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De novo protein structure prediction using ultra-fast
molecular dynamics simulation
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ABSTRACT Modern genomics sequencing techniques have provided a massive amount of protein sequences, but
experimental endeavor in determining protein structures is largely lagging far behind the vast and unexplored sequences.
Apparently, computational biology is playing a more important role in protein structure prediction than ever. Here, we
present a system of de novo predictor, termed NiDelta, building on a deep convolutional neural network and statistical
potential enabling molecular dynamics simulation for modeling protein tertiary structure. Combining with evolutionary-
based residue-contacts, the presented predictor can predict the tertiary structures of a number of target proteins with
remarkable accuracy. The proposed approach is demonstrated by calculations on a set of eighteen large proteins from
different fold classes. The results show that the ultra-fast molecular dynamics simulation could dramatically reduce the
gap between the sequence and its structure at atom level, and it could also present high efficiency in protein structure
determination if sparse experimental data is available.
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tures is lagging behind, and the gap between se-
quences and structures is widening rather than di-
minishing (Marks et al. 2012).

N modern biology and medicine, it is a major chal-
lenge to determine a protein tertiary structure
from its primary amino acid sequence, and it has
significant and profound consequences, such as un-
derstanding protein function, engineering new pro-
teins, designing drugs or for environmental engi-
neering (Rothlisberger et al. 2008; Davis and Baker
2009; Qian et al. 2004). Nowadays, more and more
protein sequences are being produced by genomics
sequencing techniques. Despite tremendous efforts
of community-wide in structural genomics, protein
structures determined by experiments, such as X-
ray crystallography or NMR spectroscopy, cannot
keep the pace with the explosive growth of pro-
tein sequences (Ovchinnikov et al. 2017). Since it

Amino acid sequences contain enough informa-
tion for specifying their three-dimensional structures
(Anfinsen 1972), thus which provides the principle
for predicting three-dimensional structure from se-
quence. Accordingly, in the past decades, compu-
tational prediction of protein structures has been a
long-standing challenge, and a number of compu-
tational methods have been contributed to bridge
the gap, which may be able to be reduced or filled if
the approaches can provide predictions of sufficient
accuracy (Marks et al. 2012). As efficient models,
; X i ) template or homology modeling methods (Sali and
requires numerous time and relatively expensive ef- g1, 4011 1993; Kinch et al. 2016; Zhang et al. 2016)
forts, experimental determination of protein struc- utilize the similarity of the query sequence (target)
to at least one protein of known tertiary structure,
and protocols in these methods enable to accurately
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predict protein three-dimensional conformation from
its amino acid sequence. However, template or ho-
mology models cannot work if there is no deter-
mined structure in the same protein family as that
of the query sequence. Only relying on the amino
acid sequence and no structural template, de novo
approaches depend on an effective conformation-
searching algorithm and good energy functions to
build protein tertiary structures.

Nowadays, de novo predictors remain restricted
to small proteins, and most of them are extremely
difficult to achieve on large proteins because of the
vast conformational space and computational bot-
tlenecks (Das and Baker 2008; Shen and Bax 2015).
Some of these de novo approaches rely on assem-
bling proteins from short peptide fragments, which
are derived from known proteins based on the se-
quence similarity (Kinch et al. 2016; Zhang et al. 2016).
For example, Rosetta utilizes sequence-similar frag-
ments by searching against three-dimensional struc-
ture databases followed by fragment assembly using
empirical intermolecular force fields (Bradley et al.
2005). Although many striking de novo advances
have been achieved, such methods have worked on
smaller proteins that have less than 100 amino acids
(Kim et al. 2009; S6ding 2017), unfortunately, the de
novo structure prediction problem is still unsolved
and presents a fundamental computational challenge,
even for fragment-based methods (Kim et al. 2009).

