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Abstract 9 

Motivation: False positive identifications are a significant problem in metagenomics. Spurious 10 

identifications can attract many reads that often aggregate in the genomes. Genome coverage 11 

may be used to filter false positives, but fast k-mer based metagenomic classifiers only provide 12 

read counts as metrics, and re-alignment is expensive. We propose using k-mer coverage, which 13 

can be computed during classification, as proxy for genome base coverage. 14 

Results: We present KrakenHLL, a metagenomics classifier that records the number of unique k-15 

mers as well as coverage for each taxon. KrakenHLL is based on the ultra-fast classification 16 

engine Kraken and combines it with HyperLogLog cardinality estimators. We demonstrate that 17 

more false-positive identifications can be filtered using the unique k-mer count, especially when 18 

looking at species of low abundance. Further enhancements include mapping against multiple 19 

databases, plasmid and strain identification using an extended taxonomy, and inclusion of over 20 

100,000 additional viral strain sequences. KrakenHLL runs as fast as Kraken, and sometimes 21 

faster. 22 
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Availability and Implementation: KrakenHLL is implemented in C++ and Perl, and available 23 

under the GPL v3 license at https://github.com/fbreitwieser/krakenhll. 24 

Contact: florian.bw@gmail.com.  25 

Introduction 26 

Metagenomic classifiers attempt to assign taxon identifiers to each read in a sample. Typically, 27 

this is done using mapping rather than alignment, which returns the read classifications but not 28 

the aligned positions in the genomes (as reviewed by Breitwieser, et al., 2017). However, read 29 

counts can be deceiving. Sequence contamination of the samples - introduced from laboratory 30 

kits or the environment during sample extraction, handling or sequencing - can yield high 31 

numbers of spurious identifications (Salter, et al., 2014; Thoendel, et al., 2017). Having only 32 

small amounts of input material can further compound the problem of contamination. In clinical 33 

diagnosis of infectious diseases, for example, often less than 0.1% of the DNA sequenced is from 34 

microbes of interest (Brown, et al., 2018; Salzberg, et al., 2016). Furthermore, spurious matches 35 

can result from low-complexity regions of genomes, and contamination in the database genomes 36 

themselves (Mukherjee, et al., 2015).  37 

 38 

Such false positive reads typically match only small portions of the genome. Reads from 39 

microbes that are truly present should distribute relatively uniformly across the genome rather 40 

than be concentrated in one or a few locations. Genome alignment can reveal this information. 41 

However, it is resource intensive, requires the selection of specific genomes, and it is difficult to 42 

extrapolate from the alignment of one genome to higher levels in the taxonomic tree. Some 43 

metagenomics methods use coverage information for better mapping or quantification, but 44 

usually require results from much slower alignment methods as input (Dadi, et al., 2017). 45 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2018. ; https://doi.org/10.1101/262956doi: bioRxiv preprint 

https://doi.org/10.1101/262956
http://creativecommons.org/licenses/by/4.0/


Notably, assembly-based methods also work, but only for highly abundant species (Quince, et 46 

al., 2017). 47 

 48 

Here, we present KrakenHLL, a novel method that combines fast k-mer based classification with 49 

fast k-mer cardinality estimation. KrakenHLL is based on the Kraken metagenomics classifier 50 

(Wood and Salzberg, 2014) and implements fast counting of the number of unique k-mers 51 

identified for each taxon using the efficient probabilistic cardinality estimation algorithm 52 

HyperLogLog (Ertl, 2017; Flajolet, et al., 2007; Heule, et al., 2013). The count and percentage of 53 

the taxon’s unique k-mers in the database that are covered by read k-mers can be used to discern 54 

false positive from true-positive sequences. Furthermore, KrakenHLL implements other new 55 

features for better metagenomics classifications: (a) searches can be done against multiple 56 

databases hierarchically, (b) the taxonomy can be extended to include nodes for strains and 57 

plasmids, thus enabling their detection, and (c) database build script enables adding over 100 58 

thousand viral strains from the NCBI Viral Genome Resource (Brister, et al., 2015). Notably, 59 

