

taxon with a different level of taxonomy such as kingdom, phylum, class, etc. and each 424 
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interconnect representing an affiliation of the outer node to the inner node. 425 

 426 

Case study in TCM research 427 

For 27 LDW samples(21) we have tested in this study, there were 30,579 ITS2 sequences 428 

passing the quality control, with an average of 1,019 sequences of each sample . With 429 

sequences passing the quality control and sorted by tag sequences, the biological component 430 

identification of each sample based on ITS2 was performed in accordance with the standard 431 

operating procedure of Holmes-ITS2 with BLAST for better identification accuracy. The results 432 

were summarized in Table 2, and it should be noticed that the abundance of a species within a 433 

sample depended on both the amount of biological ingredients in that sample and the quality 434 

and concentration of DNA during the experiment. 435 

In general, compared with the previous identification results based on the raw ITS2 436 

sequences from NCBI as local BLAST database, Holmes-ITS2 database ensured a higher 437 

recognition success rate and resolution. Compared to the previous study, in which all unknown 438 

sequences could be classified at the genus’s level with partial sequences at the species level, 439 

the results of species identification provided by Holmes-ITS2 were almost completely pinned 440 

to the species level (The non-identifiable sequences accounted for only 0.075% of all 441 

sequences, and half of the samples obtained complete species-level identification results). For 442 

example, for sample RE1, the related species Alisma nanum of the prescription species 443 

Alisma plantago-aquatica was detected, which was also detected in RE1’s biologically 444 

repeated samples RE2 and RE3, demonstrating its true presence. Similarly, Castilleja raupii 445 

and Hamamelis japonica were also detected in addition to the previously identified species, 446 

and other samples were similar. This resulted from the high-quality reference sequences 447 

obtained from raw NCBI data processed in the database and the preprocessing of clean ITS2 448 

sequence’s extraction of unknown sequences to be classified through HMM models. In 449 

summary, Holmes-ITS2-based biological ingredient identification of TCM preparation could 450 

achieve higher identification and success rate (The overall identification results could be 451 

accurate to species level with higher resolution of related species) than the direct use of 452 

BLAST to search for the original NCBI genbank database. This contributed to the identification 453 
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of adulterant species and impurities in TCM preparation, demonstrating the availability of 454 

Holmes-ITS2 database in actually researches, and analysis of biological ingredients based on 455 

ITS2 sequences. 456 
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Web service evaluations 458 

The web service of Holmes-ITS2 was accessible at http://its2.tcm.microbioinformatics.org. The 459 

core function of the web service was organism identification and taxonomy classification of 460 

plant species based upon the ITS2 sequence. Namely, plant-related ITS2 sequencing data 461 

submitted and extracted by the HMM model, were retrieved from the background database 462 

through the optional search engine and then species annotation was presented for each 463 

submitted sequence. Each batch of data submitted was treated as a sample, and the service 464 

also provided statistical information of abundance of the species detected for the sample 465 

containing bulk data. Detailed species annotation results were displayed in a tabular form, 466 

supplemented by the statistical charts. The database also provided retrieval and browsing of 467 

the relevant original sequences and multiple query entries to ensure easy access to query, 468 

retrieve and filter information. 469 

The main interface of the web service was shown as Figure 7 with main browse and 470 

search functional pages. In browse page, all species sequences could be browsed, and 471 

their corresponding species’ phylonenetic positions and detailed descriptions were shown 472 

and could be linked-out to  their Wikipedia pages (Figure 7 (A)). In search page, after 473 

submission of multiple sequences through the “Enter Query Sequence” window, selection of 474 

appropriate search engine by switching the label and corresponding DNA barcode dataset as 475 

background dataset, the species identification of the target sequences could be initiated 476 

(Figure 7 (B)). 477 

 Species identification results included the species information for each sequence 478 

displayed in a tabular form, and the species with top ten abundance of the sample at the 479 

taxonomy level of species and genus displayed in tables and pie charts, and showed the 480 

abundance composition of the entire sample (Figure 7 (A)). 481 

 482 
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(A) (B) 

 483 

Figure 7. The interface of the Holmes-ITS2 web services. (A) All species sequences 484 

could be browsed, and their corresponding species’ phylonenetic positions and detailed 485 

descriptions were shown with link-outs. (B) BLAST and Kraken search algorithms were 486 

available and multiple DNA-based markers were optional. 487 

 488 

Evaluation of data updates mechanism 489 

In the last ten years, the number of ITS2 sequencing data rose significantly and steadily 490 

compared with the past and showed a rising trend for future researches (Figure 8). Thus, it 491 

was essential to continue tracking the new data released. With the data update mechanism of 492 

Holmes-ITS2, the data when we have performed our latest update was in May 2017. With the 493 

entries meeting the standards set and refined through the clustering approach, there were 494 