Here we describe an approach, termed NiDelta,
to predict protein tertiary structure from amino acid
sequence. NiDelta models a protein structure from its
amino acid sequence primarily involving three steps:
(a) predicting torsional angles (¢, ) based on the
convolutional neural network (CNN); (b) capturing
residue contacts based on evolutionary information;
and (c) sampling conformation space by ultra-fast
Molecular Dynamics simulation.

1. Materials and Methods

In this section, the developed NiDelta is described
in details. The framework of NiDelta is illustrated
in Fig. 1. As shown, for a given target sequence,
NiDelta will prepare two main constraints for launch-
ing a coarse-grained molecular dynamics (CGMD)
— Upside (Jumper et al. 2016) for sampling conforma-
tion space. Firstly, we construct a non-redundant
sequence database to building a deep convolutional
neural network (LeCun ef al. 1999) (termed Phsior,
a module in Sibe web-server (?) for predicting tor-

2

sional angles (¢, ) of a given query amino acid se-
quence. Thereafter, for the same sequence, we search
it against UNIREF100 database (Suzek et al. 2015) by
HMMER (Eddy 2011) to obtain an alignment of mul-
tiple sequences. Accordingly, residue contacts are in-
ferred from the multiple sequence alignment, which
encodes co-evolutionary information contributing
to coupling relationship between pairwise residues.
Then the Upside (Jumper et al. 2016) is launched for
protein conformation samplings with the constraints
of predicted torsion angles based on convolutional
neural network and contacts derived from evolution-
ary information.
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Fig. 1 The system flowchart that is used for pre-
dicting protein tertiary structure. At the first stage,
NiDelta constructs both training dataset and MSA
for Phsior and residue-contacts estimator, respec-
tively. The predicted torsion angles (¢, 1) and esti-
mated residue-contacts are used as constraints for
parallelly launching 500 Upside simulations, each of
which starts with an extended model represented
by a simplified structure for sampling its conforma-
tion space.

A. Torsional angles prediction

The benchmark dataset for Phsior is collected from
RCSB PDB library and pre-culled through PISCES.
The dataset is of 50% sequence identity, 1.8 A res-
olution, and 0.25 R-factor (November 6, 2017). In
the dataset, there are 10,586 chains used as the se-
quence library. The experimental values of the (¢, ¢)
angles are extracted by STRIDE program (Frishman
and Argos 1995), and the N- and C-terminal residues
are neglected because of the incompleteness of four
continuous backbone atoms (Wu and Zhang 2008).
Phsior is a real-value predictor developed based on
the convolutional neural network for predicting the
torsion angles (¢, ¢). Briefly, the architecture of Phsior
is illustrated in Fig. 2 (see also Supplementary Meth-
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ods). Phsior extracts three types of sequence-based
features involving position-specific scoring matrices
(PSSM), secondary structure (SS), and solvent acces-
sibility (SA). The PSSM is generated by PSIBLAST
(Altschul et al. 1997) search of the query against a
non-redundant sequence database with 20 log-odds
scores taken at each position. The secondary struc-
ture (SS) is predicted by PSI-PRED (Jones 1999), with
the three states defined as alpha-helix, beta-strand,
and coil. The solvent accessibility (SA) is predicted
by the neural networks (Chen and Zhou 2005). These
three kinds of features will be normalized and used
as inputs of the CNN model.
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Fig. 2 The architecture of Phsior. The feature extrac-
tion stage includes convolutional and max-pooling
layers. The first convolutional layer consists of sev-
eral 5-filters, which slide along the input feature
matrix. The second convolutional layer works on
successive convolutions from previous layers. Fol-
lowing the filters, two fully connected layers are
presented to integrate and make final predictions of

¢ and 9.

Phsior begins with a simplistic baseline to predict
torsion angles (¢, 1) by employing a fixed-size con-
text window of 17 amino acids through two convo-
lutional layers and two fully-connected layers (as
illustrated in Fig. 2). Phsior predicts the torsion an-
gles (¢, ) of the central amino acid via the final
fully-connected layer.