KrakenHLL, which provides a superset of the information of Kraken, is as fast or faster than 60 

Kraken while using very little additional memory during classification. 61 

Results 62 

KrakenHLL was developed to provide efficient k-mer coverage information for all taxa 63 

identified in a metagenomics experiment. The main workflow is as follows: As reads are 64 

processed, each k-mer is assigned a taxa from the database (Figure 1 (A)). KrakenHLL 65 

instantiates a HyperLogLog data sketch for each taxon, and adds the k-mers to it (Figure 1 (B)). 66 

After classification, KrakenHLL traverses up the taxonomic tree and merges the estimators of the 67 

child taxa to the parent. KrakenHLL reports the number of unique k-mers, and the breadth and 68 
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depth of k-mer coverage for each taxon in the taxonomic tree in the classification report (Figure 69 

1 (C)). 70 

 71 

 72 

Figure 1: KrakenHLL algorithm and report. (A) The taxon mappings for each k-mer of a read are 73 

queried from the database. For each taxon, a unique k-mer counter is instantiated, and the 74 

observed k-mers are added to it. (B)  Unique k-mer counting is implemented with the 75 

probabilistic estimation method HyperLogLog (HLL) with below 1% error in 16KB of memory 76 

per counter. (C) The number of unique k-mers, duplicity (average time each k-mer has been 77 

seen) and coverage are reported for each taxon in the taxonomic tree, enabling assessment of the 78 

classification.  79 

 80 
 81 
Efficient k-mer cardinality estimation with HyperLogLog algorithm  82 
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Exact counting of the number of unique values (cardinality) in the presence of duplicates 83 

requires memory proportional to the cardinality. Very accurate estimation of the cardinality, 84 

however, can be achieved using only a small amount of fixed space. The HyperLogLog 85 

algorithm (HLL), originally described by (Flajolet, et al., 2007), is currently one of the most 86 

efficient cardinality estimators, and lends itself to k-mer counting (Irber Junior and Brown, 87 

2016). The main idea behind the method is that long runs of leading zeros are unlikely in random 88 

hashes. E. g., it’s expected to see every fourth hash start with one 0-bit before the first 1-bit 89 

(012), and every 32nd hash starts with 000012. The algorithm saves a sketch of observed data 90 

based on hashes of the k-mers in 2p one byte registers (in our implementation), where p is the 91 

precision parameter. The relative error of the estimate is 1/sqrt(2p). With p=14, the sketch uses 92 

2"# one-byte registers, i.e. 16KB of space and has a relative error less than 1% (Figure 2). 93 

 94 

Generating the sketch: Each k-mer is first hashed into a 64-bit string H. The sketch starts out in 95 

sparse representation which has an effective p of 25, using 4 bytes per element. See (Heule, et 96 

al., 2013) for more details on the encoding. Once m/4 distinct elements have been observed, we 97 

switch to the standard representation of (Flajolet, et al., 2007): The first p bits of H are used as 98 

index i into the registers M. The later 64-p=q bits are used to define the rank based on the 99 

position of the first 1-bit (or, equivalently, the count of leading zeros plus one). If all q bits are 100 

zero, the rank is q+1. The register M[i] is updated if the rank is higher than the current value of 101 

M[i].  102 

When the read classification is finished, KrakenHLL aggregates the taxon sketches up the 103 

taxonomy tree. Each taxon’s sketch is merged with its children’s sketches. The cardinality 104 

estimate is computed using a recently reported improved method (Ertl, 2017) that does not 105 
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require empirically determined thresholds to account for biases and switching between linear 106 

counting and HLL estimator (Supplementary Figures 1 and 2).  Figure 2 shows the performance 107 

and memory usage of KrakenHLL’s cardinality estimator for up to one million k-mers. Suppl. 108 

Methods Section 1 contains a more in-depth description of the algorithm and implementation.  109 

 110 

 111 

 

