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Abstract 17	

Comparative genomics sequence data is an important source of information for interpreting 18	

genomes. Genome-wide annotations based on this data have largely focused on univariate 19	

scores or binary calls of evolutionary constraint. Here we present a complementary whole 20	

genome annotation approach, ConsHMM, which applies a multivariate hidden Markov model to 21	

learn de novo different ‘conservation states’ based on the combinatorial and spatial patterns of 22	

which species align to and match a reference genome in a multiple species DNA sequence 23	

alignment. We applied ConsHMM to a 100-way vertebrate sequence alignment to annotate the 24	

human genome at single nucleotide resolution into 100 different conservation states. These 25	

states have distinct enrichments for other genomic information including gene annotations, 26	
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chromatin states, and repeat families, which were used to characterize their biological 27	

significance. Conservation states have greater or complementary predictive information than 28	

standard constraint based measures for a variety of genome annotations. Bases in constrained 29	

elements have distinct heritability enrichments depending on the conservation state assignment, 30	

demonstrating their relevance to analyzing phenotypic associated variation. The conservation 31	

states also highlight differences in the conservation patterns of bases prioritized by a number of 32	

scores used for variant prioritization. The ConsHMM method and conservation state annotations 33	

provide a valuable resource for interpreting genomes and genetic variation. 34	

 35	

Introduction 36	

The large majority of phenotype-associated variants implicated by genome-wide 37	

association studies (GWAS) fall outside of protein coding regions.1 Identifying the causal 38	

variants and interpreting their biological role in these less well understood non-coding regions is 39	

a significant challenge.2 Large-scale mapping of epigenomic data across different cell and 40	

tissue types has been one approach for annotating and interpreting the non-coding regions of 41	

genomes.3–5 Using comparative genomics data to identify regions of evolutionary constraint has 42	

been a complementary approach for these purposes.6–9  43	

In addition to providing evolutionary information, comparative genomics data has the 44	

advantage of providing information at single-nucleotide resolution. Furthermore, it is cell type 45	

agnostic and thus informative even when the relevant cell or tissue type has not been 46	

experimentally profiled.10,11 The most commonly used representations of this information are 47	

univariate scores and binary elements of evolutionary constraint, which are called based on a 48	

multiple species DNA sequence alignment and assumed models of evolution and selection.8,9,12–49	

14 Supporting the importance of these annotations, heritability analyses have recently implicated 50	

evolutionary constrained elements as one of the annotations most enriched for phenotype 51	

associated variants.15 These scores and elements have also been highly informative features to 52	
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integrative methods for prioritizing pathogenic variants.16–19 Further improvements for predicting 53	

pathogenic variants in coding regions have been made to the integrative scores by incorporating 54	

features defined directly from a multiple sequence alignment.20 55	

While highly useful, the representation of comparative genomics information into 56	

univariate scores or binary elements is limited in the amount of information it can convey about 57	

the underlying multiple sequence alignment at a specific base. This limitation has become more 58	

pronounced given the large number of species sequenced and incorporated into multi-species 59	

alignments such as a 100-way alignment to the human genome.21 Approaches have been 60	

developed to associate constrained elements, regions, or individual bases with specific 61	

branches in a phylogenetic tree.22–28 While also useful, such directed approaches are biased to 62	

only representing certain types of patterns present in the alignment. An alternative approach 63	

used for comparative genomic based annotation learned patterns of different classes of 64	

mutations between human and orangutan29, but this approach was only applicable at a broad 65	

region level and only incorporated information from one non-human genome. 66	

Analogous to the many sequenced genomes available for comparative analysis, many 67	

different datasets are available for annotating the genome based on epigenomic data. 68	

Approaches that define ‘chromatin states’ based on combinatorial and spatial patterns in these 69	

datasets have effectively summarized the information in them to provide de novo genome 70	

annotations.4,30–32 Inspired by the success of these approaches, here we develop a method, 71	

ConsHMM, that extends ChromHMM31 to systematically annotate genomes into ‘conservation 72	

states’ at single nucleotide resolution. The conservation states assignments are based on the 73	

combinatorial and spatial patterns of which species align to and which match a reference 74	

genome at each nucleotide in a multiple species DNA sequence alignment. ConsHMM takes a 75	

relatively unbiased modeling approach that does not explicitly assume a specific phylogenetic 76	

relationship between species. The set of conservation patterns ConsHMM can infer are thus 77	

flexible and determined directly from the DNA sequence alignment. 78	
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We applied ConsHMM to assign a conservation state to each nucleotide of the human 79	

genome. These states are able to capture distinct enrichments for other genomic annotations 80	

such as gene annotations, CpG islands, repeat families, chromatin states, and genetic variation. 81	