As inputs of the deep network, data is normalized
to the range of 0.0 to 1.0. Then we use a window
size of 17 to include the neighborhood effect of close
amino acids. The data produces a probability map
of 35 x 24. The convolutional layers in Phsior are
to detect recurrent spatial patterns that best repre-
sent the local features, while max-pooling layers are
to down-sample the features for increasing transla-
tional invariance of the network.The fully connected
layers are to integrate for the outputs and then make
the final predictions for the torsion angles (¢, ).

In Phsior, a convolutional filter can be interpreted
as sliding along the input feature matrix, sharing

and/or re-using the same few weights on each lo-
cal patch of the inputs. Fig. 2 illustrates the convo-
lutional layers working on an example amino acid
from training samples. In particular, the first convo-
lutional layer in Fig. 2 consists of a 5-filter which is
repeated several times as it slides along the feature
matrix. Generally, local properties of the input data
are important, the small filters show their capabil-
ity in learning and maintaining information derived
from the amino acid sequence at different scales.

In the output layer of Phsior, sine and cosine
are employed to remove the effect of angle peri-
odicity. Predicted sine and cosine values are con-
verted back to angles by using the equation & =
tan~![sin(«a)/ cos(a)].

Weights of Phsior are randomly initialized accord-
ing to a zero-centered Gaussian distribution with a
standard deviation of 5/v/N (N is the number of
inputs in each layer).

B. Residue contact prediction

Recently, residue-contacts lead de novo prediction in
a fast progress, like direct coupling analysis (DCA)
(Marks et al. 2011; Morcos et al. 2011), protein sparse
inverse covariance (PSICOV) (Jones et al. 2011) or
Gremlin (Balakrishnan et al. 2011; Kamisetty et al.
2013) those are all able to disentangle such indirect
correlations, and extract direct coevolutionary cou-
plings. These have been found to accurately predict
residue-residue contacts — provided a sufficiently
large MSA.

Co-evolutionary information encoded in the
amino acid sequences highly contributes to residue
contacts (Marks et al. 2011; Morcos et al. 2011; Jones
et al. 2011; Balakrishnan et al. 2011; Kamisetty et al.
2013). Accordingly, we estimate pairwise residue
contacts from protein multiple sequence alignment
(MSA). Firstly, we prepared the MSAs for each stud-
ied protein by searching the query sequence against
the UniRef100 database (Suzek et al. 2015) using the
jackhmmer method (Eddy 2011). The obtained MSAs
were trimmed based on a minimum coverage, which
satisfies two basic rules: (1) a single site with more
than 50% gaps across the MSA will be removed; and
(2) the percentage of aligned residues between the
query and the obtained sequence less than a given
threshold will be deleted from the MSA.

After filtering the MSA, we start to estimate cou-
pling scores between pairwise residues according to
the direct coupling analysis (DCA) algorithm (Weigt
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et al. 2009; Morcos et al. 2011; Marks et al. 2011, 2012).
Given the MSA, we can easily compute the single
site frequency f;(A;) and joint frequency fi;(A;, A;).
To maximize the entropy of the observed probabil-
ities, we can calculate the effective pair couplings
and single site bias to meet the maximal agreement
between the distribution of expected frequencies and
the probability model of actually observed frequen-
cies.

Pi(Ai) = A‘Zk,-P<A1’A2’. T IAL) :fl(Al)
Pj(Ai, Aj) = .\ % - P(A1, Az, -+, AL) = fii(Ai A))
kIK=1,]
@

Maximizing the entropy of the probability model,
we can get the statistical model as follows,

1
P(Ay, Ay, -+ ,AL) = exp{ZeU Al,A +Zh

i<j
)
where Z is a normalization constant, e;; (-, -) is a pair-
wise coupling, and #;(+) is a single site bias.
Accordingly, the mathematical definition of the
score in DCA approach is formulated as follows,

Pl](AllA )
>) ©)

DIj= Y Pff(Ai'Af)h‘(fz( A fi(A

Ay Aj=1

where D1Ij; is the direct coupling score between pair-
wise amino acids at the ith and jth sites in the MSA.
The top-ranked set of DI;; are converted to contacts
between pairwise residues (Marks et al. 2011).