P M 
Space 
(kB) 

Rel. 
Error 

10 1024 1 3.25% 
11 2048 2 2.23% 
12 4096 4 1.63% 
13 8192 8 1.15% 
14 16384 16 0.81% 
15 32768 32 0.57% 
16 65536 64 0.41% 
17 131072 128 0.29% 
18 262144 256 0.20% 
25   0.02% 

Figure 2: Cardinality estimation on randomly sampled microbial k-mers using HyperLogLog.  112 

(Left) Standard deviations on the relative errors of the estimate with precision p ranging from 10 113 

to 18. As expected, higher values of p give lower relative error, and no systematic bias is 114 

apparent. Up to cardinalities of about 2p/4 the relative error is near zero, and at higher 115 

cardinalities the error boundaries stay constant. (Right) The size of the registers, space 116 

requirement, and expected relative error for HyperLogLog cardinality estimates with different 117 

values of p. For example, with a precision p=14, the expected relative error is less than 1%. The 118 

counter only requires 16 kB of space, which is three orders of magnitude less than that of an 119 

exact counter (at a cardinality of a million). Up to cardinalities of 2p/4, a sparse representation of 120 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 9, 2018. ; https://doi.org/10.1101/262956doi: bioRxiv preprint 

https://doi.org/10.1101/262956
http://creativecommons.org/licenses/by/4.0/


the counter is used with a higher precision of 25 and an effective relative error rate of about 121 

0.02%. 122 

 123 

Results on simulated and biological data 124 

Simulated test datasets are invaluable in assessing the performance of bioinformatics algorithms. 125 

Read simulators can create arbitrarily complex artificial communities and we know the source of 126 

every read. However, simulated datasets do not necessarily represent biological data. 127 

Specifically, laboratory and environmental contamination, a main reason behind false 128 

identifications in metagenomics samples (Salter, et al., 2014), are hard to model. Biological test 129 

datasets that are generated by mixing bacterial isolates at known quantities, on the other hand, 130 

usually have very few species and limited complexity.  131 

 132 

(McIntyre, et al., 2017) recently reviewed eleven metagenomics classifiers and compiled a list of 133 

simulated and biological test datasets from 16 distinct sources (McIntyre-Mason, Suppl. Table 134 

2). Eleven of these datasets were from biological mock communities. The largest biological 135 

datasets consist of 23 species that were mixed at even proportions (Human Microbiome Project 136 

mock communities, sequenced with Illumina and 454 machines). We tested KrakenHLL on ten 137 

biological and 21 synthetic datasets to see if better separation of false positives and true positives 138 

can be achieved using unique k-mer counts instead of read counts (see Suppl. Table 3). Our main 139 

measure for comparison is the maximum F1 score, defined as 2*precision*recall/(precision + 140 

recall).  141 

 142 
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Unique k-mer count thresholds worked very well in biological datasets, performing better than 143 

the read count threshold in nine out of ten datasets, with a tie in one (Figure 3 and Suppl. Table 144 

3). On average, the maximum F1 was 0.05 higher when using k-mer instead of read thresholds, 145 

improving from 0.87 to 0.92. As expected, the difference was not as clear in simulated datasets, 146 

even though the k-mer count still performed better than the read count. In eight out of the 21 147 

datasets, both metrics performed equally well, as the datasets were easily separated into true and 148 

false identifications. In eight datasets k-mer count achieved better F1 scores, and in five read 149 

count achieved better F1 scores. The average F1 with k-mer count was slightly higher with 0.945 150 

against 0.940. This difference in difference in performance is likely due to simulated datasets 151 

lacking some features of biological data.  152 

 153 

Figure 3: Using unique k-mers as thresholds instead of reads can give higher F1 scores. Each dot 154 

is a dataset described in McIntyre, et al. Excludes (for visual purposes) dataset LC5 of Segata et 155 

al. with a F1 read score of 0.73 and F1 Kmer score of 0.75. 156 

 157 

Figure 4 shows the results on two simulated and one biological datasets. In simple simulated and 158 

biological datasets, the true species often separate nearly perfectly using either a read count or a 159 
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unique k-mer count threshold (Figure 3 (A)). In more complex datasets, however, read count 160 

thresholds often contain more false species than k-mer thresholds (Figure 3 (B) and (C)).  161 