We demonstrate that the conservation state annotations capture additional information that is 82	

not represented by scores or binary calls of constraint. We also show how the conservation 83	

states enable a deeper understanding of types of bases prioritized by a number of different 84	

scores used for variant prioritization, including those scores that integrate constraint information 85	

with a diverse set of other genomic annotations. Overall, these conservation state annotations 86	

are a resource for interpreting the genome and potential disease-associated variation, which 87	

complement both existing conservation and epigenomic-based annotations. 88	

 89	

Material and Methods 90	

 91	

Modeling conservation states with ConsHMM 92	

ConsHMM takes as input an N-way multi-species sequence alignment to a designated 93	

reference genome. For each base in the reference genome, i, ConsHMM encodes information 94	

from the multiple species alignment into a vector, vi, of length N-1. An element of the vector, vi,j, 95	

corresponds to one of three possible observation for a non-reference species j at position i. The 96	

three possible observations are: (1) the non-reference species aligns with a non-indel nucleotide 97	

symbol present matching the reference nucleotide, (2) the non-reference species aligns with a 98	

non-indel nucleotide symbol present, but does not match the reference nucleotide, or (3) the 99	

non-reference species does not align with a non-indel nucleotide symbol present.  100	

 ConsHMM assumes that these observations are generated from a multivariate HMM 101	

where the emission parameters are assumed to be generated by a product of independent 102	

multinomial random variables, corresponding to each species in the alignment. Formally, the 103	

model is defined based on a fixed number of states K, and number of species in the multiple 104	
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sequence alignment N. For each state k (k = 1,…,K), non-reference species j (j = 1,...,N-1) and 105	

possible observation m (m = 1, 2, or 3 as described above), there is an emission parameter: 106	

pk,j,m corresponding to the probability in state k for species j of having observation m. For each 107	

possible observation m, let Im(vi,j) = 1 if vi,j = m, and 0 otherwise. Let bt,u be a parameter for the 108	

probability of transitioning from state t to state u. Let 𝑐 ∈ 𝐶 denote a chromosome, where 𝐶 is 109	

the set of all chromosomes in the reference genome of the multiple species alignment, and let 110	

Lc be the number of bases on chromosome c. Let ak (k = 1,…,K) be a parameter for the 111	

probability of the first base on a chromosome being in state k. Let sc ∈ Sc be a hidden state 112	

sequence on chromosome c and Sc be the set of all such possible state sequences. Let 𝑐! 113	

denote position h on chromosome c. Let 𝑠!! denote the hidden state at position 𝑐! for state 114	

sequence sc.  115	

 116	

We learn a setting of the model parameters that aims to optimize 117	

𝑃 𝑣 𝑎, 𝑏, 𝑝 =  𝑎!!!
!!∈!!

𝑏!!!!! ,!!!

!!

!!!!∈!

𝑝!!!,!,!
!!(!!!,!)

!

!!!

!!!

!!!

!!

!!!

 

 118	

Once a model is learned, each nucleotide is assigned to the state with maximum 119	

posterior probability. To conduct the model learning and state assignments, ConsHMM calls an 120	

extended version of the ChromHMM31 software originally designed to solve an analogous 121	

problem of annotating a genome into chromatin states based on combinatorial and spatial 122	

patterns of the presence of different chromatin marks. The modeling in ConsHMM differs from 123	

the typical use of ChromHMM in three main respects: (1) the observation for each feature 124	

comes from a three-way multinomial distribution as opposed to a Bernoulli distribution, (2) it is 125	

applied at single nucleotide resolution as opposed to 200-bp resolution, (3) it is applied with 126	

more features than ChromHMM models have used in the past. (2) and (3) raise scalability 127	
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issues in terms of time and memory, which we addressed in an updated version of ChromHMM 128	

(see below). 129	

 To apply ChromHMM in the context of three-way multinomial distributions, ConsHMM 130	

represents the three possible observations at position i for a species j with two binary variables, 131	

yij and zij, corresponding to aligning and matching the reference genome respectively. yij has the 132	

value of 1 if the other species aligns to the reference with a non-indel nucleotide and 0 133	

otherwise. zij has the value of 1 if the other species has the same nucleotide as the reference 134	

sequence and has a value of 0 if the other species has a different nucleotide present than the 135	

reference. In the case in which yij=0, there is no nucleotide to compare to the reference and that 136	

value of the zij variable is considered missing (encoded with a ‘2’ for ChromHMM). If the value of 137	

an observed variable is missing, ChromHMM excludes the Bernoulli random variable 138	

corresponding to the observation from the emission distribution calculation at that position. For 139	

each state k and species j, ChromHMM thus learns two parameters, fk,j and gk,j. fk,j corresponds 140	

to the probability that at a given position in state k, species j aligns to the reference genome with 141	

a non-indel nucleotide that is P(yi,j=1| 𝑠!=k). gk,j corresponds to the probability that at a given 142	

position in state k, species j matches the reference genome conditioned on species j aligning 143	

with a non-indel nucleotide that is P(zi,j = 1| yi,j=1 and 𝑠!=k). This representation is equivalent to 144	

the three-way multinomial distribution, (pk,j,1, pk,j,2, pk,j,3) described above where pk,j,1 = P(yi,j=1, 145	

zi,j=1 | 𝑠! = k), pk,j,2 = P(yi,j=1, zi,j=0 | 𝑠! = k), and pk,j,3 = P(yij=0 | 𝑠! = k), since pk,j,1 = fk,j ×gk,j,, pk,j,2 = 146	

fk,j × (1-gk,j), and pk,j,3 = 1 – fk,j. 147	

 148	

Multiple species sequence alignment choice 149	

Our method and software can be applied to any multiple species sequence alignment 150	

which is available in multiple alignment format (MAF) or which can be converted into this format. 151	