C. Ultra-fast molecular dynamics simulation

In the proposed method, we launched a coarse-
grained molecular dynamics simulation (CGMD,
termed Upside) (Jumper et al. 2016) for sampling the
conformation space of a given target sequence. In the
Upside, the model is presented by a reduced chain
representation consisting of the backbone N, C,, and
C atoms. The Upside launches dynamics simulations
of the backbone trace including sufficient structural
details (such as side chain structures and free ener-
gies). The inclusion of the side chain free energy
highly contributes to the smooth the potential gov-
erning the dynamics of the backbone trace (Jumper
et al. 2016).

In this study, the predicted torsion angles (¢, 1)
and the inferred residue contacts are used as con-
straints to run Upside simulations from an extended

4

)

structure. In the Upside, the Miz-Jern potential
is employed without using the multi-position side
chains (refer to (Jumper et al. 2016) for more details).
For the ith residue, we provide a range for both ¢;
and v;, such as ¢; € [¢p} red _ 20°, ¢! ey 20°] and
¥ € [y! 20, 4 ! 4 20°]. This strategy guides
the Upside sample the Ramachandran map distribu-
tion for the secondary structures. On the other hand,
the contacts provide distant constraints for pairwise
residues in spacial, which contribute to sample the
tertiary structures. According to the design of ex-
periment conducted, we select top 2L residue con-
tacts (distant of CB-C between pairwise residues
less than 7.5A) as constraints. The Upside is config-
ured by setting weights for hydrogen-bond energy,
side chain radial scale energy, side chain radial scale
inverse radius and side chain radial scale inverse
energy to -4.0, 0.2, 0.65 and 3.0, respectively. For
each protein sequence, we launched 500 individual
simulations starting from the same extended confor-
mation with a duration time of 500,000 and capture
conformations at every 500 frames.

2. Results and Discussion

As described in the methods, we sought to provide a
template-free prediction system for folding proteins.
The approach only depends on sequence informa-
tion without any structural templates or fragment
libraries. We demonstrate the predictive ability of
the developed system on a set of candidate struc-
tures of proteins over a range of protein size and
different folds. The details of eighteen proteins are
reported in Table 1. As illustrated in the table, we
present the protein name, PDB id in RCSB database,
length of each protein sequence, protein folds, the
number of sequences in each MSA, centroid and best
C,-RMSD with corresponding TM-score (computed
by TMscore software (Zhang and Skolnick 2004)).
All the comparisons of C,-RMSD and TM-score are
computed in full length of each target protein.

We first compare the predictions on the torsion
angles (¢, 1) of the target proteins listed in Table 1
among Anglor (Wu and Zhang 2008), Spider2 (Hef-
fernan et al. 2015), and our model Phsior over the
eighteen target proteins. For a fair comparison, a cri-
terion is defined by the mean absolute error (MAE) to
validate the predicted angles (¢, 1), and the MAE is
to measure the average absolute difference between
the experimentally determined and predicted angles.
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Table 1 Accuracy of predicted proteins.