 162 

 163 

Figure 3: Unique k-mer counts separate true identifications better from false ones. The plot 164 

shows the number of reads vs the number of unique k-mers in two simulated and one biological 165 

test datasets. Each point is a species identification. Blue dots are the ‘true’ species, red dots are 166 

false positive or background identifications. (A) Relatively easy case of a simulated test dataset 167 

with 100 genomes. The true and false positives separate nearly perfectly with either read or k-168 
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mer count. (B) Largest simulated test dataset shows better separation by unique k-mer counts. 169 

(C) Largest biological dataset also separates well between true and false positives.  170 

 171 

 172 

Results on biological samples for infectious disease diagnosis 173 

Metagenomics is increasingly used to find species of low abundance. A special case is the 174 

emerging use of metagenomics for the diagnosis of infectious diseases (Simner, et al., 2017; 175 

Zhang, et al., 2015). Host tissue or body fluids are used to find the likely culprit of a disease. 176 

Usually, most (often 95% and more) of the reads match to the host, and maybe 10 to 100 out of 177 

the millions of reads are matched to the target species. Skin bacteria from the patient, physician 178 

or lab personal and other contamination from sample collection or preparation can easily 179 

accumulate a similar number of reads, and thus cloud the detection of the pathogen.  180 

 181 

To assess if the unique k-mer count metric can be used to rank and identify pathogen 182 

identification, we reanalyzed ten patient samples (Salzberg, et al., 2016). (See Supplementary 183 

Methods for details on the database, which also contains over 100 thousand viral strain 184 

sequences.). (Salzberg, et al., 2016) sequenced spinal cord mass and brain biopsies from ten 185 

patients in the intensive care unit, for whom routine tests for pathogens returned inconclusive. In 186 

three out of the ten cases, a likely diagnosis could be made with the help of metagenomics, and 187 

in a fourth case, a diagnosis could be made with an updated database. For confirmation of 188 

metagenomics class, the authors re-aligned pathogen reads to individual genomes.  189 

 190 
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Table 1 shows the results of our reanalysis for the confirmed identifications in the four patients, 191 

including the number of reads and unique k-mers of the pathogen, as well as the number of 192 

covered bases of a re-alignment. Even though the read numbers are low in some cases, the 193 

number of unique k-mers suggests that they are distributed across the genome. For example, in 194 

PT8, 15 reads are matching 1570 k-mers, and re-alignment shows 2201 covered base pairs. In 195 

contrast, Table 2 shows examples of identifications in the same dataset that are not well 196 

supported by a high unique k-mer count.  197 

 198 

Table 1: Pathogen identifications in patients with suspected neurological infections. The 199 

pathogens were identified with as little as 15 reads, but those mapped to a high number of unique 200 

k-mers, indicating random distribution of the reads on the genome. “Bases” are the number of 201 

covered bases in the re-alignment of a selected genome. Interestingly, the k-mer count in PT5 202 

reveals that there seems to be more than one viral strain present, as the k-mers cover more than 203 

one genome.  204 

Sample Name Reads K-mers Bases 

PT5 Human polyomavirus 2 9650 7129* 5130 

PT7 Elizabethkingia genomosp. 3 403 20724 52921 

PT8 Mycobacterium tuberculosis 15 1570 2201 

PT10 Human gammaherpesvirus 4 20 2084 2780 

 205 

Table 2: Dubious identifications have few k-mers. Note that the viral identifications in PT4 and 206 

PT10 stem from non-RefSeq viral genomes form the NCBI Viral Genome Resource. Since the 207 

KrakenHLL reports sequence-level matches, the source genomes are easy to find.  208 
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Sample Name Reads K-mers 