For the results presented here we applied it to the 100-way Multiz vertebrate alignment with 152	

human (hg19) as the reference genome.21,33  153	
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 154	

Scaling-up ConsHMM to single base resolution with hundreds of features 155	

 Since for our application ConsHMM needs to run ChromHMM at single base resolution (‘-b 156	

1’ flag) with 198 features after our binary encoding (2 for each non-human species in the 100-157	

way alignment), we had to address scalability issues in terms of both memory and time. To 158	

address the memory issue we modified ChromHMM to support only loading in main memory 159	

input for chromosomes it is actively processing, as previously ChromHMM would only support 160	

loading all data into main memory upfront. This option can now be accessed in ChromHMM 161	

through the ‘-lowmem’ flag. To reduce the time required we used 12-parallel processors (‘-p 12’ 162	

flag) and we trained on a different random subset of the human genome on each iteration of the 163	

Baum-Welch algorithm. We divided each chromosome into 200kb segments (with the exception 164	

of the last segment of each chromosome which was less than this) in order to form random 165	

subsets of the human genome. We modified ChromHMM to allow training for each iteration on a 166	

randomly selected subset of 150 of these segments (‘-n 150’ flag), corresponding to 30MB per 167	

iteration. We ran this for 200 iterations by adding the ‘-d -1’ flag, which removed one of 168	

ChromHMM’s default stopping criterion based on computed likelihood change on the sampled 169	

data, since the likelihood is now expected to both increase and decrease between iterations as 170	

different sequences are sampled. These new options were included in version 1.13 of 171	

ChromHMM. The unique code to ConsHMM is written in Python. The code of ConsHMM shared 172	

with ChromHMM is written in Java and included with ConsHMM.  173	

 174	

Generating genome-wide annotations  175	

After learning a 100-state model, we used it to segment and annotate the genome at 176	

base-pair resolution into one of the 100 conservation states. Each base in the human genome is 177	

classified into the state with the highest posterior probability. ConsHMM does this by running the 178	

MakeSegmentation command of ChromHMM. Due to computational constraints, the 179	
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segmentation could not be generated for entire chromosomes at once. Instead, we ran 180	

MakeSegmentation on the same 200kb partitioning made for learning the model. We then 181	

merged the resulting files together using ConsHMM’s mergeSegmentation.py command with 182	

slice size parameter set to 200,000 (‘-s 200000’ flag) and the number of states parameter set to 183	

100 (‘-n 100 flag’).  184	

 185	

Computing enrichments for external annotations 186	

All overlap enrichments for external annotations were computed using the ChromHMM 187	

OverlapEnrichment command. OverlapEnrichment computes enrichments for an external 188	

annotation in each state assuming a uniform background distribution. Specifically the fold 189	

enrichment of a state for an external annotation is  190	

 191	

% 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑠 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑠𝑡𝑎𝑡𝑒
% 𝑜𝑓 𝑔𝑒𝑛𝑜𝑚𝑒 𝑓𝑎𝑙𝑙𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑎𝑡 𝑠𝑡𝑎𝑡𝑒

 

 192	

Positional enrichments of states relative to an anchor point from an external annotation 193	

were computed using the ChromHMM NeighborhoodEnrichment command at single base 194	

resolution (‘-b 1’ flag), single base spacing from the anchor point (‘-s 1’) and using the ‘-l’ and ‘-r’ 195	

flags to specify the size of the region of interest around the anchor point. The ‘-lowmem’ flag 196	

was also used for computing the enrichments for OverlapEnrichment and 197	

NeighborhoodEnrichment. 198	

 199	

External data sources for enrichment analyses 200	

The external annotations of repeat elements were obtained from the UCSC genome 201	

browser RepeatMasker track.21,34 We generated an annotation for whether a base overlapped 202	

any repeat element, as well as separate annotations for bases falling in each class and family of 203	
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repeat elements. The gene annotations were obtained from GENCODE v19 for hg1935. CpG 204	

Island annotations were obtained from the UCSC genome browser. Annotations of SNPs with 205	

>=1% minor allele frequency were obtained from the commonSNP147 track from the UCSC 206	

genome browser, which is based on dbSNP build 147. GWAS catalog variants were obtained 207	

from the NHGRI-EBI Catalog, accessed on Dec 5, 2016.36 For annotations of DNase I 208	

Hypersensitive Sites (DHS) processed by the Roadmap Epigenomics Consortium, we used 209	

Macs2 narrowPeak calls.5 The Fetal Brain and HepG2 DHS used were of epigenome samples 210	