Protein name L  Fold N’  C,-RMSD’y¢ C,-RMSD%,. Ref. PDB
CrR115 134 «a/f 6.0k 4.57 (0.60) 2.51(0.79) 2lcgA
ER553 141  «/Bf 98k 4.11 (0.67) 3.11(0.76) 2kl1sA
C-H-RAS P21 166 «/Bf 574k 4.08 (0.75) 2.98(0.77) 5p21A
HR2876B 107 a/B 6.9k 4.52 (0.64) 342 (0.69) 2ltmA
CG2496 115 «/Bf 198k 2.80 (0.75) 2.19(0.80) 2kptA
Thioredoxin 106 «/Bf 214k 2.88 (0.73) 212 (0.80) 1rgmA
CheY 130  a/Bp 887k 8.08 (0.57) 4.21(0.64) 1lebkA
Ribonuclease HI 143 «/f 63.8k 9.46 (0.42) 547 (0.56) 1f21A
Isomerase 108 a+pB 684k 5.17 (0.57) 3.34 (0.68) 1r9hA
OR36 134 a/f 6.2k 6.42 (0.47) 4.08 (0.68) 2IciA
MTH1958 136 B 43.9k 7.94 (0.37) 4.77 (0.63) 1tvgA
SgR145 173 «/B 771k 6.87 (0.51) 499 (0.63) 3merA
Tpx 167 a/Bf 185k 3.03 (0.77) 2.38(0.83) 2jszA
YwIE 150 «/B 40.6k 3.42 (0.76) 2.52(0.82) 1zggA
FluA 173 B/a 159k 7.09 (0.50) 5.02(0.59) 1n0OsA
Rhodopsin II 222 x 3.4k 5.68 (0.64) 5.24 (0.65) 2ksyA
Savinase 269 /B 102k 6.83 (0.65) 517 (0.69) 1svnA
MBP 370 wa/B 200k 8.85(0.51) 6.49 (0.64) 1dmbA

7 Protein length.

b Number of sequences obtained by jackhmmer method.
¢ RMSD in full length of the centroid structure of the largest cluster compared to the native shown in

A(TM-score).

4 RMSD in full length of the best structure compared to the native shown in A (TM-score).

Accordingly, the MAE is formulated as follows,

MAE = ~ i(P‘ — E;)?
- N = 1 1

(4)

where N is the number of residues (excluding N- and
C-terminals) in a protein. P; is the predicted value
for ith residue, and E; is the experimental value of
jth residue in the protein.

As illustrated in Fig. 3 (see also Fig. S1), the pro-
posed Phsior and Spider2 (Heffernan et al. 2015) are
in comparable performances on the target proteins
listed in Table 1. They were all better than those of
Anglor (Wu and Zhang 2008). The MAE of torsion
angle (¢, ) predicted by Anglor on each protein was

100,‘ Phsior —e—

Spider2 —e— |
80 | Anglor —e— |
E 60
=
40 ¢ 1
— — —e
20 ,'j:iz:iffk\t<f:>'§f' \.‘<:/,:::>(‘F/4\o,
FR% 5805

Fig. 3 Comparison on the MAE of the predicted
torsion angles (¢, ) among Anglor, Spider2, and
Phsior.
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almost three times of that of Phsior and Spider2, es-
pecially on the transmembrane protein Rhodopsin
II (PDB ID: 2KSY), the difference remains the largest
among all the comparisons. As we know, Anglor is a
combined predictor of support vector machine and
simple feedforward artificial neural network, while
Phsior and Spider2 are based on the deep neural net-
work. Accordingly, the better performances could be
a result of the powerful capability of the deep learn-
ing technique. Although Phsior was slightly better
than that of Spider2 on several benchmark targets, it
seems that Phsior is more stable on the predictions.

Since the residues in a region of protein chain are
more likely to be related than independent amino
acid far away;, this ‘locality” make the prediction abil-
ity of the CNN method more powerful. The CNN
model can capture the dependences of amino acids in
the same chain, which can result in much information
of ‘locality” among resides. Moreover, the proposed
strategy of the predicted torsion angles (¢, 1) can
guide the Upside to efficiently sample conformation
space at high speed. Accordingly, in the developed
system, the predictions of Phsior are preferred and
used as constraints in the Upside.

The quality of the predictions by Phsior is roughly
good to contribute to the constraints for the Upside
simulation, although there were also several not so
good predictions (worse than those of Spider2). How-
ever, this did not mean that we could not simply to
use the predicted torsion angles (¢, ¢) as starting
for the Upside simulation. Instead, we found it effi-
cient to pre-defined a range for each torsion angle
(Supplementary Methods).