17,436 sequences newly added, which belongs to 7,139 new species. With this update 495 

performed, ITS2 entries in Holmes-ITS2 would keep up to date to ensure the maximum data 496 

coverage. 497 
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 498 

Figure 8. Increase of the number of ITS2 entries in Holmes-ITS2, extracted from NCBI on 499 

yearly basis. Data published (searched with key word ‘ITS2’ in the NCBI nucleotide database) 500 

in the last ten years showed a significant rise compared with the past and a steady upward 501 

trend in the future, and 17,436 entries newly released until May 2017 were covered. 502 

 503 

DISCUSSIONS AND CONCLUSION 504 

Based on the ITS2 sequences of plants, this study constructed a plant DNA-based marker 505 

database (Holmes-ITS2), aiming at organismal identification and taxonomic classification of 506 

plant species or plant mixed systems including but not limited to Chinese herbal medicine or 507 

TCM preparations in actual researches, which is significance in evaluation of the efficacy and 508 

safety of this kind medicine for human use(23). Compared with the existing databases, this 509 

work improved the classification performance in terms of accuracy, efficiency and data 510 

coverage, especially for large amounts of data produced by high-throughput sequencing 511 

technology, providing accurate and high efficient analysis towards plant species identification. 512 

To be specific, with the help of ITS2 HMM model constructed, it would be easier for the 513 

extraction of ITS2 regions of sequences obtained from experiments that aiming at amplification 514 

of the whole ITS fragment. Source of variation within ITS region was mainly depended on the 515 

ITS2, hence accuracy of taxonomy classification based on ITS2 was improved. In addition, the 516 

comprehensive pretreatment of raw entries in aspects of both sequences and taxonomy 517 
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annotations, including strict ITS2 region extraction, etc. made it reliable reference as in the 518 

Holmes-ITS2. In consideration of time efficiency of taxonomy classification in actual use, 519 

multiple search engines were assessed, and the best-performing algorithms were adopted for 520 

the relatively high accuracy and efficiency. In terms of classification accuracy of ITS2 521 

sequences, which was the main concern, Holmes-ITS2 showed certain advantages over the 522 

two existing databases, including TCMBarcode and ITS2 Ribosome Database. In genus’s 523 

level, the accuracy of Holmes-ITS2 was over 17% higher than the two existing databases in 524 

average, while undermost 10% advantage in species-level, which ensured the reliability of 525 

classification results based on Holmes-ITS2. As data generated by next-generation 526 

sequencing technique was booming, which raised a high demand of efficiency of data analysis 527 

strategies, Holmes-ITS2 overcame the short board that existing service’s lacking of handling a 528 

large batch of data supported by the high-performance computing platform. As the test result, 529 

classification time cost could maintain a linear increase trend, which made the time cost 530 

predictable. Overall, Holmes-ITS2 achieved the design goals, including the improvements in 531 

aspects of both accuracy and efficiency basically. 532 

According to the results of classification accuracy of all three databases to be compared, 533 

it was found that the resolving power of taxonomy classification based on ITS2 as nucleotide 534 

DNA-based marker was relatively high to genus level in general (over 94% of Holmes-ITS2). In 535 

pursuit of the species-level precision, the performance of ITS2 as DNA-based marker didn’t 536 

give complete satisfaction. It was inferred that it may be caused by the fact that the average 537 

length of ITS2 sequence was short (about 200 base pairs) so that it couldn’t provide enough 538 

variation in evolution to differentiate partial plant species. The cluster analysis also indicated 539 

that the relatively high similarity between certain species with far phylogenetic relationship. 540 

Therefore, as a supplement, other nucleotide DNA-based markers of plants including 541 

matK(24), rbcL(25), psbA-trnH(26) was planned to be brought into Holmes-ITS2 database as 542 

supplement (there existing such problems, including non-homology (matK) and heterogeneity 543 

that prevent the creation of a universal PCR toolkit (rbcL)). Besides, in consideration of the 544 

actual experiments, combinatorial markers would complement the shortage of each marker, 545 

which lead the discovery of more existing species. Furthermore, to keep up on the latest 546 
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researches and data published to ensure the maximum species coverage, the data update 547 

mechanism would be performed at least once per around half year, and the entire database 548 

and web server would be maintained actively for the maximize real-time availability. 549 

 Our goal for development of Holmes-ITS2 database has been to develop a high accurate, 550 

high efficient and comprehensive species coverage organism identification and taxonomy 551 

classification system with a user friendly and highly available platform (web service). As the 552 

diversity of data and methods, the next step in development of Holmes-ITS2 focuses on two 553 

aspects: (1) collection and processing of DNA-based marker data, including ITS2 and more 554 

nucleotide DNA-based markers as supplement and more accurate and efficient matching 555 

search engines, and (2) the integration of related downstream preliminary statistical analysis 556 

tools. This effort will advance the utility of Holmes-ITS2 and increase its value as a taxonomy 557 

identification platform of plant or plant mixed system, including herbal medicine or TCM 558 

preparations. 559 
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