E082 and E118 respectively. For the median non-exonic DHS enrichments and ranking of 211	

states in the heritability partitioning analysis we used narrowPeak calls from the ENCODE 212	

consortium.3 In the cases where ENCODE provided more than one replicate for a cell or tissue 213	

type, we used the first replicate. 214	

PhyloP and PhastCons scores and constrained element calls were obtained from the 215	

UCSC genome browser. Assembly gap annotations were obtained from the Gap track from the 216	

UCSC genome browser. The context-dependent tolerance score (CDTS) used was that based 217	

on a cohort of 7784 unrelated individuals, following the analyses in Iulio et al.37, which focused 218	

on this version of the score. The CDTS and variants from this cohort were both lifted from hg38 219	

to hg19 using the liftOver tool from the UCSC genome browser.21  220	

 221	

Choice of number of states 222	

We learned models with each number of states between 2 and 100 states. We set 100 223	

as the maximum number of states we would consider for computational tractability and 224	

maintaining a manageable number of states for analysis. The choice of a maximum of 100 also 225	

corresponds to the number of species used and allows for the possibility of each state to cover 226	

1% of the genome. We analyzed the Bayesian Information Criterion (BIC) for models with each 227	

number of states between 2 and 100, and found that the BIC generally decreases as the 228	

number of states increases in the range considered (Figure S1). The BIC was calculated using 229	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


10	
	

the BIC_HMM function from the HMMpa R package.38 Analyzing the 100-state model’s internal 230	

confidence estimate of its state assignments also supported a larger number of states. 231	

Specifically, for each state in the 100-state model we computed the average posterior 232	

probability of that state at each base in the genome assigned to it, and confirmed consistently 233	

high average posterior probability values in the range [0.92,1.00] with a median of 0.97 (Figure 234	

S2). The posterior probabilities were computed by running the MakeSegmentation command in 235	

ChromHMM with the ‘-printposterior’ flag. We also investigated if additional states in models 236	

with larger number of states were biologically relevant. Specifically, we computed enrichments 237	

for various external annotations for models with each number of states between 2 and 100 to 238	

determine if biologically relevant enrichments were only robustly observed in models with more 239	

than a certain number of states. In the case of CpG islands, we observed that only models with 240	

at least 87 states consistently obtained >15 fold enrichment and only models with at least 95 241	

states consistently obtained >30 fold enrichment (Figure S3). We saw a similar pattern of 242	

increasing enrichments for annotated transcription start sites (TSSs) for models with large 243	

number of states. We therefore decided to analyze the largest model, 100 states, that we were 244	

considering. We note that annotations based on chromatin states used fewer number of states, 245	

but were also defined on fewer features at a coarser resolution and had a less uniform genome 246	

coverage.4,30,39  247	

 248	

State clustering 249	

We clustered the states based on the correlation of vectors containing the values fk,j and 250	

fk,j ×gk,j for each species j defined above. State clustering was performed using the hclust 251	

hierarchical clustering function from the cba R package.40 The leaves of the resulting 252	

hierarchical tree were ordered according to the optimal leaf ordering algorithm41 implemented in 253	

the order.optimal R function from the cba package. We then cut the tree such that the 8 major 254	

groups of states were designated. The full tree is provided in Figure S4. 255	
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 256	

Genome segmentation using uniform transition probabilities 257	

 For analyzing the effect of the transition probabilities on the genome segmentation, we 258	

created a separate model, which was the same model we used in the main analyses, except we 259	

set all transition probabilities to 0.01, corresponding to each state having an equal probability of 260	

transitioning to any state including itself. We then created a new genome segmentation by 261	

running the MakeSegmentation command in ChromHMM with this new model. For each state, 262	

we counted how many of the bases assigned to it in the original annotation were also assigned 263	

to it in the annotation created with the uniform transitions and divided this number by the 264	

number of bases in the state in the original annotation. This calculation provided a fraction from 265	

0 to 1. We also reported the number of segments produced by each model, where a segment is 266	

defined to be one or more consecutive bases all assigned to the same state, such that any 267	

immediately adjacent bases are assigned to a different state or states.  268	

 269	

Gene Ontology enrichments 270	

For each state and each protein coding gene based on GENCODE we computed the 271	

number of bases in that state that are within +/- 2kb of the gene’s TSS. In the case of genes 272	

with multiple annotated TSSs, we used the outermost TSS. We then created a ranking of genes 273	

for every state by sorting the genes in descending order of this number of bases. For each state 274	

we then created a set of 969 genes that represent the top 5% of genes in the state among the 275	

19,397 genes we considered. We performed a Gene Ontology (GO) enrichment analysis 276	

(ontology and annotations files from Nov. 24th, 2016) for the top 5% genes in each state using 277	

the STEM software in batch mode with default options and the set of all genes considered as 278	

background.42 STEM computed an uncorrected p-value based on the hypergeometric 279	

distribution for each term displayed in the figures summarizing the analysis. STEM also reported 280	
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corrected p-values for testing multiple GO terms for a single state based on randomization to 281	

three significant digits, which was less than 0.001 for all p-values mentioned in the main text.     282	