We further investigate whether co-evolving se-
quences can provide sufficient information to spec-
ify a good model for assessing blind predictions of
protein tertiary structures close to the crystal struc-
tures. The predicted residue-contacts mostly corre-
lated with the native ones. However, the inferences
from the MSA always included noises and false pos-
itive predictions, which meant that they could not
be simply used for the Upside. Instead, we found
it efficient and important to generate a potential by
sigmoid-like function for the Upside (see also Supple-
mentary Methods).

For the most of 18 proteins, the estimated residue-
contacts include several sparse but informative true
positive predictions, making them useful constraints
for the Upside sampling. Only for the protein OR36
(PDB ID: 2L.CI) did NiDelta fail to infer a residue-

contact map (Fig. S2), this could result from less di-
versity in its MAS. Although the bad residue-contacts
occur, the Upside can robust to the noises to perform
simulation based on Ramachandran map distribu-
tion. This could result from the strategy designed for
the predicted torsion angles (¢, ).

As shown in Fig. 4, nine representative residue
contacts estimated from the MSAs present to com-
pare to the corresponding native ones (see also Fig.
S2). The estimated residue-contacts include noises,
which (significantly incorrect predictions) are high-
lighted in green circles in Fig. 4. For instance, there
are five groups of incorrect predictions (noises) in
the inferred residue-contacts of the HR2876B protein
(PDB ID: 2LTM). The noises possibly led the mis-
folding of the unstructured regions of the protein as
shown in Fig. 6. The similarity can also be found
in the Thioredoxin (PDB ID: 1IRQM) and the YwIE
(PDB ID: 1ZGG) proteins.
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Fig. 4 The predicted residue-contacts for high-
lighted targets. All the residue-contacts (top 2L)
used in the Upside simulations are shown in blue
filled squares. The native and estimated residue-
contacts are in red and blue, respectively. The
dots in green circles are noises (false positive in-
ferences).

Immediately after predicting the torsion angles
and residue-contacts, it is usually straightforward to
assign the ranges for the angles (¢, 1) and the po-
tentials for interactions between pairwise residues,


https://doi.org/10.1101/262188

bioRxiv preprint doi: https://doi.org/10.1101/262188; this version posted April 23, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

respectively. Then we launch the ultra-fast coarse-
grained molecular dynamics (Upside (Jumper et al.
2016)) with the restraints of predicted torsional an-
gles and residue contacts (Supplementary Methods).

For each protein sequence, 500 Upside simulations
(trajectories) were performed, starting from the un-
folded structure. We collected the trajectories for
analyzing, and last 50 structures captured from each
simulation trajectory were selected from 500 trajec-
tories for clustering (total number is 25,000). We
conducted a clustering analysis of the structures us-
ing fast_protein_cluster software (Hung and Samu-
drala 2014) to cluster the structures and calculate
the tightness of those clusters, which represent con-
formational ensembles predicted from each protein
sequence. For further study, centroids of the top 5
clusters were selected as our "blind predicted mod-
els". The clustering results are illustrated in Fig. 5.
The biggest cluster has the strongest tightness on the
most target proteins (except proteins CG2496, CheY,
Ribonuclease HI and Savinase).

8
14 | ]
2lo.ge 08
;0808
00

6 [
4 L
2

Tightness

Fig. 5 Top five clusters of each target proteins listed
in Table 1. The biggest clusters are colored in red,
while other clusters are represented in blue.