PT3 Clostridioides difficile 122 126 

PT4 Hepatitis C virus 
JF343788.1 Recombinant Hepatitis C virus 

101 3 

PT5 Akkermansia muciniphila 936 136 

PT10 Human betaherpesvirus 5 
JN379815.1 UNVERIFIED: Human herpesvirus 5 
strain U04, partial genome 

63 5 

 209 

Storing strain genomes with assembly project and sequence accessions 210 

Kraken stores a NCBI taxonomic identifier for each k-mer in its database. This strategy worked 211 

well when new taxonomy IDs were assigned to each new microbial strain in GenBank. However, 212 

in 2014 the NCBI Taxonomy project stopped giving new IDs to microbial strains – only novel 213 

species get new taxonomy IDs (Federhen, et al., 2014). New strains, therefore, have the 214 

taxonomy ID of the species, or the taxonomy ID of a strain that was added before 2014. 215 

Microbes that have been intensively surveyed, such as Escherichia coli or Salmonella spp., have 216 

up to hundreds of genomes indexed with the same taxonomy ID, and are thus indistinguishable 217 

by Kraken. The new way of identifying microbial strains is to use the Bioproject, Biosample and 218 

Assembly accession codes (Breitwieser, et al., 2017). KrakenHLL thus adds new nodes to the 219 

taxonomy tree as children of the assigned taxon. A taxonomic node may also be added for each 220 

sequence – e.g. specific bacterial chromosomes or plasmids. Those new nodes in the taxonomy 221 

tree are given taxonomy IDs starting at 1,000,000,000. Having these extended nodes can help 222 

identify specific strains as well as bad database sequences (see Table 2 and Suppl. Table 3). 223 

 224 

Hierarchical read classification with multiple databases 225 
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KrakenHLL allows using multiple databases hierarchically in order of confidence. In the 226 

following example each k-mer is matched first against the HOST, then the PROK, then the 227 

EUK_DRAFT database. 228 

 229 

krakenhll --db HOST --db PROK --db EUK_DRAFT  230 

 231 

Note that all database need to share the same taxonomy database. If taxIDs are added for 232 

genomes or sequences, then it is necessary that the databases are consecutively constructed with 233 

the same taxonomy database. 234 

 235 

Timing and memory requirements 236 

The additional features of KrakenHLL come without a runtime penalty. In fact, due to code 237 

improvements, KrakenHLL can run faster than Kraken especially when most of the reads are 238 

from one species (See Suppl. Table 2 for timings on patient data, Suppl. Table 3 for timings on 239 

the test datasets). On the patient data, the processing speed (base-pairs per minute) was on 240 

average 57% higher with KrakenHLL compared to Kraken, while it was 8% higher. Overall wall 241 

clock time was slower, too, when comparing the runtime of both kraken and kraken-report with 242 

krakenhll (which generates the report with the classification binary). The average additional 243 

memory requirements were less than 1GB. On the patient datasets, the average maximum 244 

memory usage went from 118 to 118.35GB, and for the test datasets, the usage went up from 245 

46.28 to 46.99GB.  246 
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Conclusions 247 

We present a novel method that combines fast k-mer based classification with efficient 248 

cardinality estimation. We demonstrated that unique k-mer counts can help discard false 249 

identifications in real samples. When the reads from a species yield many unique k-mers, we are 250 

more confident that the taxon is truly present, while a low number of unique k-mers suggests a 251 

possible false positive identification. It is important to note that choice of the appropriate 252 

threshold will depend on the application. For example, in infectious disease diagnosis, unique k-253 

mers can be used for ranking of the identifications. Conversely, in microbial ecology, a global 254 

threshold on the number of unique k-mers can be applied at any desired taxonomic rank. We 255 

believe that the ability to summarize to higher levels of the tree is a great advantage of the k-mer 256 

count over using covered bases in a genome alignment. In summary, KrakenHLL gives more 257 

confident identifications by reporting the unique k-mer count and coverage, without any runtime 258 

penalty.  259 
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