 283	

Transcription factor binding site motif enrichments 284	

 We computed the enrichment of the conservation states within 15 bases upstream and 285	

downstream of the center point of the POU5F1 and STAT known transcription factor-binding site 286	

motifs.43 The enrichment was computed relative to the background regions of the genome that 287	

were used to identify the motifs, which excluded repeat elements, coding sequence, and 3’ 288	

untranslated regions (UTRs). The known1 version of the motifs was used for both motifs.  289	

 290	

Clustering of cell-type specific DNase I hypersensitive site enrichments 291	

For the clustering of DHS analysis, we first computed the enrichments of all conservation 292	

states for DHS for 53 samples processed by the Roadmap Epigenomics consortium5, of which 293	

16 were originally generated by the ENCODE project consortium.3 We then selected the subset 294	

of states that had a fold enrichment of at least 2 in at least one sample, leading to a subset of 21 295	

conservation states. To more directly focus on each state’s relative enrichments across 296	

samples, we log2 transformed each enrichment value, and then normalized the enrichments for 297	

each state by subtracting the mean enrichment across samples and dividing by the standard 298	

deviation. We then hierarchically clustered the states based on the correlation of their 299	

enrichments across samples and hierarchically clustered the samples based on their 300	

correlations across states using the pheatmap R package.44 We also computed for each sample 301	

the fold enrichment of DHS bases for bases in CpG islands, as the ratio between the percent of 302	

DHS bases in CpG islands and the percent of the genome falling in CpG islands. 303	

 304	

Precision recall analysis for recovery of gene annotations and DHS 305	
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We randomly split the 200kb genome segments used for training the model and 306	

segmentation into two halves corresponding to training and testing data. For each target set in 307	

the precision-recall analyses we ordered the ConsHMM states in decreasing order of their 308	

enrichment for the target among the training set bases. We then used that ordering to iteratively 309	

add the testing set bases in each state to form cumulative sets of bases predicted to be of the 310	

target set and computed the precision and recall for them. For each constraint score we 311	

computed the precision-recall curve for predicting the target set in the test data using two 312	

methods. For the first method, we directly ordered bases in descending order of their assigned 313	

score. For the second method, we split the sorted scores into 400 bins such that each bin 314	

contains on average 0.25% of the genome, which was the size of the smallest state of the 315	

ConsHMM model (0.25% of the genome in state 100). Specifically, we assigned all bases in the 316	

genome where the score was not defined to one bin and then divided the remaining bases 317	

uniformly among the 399 other bins based on their score. In some cases score increments were 318	

at the boundary between two bins at their provided floating-point precision, or overlapped 319	

multiple bins. In these cases we uniformly split the target bases assigned to that score 320	

increment into multiple bins proportionally to the overall percentage of the score increment 321	

falling in each bin. We then treated the 400 bins as 400 states and followed the same procedure 322	

described for the ConsHMM states. We also computed the precision and recall of bases in each 323	

constrained element set for predicting the target set on the testing data. For the DHS analyses, 324	

we also separately evaluated recovery of DHS bases when restricting the analysis to non-325	

exonic regions. Additionally, both genome-wide and within non-exonic regions, we evaluated the 326	

recovery of DHS bases when restricting the analysis to bases distal to a TSS, defined as more 327	

than 2kb from a TSS. 328	

 329	

Precision recall analysis for recovery of DHS bases aggregated across cell and tissue types 330	
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 For the analysis of the recovery of DHS aggregated across cell and tissue types we 331	

concatenated DHS from 53 cell or tissue types processed by the Roadmap Epigenomics 332	

Consortium into one annotation in which each combination of chromosome and cell or tissue 333	

type effectively becomes a new chromosome. We then split the concatenated data into training 334	

and testing sets as described above. We computed the enrichments of the ConsHMM states 335	

and scores split into bins as detailed above, but multiplying the size of each state and bin by the 336	

number of DNase I hypersensitivity data sets. The precision and recall values for the ConsHMM 337	

states, constraint scores considered directly, constraint scores split into bins, and constrained 338	

element sets were then computed on the testing data. 339	

 340	

Enrichment analysis for constrained non-exonic elements assigned to phylogenetic branches 341	

 We lifted over the constrained non-exonic elements (CNEEs) from Lowe et al.22 from 342	

hg18 coordinates to hg19, using the liftOver tool from the UCSC genome browser with default 343	

settings.21 These elements were previously partitioned into subsets based on the inferred 344	

branch point of origin in a phylogenetic tree.22 We computed the enrichments of the 345	

conservation states for all the CNEEs and for each subset of the CNEEs separately, using the 346	

OverlapEnrichment command from ChromHMM at single nucleotide resolution (`-b 1` flag) and 347	

using the low memory option (`-lowmem`). We also computed analogous enrichments for 348	

CNEEs overlapping PhastCons elements called on the same 100-way alignment that the 349	

conservation states were annotated based on. To compute the enrichments of CNEEs for bases 350	

in CpG islands we created an annotation consisting of a state for each CNEE subset and one 351	

additional state for bases not assigned to any CNEE. We then ran the same OverlapEnrichment 352	

command as above to compute enrichments of CNEE bases for non-exonic CpG islands, and 353	

non-exonic bases in general. The reported enrichment of CpG islands is the ratio of these two 354	

enrichments, effectively computing an enrichment relative to the non-exonic background. The 355	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