To visualize how the structural agreement be-
tween the predicted models and the native struc-
ture, for nine representative cases, we plotted the pro-
teins corresponding to the best predictions against
their C,-RMSD relative to the experimental refer-
ence structures (Fig. 6, and see also Fig. S3). As
illustrated in Fig. 6, structural results of the NiDelta
for nine representative test proteins. In the figure,
ribbon models of the lowest C, — RMSD structure
(green) (calculated with the Upside) superimposed
on the corresponding experimental structure (red).
For example, as an interesting representative, the
C-H-RAS P21 protein p21 (PDB ID: 5P21) involves
in a growth promoting signal transduction process
(Barbacid 1987). As shown Fig. 4(C), although there

1ZGG (2.5A)

1R9H (3.3A) 2JSZ (2.4A)

Fig. 6 Highlighted predicted structures. Visual
comparisons on nine of the target proteins (the na-
tive and predicted structures are in red and green,
respectively).

were noisy predictions in the restraints of torsion an-
gles (¢, ¥) (Fig. 3 and Fig. S1) and residue-residue
contacts (Fig. 4(C)), The best C,-RMSD of 3 A model
of the C-H-RAS P21 protein is in the same fold with
TMscore of 0.76, and also the centroid model of the
largest cluster is blind prediction of C,-RMSD of 4.1
A and TMscore of 0.75, which indicates that the Up-
side can is able to fold a large protein and robust to
the noises although the existing noises may mislead
the simulation in sampling its tertiary structure (e.g.
the prediction of the OR36 protein, see Fig. S2(I) and
S3). As illustrated in Fig. 6(F), the structure of the
Thioredoxin protein (PDB ID: 1IRQM) consists of a
central core of a five-stranded pB-sheet surrounded
by four exposed a-helices (Leone et al. 2004). Al-
though the noises and false positive predictions exist
in residue contacts (Fig. 4), the predicted model of
the best C,-RMSD is 2.1A, and its corresponding TM-
score is as high as 0.8, which mean that the model is
almost structurally identity to the native fold. The
successful predictions can be also found in the cen-
troid model in top 1 cluster of the C,-RMSD is 2.9A
and TM-sore 0.73 (Table 1). The blind predictions
obtained from the clustering results show that most
of the 500 folding simulations converged to similar
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groups with strength tightness (Fig. 5). This could
result from that the Phsior providing more accurate
angles (¢, ¢) help the Upside robust to the noises and
inaccurate information. As shown in Fig. 6(I) (red),
the tertiary fold of the YWIE protein (PDB ID: 1ZGG)
is a twisted central four-stranded parallel S-sheet
with seven a-helices packing on both sides, in which
the active site is favorable for phosphotyrosine bind-
ing (Xu et al. 2006). The results of the YWIE protein in
Fig. 4(I), Fig. 3, and Fig. 5 further demonstrate that
Upside has a strong predictive ability in folding a pro-
tein with inaccurate constraints, even with incorrect
information.

L%

¢
P
[ 5
[
)
L\
\ &

8.9A

Native Best Centroid

Fig. 7 Visual comparisons on three target proteins
with more than 200 residues. The highlighted struc-
tures from left to right are the native, the struc-
tures of the best C,-RMSD, and the centroid of the
biggest cluster, respectively.

Three models (three proteins of more than 200
residues) corresponding to each of the centroid
of the biggest clusters are illustrated in Fig. 7.
The C,-RMSD values of the centroids compared to
the known structures are 5.7A, 6.8A, and 8.9A for
Rhodopsin II, Savinase, and MBP proteins, respec-
tively. The protein Rhodopsin II is a membrane pro-
tein predicted by the proposed system. For the top
ranked predicted model (5.2A C,-RMSD with full
length alignment, as shown in the center in Fig. 7(A)),
the terminal helix is misaligned, but the orientations
of other six helices are in an excellent agreement with
those of the crystal structure. As illustrated in the