15	
	

set of non-exonic bases for the enrichment analysis was generated by excluding all bases 356	

annotated as an exon in GENCODE v19. 357	

 358	

Heritability partitioning analysis 359	

The heritability partitioning was performed using the LD-score regression ldsc software. 360	

15 We partitioned the PhastCons constrained elements into two halves based on a ranking of the 361	

conservation states. We focused on the PhastCons constrained elements for this analysis, since 362	

it was the only element set defined on the same alignments as our conservation states. We 363	

focused on halves since the LD-score regression estimates can be unstable for annotations 364	

covering too small of a percentage of the genome.15 To determine the two halves we ranked the 365	

conservation states in descending order of median fold-enrichment of non-exonic bases for 366	

DHS from 123 experiments from the University of Washington ENCODE group.3 We then 367	

divided bases in PhastCons elements between the top 7 ranked states (1-5, 8 and 28), which 368	

contain 51.9% of bases in PhastCons elements, and the bottom 93 states, which contain the 369	

other 48.1% of bases in PhastCons elements. We applied ldsc to these two sets for 8 traits (age 370	

at menarche, body mass index (BMI), coronary artery disease, educational attainment, height, 371	

low-density lipoprotein (LDL) levels, schizophrenia and smoking behavior), all of which were 372	

previously considered in heritability partitioning analysis.15 We followed the procedure for 373	

partitioning heritability as done in Finucane et al.15, including using the baseline annotation set 374	

and 500 base-pair windows around annotations to dampen the artificial inflation of heritability in 375	

neighboring regions caused by linkage disequilibrium. The baseline annotation set contains a 376	

range of annotations including DHS. For our analysis, we first removed the constrained element 377	

set already included in the baseline annotation set, then added our two halves of PhastCons 378	

elements and finally ran the ldsc software on the full set of annotations. 379	

 380	

Enrichment analysis for variant prioritization scores 381	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


16	
	

For each variant prioritization score included in the conservation state enrichment 382	

analysis of prioritized bases, we extracted the top 1%, 5% and 10% of all the bases ranked by 383	

each score, both genome-wide and just in non-coding regions. The non-coding regions were 384	

defined as the intersection of where the LINSIGHT and FunSeq2 scores provided a value, as 385	

these two scores were only defined on non-coding regions. This intersection results in a set of 386	

bases covering 90% of the genome that excludes coding regions in addition to other regions 387	

filtered for technical reasons by either of the two methods.19,45 For each score we chose the 388	

score threshold that gave us a size for the top set that was as close as possible to the target 389	

percentage, which did not always exactly match the target percentage due to the precision of 390	

the scores. If a score did not provide a value for a particular base being considered, then that 391	

base was assigned to the lowest value of that score, but would still be counted when 392	

establishing the percentage thresholds. For the scores that provided separate score values for 393	

alternate alleles at a certain position, we used the maximum of the values for all alleles. The 394	

state enrichments were then computed using the OverlapEnrichment command from 395	

ChromHMM at single base resolution (‘-b 1’ flag) and with the low memory option (‘-lowmem’ 396	

flag). For the analysis restricted to non-coding regions, we also computed the enrichment of the 397	

states for this background region using the same command. The enrichment for each score in a 398	

state was then divided by the enrichment of the background region for the state. For the Eigen 399	

and Eigen-PC scores we used version 1.1, for FunSeq2 we used version 2.1.6, and for CADD 400	

we used both v1.0 and v1.4.  401	

 402	

Results 403	

 404	

Annotating the human genome into conservation states 405	

 We developed an approach, ConsHMM, to annotate a genome into different 406	

conservation states based on a multiple species DNA sequence alignment (Figure 1A, 407	
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Methods). We model the combinatorial patterns within the alignment of which species align to 408	

and which match a reference genome, for which we used the human genome. Specifically, at 409	

each nucleotide in the human genome we encode one of three possible observations for each 410	

non-reference species in the alignment: (1) aligns with a nucleotide present that is the same as 411	

the human reference genome, (2) aligns with a nucleotide present that is different than the 412	

human reference genome, or (3) does not have a nucleotide present in the alignment for that 413	

position. We further model these observations as being generated from a multivariate hidden 414	

Markov model (HMM), which probabilistically captures both the combinatorial patterns in the 415	

observations and their spatial context. Specifically, we assume that in each state the probability 416	

of observing a specific combination of observations is determined by a product of independent 417	

multinomial random variables. The parameter values of these multinomial random variables will 418	

differ between states and are learned from the data. After the model is learned, each nucleotide 419	

in the human genome is assigned to the state that had the maximum posterior probability of 420	

generating the observations. 421	

ConsHMM builds on ChromHMM31, which has previously been applied to annotate 422	

genomes based on epigenomic data at 200-bp resolution30, to now annotate genomes at single 423	

nucleotide resolution based on a multiple species DNA sequence alignment (Methods). We 424	

applied ConsHMM to a 100-way Multiz vertebrate alignment with the human genome and 425	

focused our analysis here on a model learned using 100 states in order to balance recovery of 426	

additional biological features and model tractability (Figures 2 and S1-S8, Tables S1 and S2, 427	

Methods). We note that HMMs have previously been used to provide local smoothing of signal 428	

for the task of identifying constrained elements.9,14 We verified that the HMM had a smoothing 429	

effect in our application by comparing to a segmentation derived from a model with the same 430	

emission parameters as our learned model, but that ignored the information in the transition 431	

parameters (Methods). We saw an increase in the number of segments from 889 million to 1.06 432	

billion when not using the transition information, though a large majority of the state 433	
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assignments to individual bases were the same (Figure S9). We illustrate the ConsHMM 434	

conservation state annotations at two different loci showing that different bases that are 435	

associated with calls of evolutionary constraint from existing approaches can have very different 436	

underlying alignment patterns and conservation state assignments (Figures 1B and S10). 437	

Conservation state annotations genome-wide are available online (Web Resources). 438	

 439	

Major groups of conservation states 440	

We hierarchically clustered the conservation states based on their align and match 441	

probabilities, and then cut the resulting dendrogram to reveal eight notable groups of states or 442	

distinct individual states (Figures 2A and S4, Table S3, Methods). We named the resulting 443	

groups based on the aligning and matching properties of major subsets of species for most 444	

states in each group. We also summarized for each individual state the most distal species to 445	

human that had a majority of positions aligning and the closest one that did not, and similarly for 446	

matching (Table S3). The first of these subsets of states was a single state (State 1; 447	

AM_allVert) that showed high align and match probabilities through essentially all vertebrate 448	

species considered. The second subset showed relatively high align and match probabilities for 449	

all mammals and some non-mammalian vertebrates (States 2-4; AM_nonMam). The third 450	

subset showed relatively high align and match probabilities for most if not all mammals, but not 451	

non-mammalian vertebrates (States 5-22; AM_Mam). The fourth subset showed high align 452	

probabilities for many mammalian species, but had low align probabilities for notable species 453	

such as mouse and rat for many of the states in the group (States 23-46; AM_SMam). The 454	

combination of the absence of mouse and rat alignments with the presence of mammals that 455	

are assumed to have diverged earlier is consistent with the previously observed increased 456	

substitution rates for mouse and rat.7 The fifth subset showed high align probabilities for many 457	

mammalian species, but did not show high match probabilities (States 47-63; A_SMam). The 458	

sixth subset showed high align probabilities for most primates, but not for other species (States 459	
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64-89; AM_Prim). The seventh subset showed high align probabilities for at most a subset of 460	

primates (States 90-99; AM_SPrim). The final subset was a single state (State 100; artifact) that 461	

showed a noteworthy pattern of high align and match probabilities for most primates and non-462	

mammalian vertebrates, but low probabilities for non-primate mammals, consistent with a 463	

previous observation that inclusion of non-mammalian vertebrates can be associated with 464	

increased presence of suspiciously aligned regions.46  465	

 466	

Conservation states exhibit distinct patterns of positional enrichments relative to gene 467	

annotations and regulatory motif instances 468	

The conservation states showed strong and distinct positional enrichments relative to 469	

GENCODE35 annotated gene features including transcription start sites (TSS), transcription end 470	

sites (TES), exon start sites, and exon end sites for both protein coding genes and 471	

pseudogenes (Figures 3A-D and S11). Notable positional enrichments were also seen for 472	

regulatory motifs instances (Figure 3E and 3F). Relative to starts of exons of protein coding 473	

genes seven of the states (States 1-4, 7, 28, and 54) had 13 fold or greater enrichment for some 474	

position within 20 base pairs of exon starts, both when considering all such exons and subsets 475	

of exons in specific coding phases (Figures 3A and S11A-C). These seven states were the only 476	

states that had a majority of positions aligning for at least some non-mammalian vertebrates, 477	

while still having a majority of positions aligning for all primates (Figure 2A and Table S3). 478	

Within exons we saw the strongest enrichment for states 1-4 and 54, and among these state 1 479	

showed the strongest enrichment, as expected given its high match probabilities through all 480	

vertebrates (Figures 2B, 3A-B, and S11A-E). Interestingly, state 1 showed very strong 481	

enrichment (>80 fold) in the two nucleotides immediately upstream of the exon start, with the 482	

third upstream nucleotide also having high enrichment (46 fold) (Figure S11C). These three 483	

nucleotide positions correspond to the positions of the canonical 3’ splice site sequence that is 484	

highly conserved throughout vertebrates.47 At the ends of exons of protein coding genes 485	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


20	
	

(Figure 3B), state 1 maintained a >40 fold enrichment for six nucleotides past the end of coding 486	

sequence corresponding to positions of the known canonical 5’ splice site sequence.47 487	