right of Fig. 7(B), the centroid model is also mis-
aligned in the terminal helix, but it provided more
structural details as shown in the helices 5 and 6.
The structure of the Savinase protein chosen as the
protein of interests has an a/p fold consisting of 9
helices and 9 strands, which is a representative of
subtilisin enzymes with maximum stability and high
activity (Betzel ef al. 1992). The model of the best
C4-RMSD has correct topography of seven B-strands
and eight a-helices, while there are six g-strands and
seven a-helices in the centroid model. Flexibility in
the conformation occurs in the C-terminal region of
Savinase protein (Betzel et al. 1992), which make the
prediction particularly challenging. As shown, both
the models of the best C,-RMSD and centroid cap-
ture the structural information. As shown in Fig.
7(C), the largest protein tested in the benchmark test
is the maltodextrin binding protein (MBP), which is
from Escherichia coli serving as the initial receptor
for both the active transport of and chemotaxis to-
ward a range of linear maltose sugars (Sharff et al.
1993), with 370 amino acids. It is significantly larger
than proteins that can be predicted by other de novo
computational approaches (Marks et al. 2011). With
the predicted angles (¢, 1) and residue-contacts, the
Upside can achieve a blind model of C,-RMSD 8.9A
and TM-score 0.51, which indicates that the model
is in about the same fold (Zhang and Skolnick 2004)
and efficiently predictive ability of the proposed ap-
proach in the particularly challenging de novo struc-
ture prediction of large proteins. Accordingly, a
strength of the proposed method is demonstrated
here is that, based on the centroids of those top 5 clus-
ters, we can potentially develop iterative predictions
for larger proteins by collecting centroid models and
extracting the informative constraints from previous
round of simulations as refinements.

3. Conclusion

This study presents a way of integrating predicted
torsion angles & residue contacts within an ultra-fast
molecular dynamics simulation (Upside) to achieve de
novo structure prediction on large proteins. We have
tested the proposed approach on the proteins of more
than 100 residues and different folds, and also have
achieved the agreement of the predictions with the
native structures of the benchmark proteins. Statis-
tically determined residue-contacts from the MSAs
and torsion angles (¢, ) predicted by deep learn-
ing method provide valuable structural constraints
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for the ultra-fast MD simulation (Upside). The Up-
side provides a simulation with high computational
efficiency, which allows users predict structures of
large proteins in several CPU hours, get highly ac-
curate models, and details of partial protein fold-
ing pathways. Depending on a portion of structural
constraints predicted and estimated from the amino
acid sequence, the proposed methodology makes the
Upside a perfect computational platform for de novo
structure prediction of large proteins.

Although pairwise couplings statistically inferred
from protein multiple sequence alignment is a break-
through in contribution to computational protein
structure prediction, there are a number of limita-
tions. For example, residue-residue contacts cannot
be estimated if there are no enough as diverse as
possible multiple sequences in an align of a protein
family. Additionally, even when we have sufficient
sequences, the pairwise contacts contain false posi-
tive predictions that may result in incorrectly build-
ing the 3D structure of a protein. Another limitation,
applicable to all existing approaches, is predicting
the torsion angles (¢, ¥). It is challenging to accu-
rately predict torsion angles. Phsior, designed based
on deep convolutional neural network, is able to pre-
dict the angles, but it is difficult to make accurate
prediction of each pair (¢, ). Although we have
provided a strategy to handle the inaccurately pre-
dicted torsion angles and noised residue-residue con-
tacts, work that of more deep network and iteratively
passes information (e.g. averaged torsion angles and
contact maps from top 2 structural clusters) collected
from previous round of predictions to the next round
is currently underway for better predictions of large
proteins.

The predicted models (of the best C,-RMSD and
centroid) are consistent with the crystal structures
of their natives, and the validation of our approach
on eighteen large proteins suggests that the devel-
oped approach is capable in efficiently folding large
protein based on predicted constraints. Accordingly,
we are confident that future refinement of the ap-
proach will be successfully applied to very large
proteins and complexes when experimental con-
straints are available, such as chemical shift, sparse
nuclear overhauser effect (NOE) and cryo-electron
microscopy (cryo-EM) maps. In summary, we intro-
duce a method NiDelta as a de novo prediction system
for large proteins. We hope this approach will find
its place in the fields of both the protein structure

prediction and determination in the future.
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