Downstream of the start of protein-coding exons, the enrichment profile for state 1 showed a 3-488	

bp oscillation period, with a dip of enrichment at each 3rd base corresponding to codon wobble 489	

positions. In contrast, states 3 and 54, which were both associated with high align probabilities 490	

through many vertebrates and lower match probabilities, showed the inverse oscillation pattern 491	

to state 1 (Figures 3A and S11A-C).  492	

Relative to TSS of protein coding genes, state 28 had the strongest enrichment reaching 493	

a maximum enrichment 30 fold at the TSS (Figure 3C). State 28 was associated with moderate 494	

align and match probabilities for almost all the species present in the alignment. Consistent with 495	

its enrichment for TSSs state 28 also had the greatest enrichment for CpG islands (32 fold). 496	

However, state 28 also showed a 20 fold enrichment of CpG islands >2kb away from any TSS 497	

of protein coding genes and a 10 fold enrichment for TSS of protein coding genes >2kb away 498	

from a CpG island, suggesting the possibility that both of these features are making a partially 499	

independent contribution to the association, or the presence of additional unannotated TSSs 500	

that are associated with CpG islands.48 Relative to TES of protein coding genes we saw the 501	

enrichment peak for state 2 at almost 12 fold (Figure S11F), which had high align and match 502	

probabilities for almost all vertebrates except for fish. 503	

Relative to pseudogene exon starts and ends, states 100 and 82, both associated with 504	

alignability to distal vertebrates without many mammals closer to human (Figure 2B and Table 505	

S3), had strong enrichments peaking at greater than 100 and 38 fold respectively (Figure S11G 506	

and S11H). These two states also showed the greatest enrichment relative to TSSs of 507	

pseudogenes peaking at 184 and 68 fold for states 100 or 82 respectively (Figure 3D) and for 508	

TESs of pseudogenes peaking at 199 and 61 fold respectively (Figure S11I).  509	

 Relative to instances of regulatory motifs, different conservation states showed single 510	

nucleotide enrichment variation, often associated with variation in the amount of information in 511	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


21	
	

the positional-weight matrix (Figure 3E and 3F, Methods).43 For example, in the case of the 512	

POU5F1 and STAT motifs we saw state 2 from the AM_nonMam group and state 5 from the 513	

AM_Mam group respectively reach 1.8 fold enrichments, but have lower enrichments (1.4-1.5) 514	

at some nucleotides with lower information content. For the STAT motif, states 55-57, 515	

associated with high align probabilities for most mammals, but high match probabilities only for 516	

a few primates, showed enrichments that peaked at the CG dinucleotide in the center of the 517	

motif, consistent with their genome-wide enrichments for CG dinucleotides (Figures 3E and 518	

S12).   519	

 520	

Enrichment of conservation states for different gene classes 521	

The previous analyses demonstrated that different conservation states have distinct 522	

enrichments in promoter regions of genes. We next investigated whether different conservation 523	

states also exhibit distinct enrichments for different classes of genes after controlling for the 524	

state’s relative preference for promoter regions. Specifically, for each state we determined the 525	

5% of genes with the greatest presence of the state in its promoter region and evaluated Gene 526	

Ontology (GO) enrichments for those genes, revealing distinct enrichment patterns (Figures 4B 527	

and S13, Methods). For example, even among states 1-3, all of which had high alignability 528	

through at least birds and matching through mammals, we observed substantial differences in 529	

their gene preferences. Out of these three states, state 1 (the AM_allVert group) was the only 530	

one enriched for nucleosomes (p<10-41; 10.5 fold), while state 3, which had high matching only 531	

through mammals, was the only one with a significant enrichment for a set of genes related to 532	

sensory perception of smell (p<10-300; 15.5 fold). State 2, which had high align and match 533	

probabilities through all vertebrates except fish, was the state most enriched for cellular 534	

developmental processes (p<10-30; 1.8 fold), which did not show enrichment in state 3. We also 535	

observed notable enrichments for states with overall lower align or match probabilities. For 536	

example, state 89, associated with high alignability and low matching in primates as well as 537	
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some alignability and low matching in non-primate mammals, was the state most enriched for 538	

antigen binding (p<10-14; 6.7 fold). This is consistent with antigen binding being associated with 539	

many species, but fast evolving.49 540	

 541	

Enrichments for repeat elements in conservation states 542	

The conservation states showed a wide range of enrichments and depletions (from 2 543	

fold enrichment to 133 fold depletion) for bases overlapping any repeat element (Figures 2B 544	

and S8).21,34 Of the 25 states that did not have any species outside of primates with a majority of 545	

positions aligning, all but two had an enrichment of 1.55 or greater for repeat elements, while 546	

the other 75 states all either had an enrichment below that or did not show enrichment (Table 547	

S3). The two exceptions were state 89 and state 96, neither of which showed enrichment for 548	

repeat elements. As noted above, state 89 is likely associated with fast evolving bases shared 549	

with some non-primate mammals, as opposed to bases new to primates. State 96 is associated 550	

with assembly gaps (Figure S8). Different repeat classes and families had distinct patterns of 551	

enrichments for different states, even though in some cases the difference in state parameters 552	

was subtle (Figures 4D and S14). For instance, among states in the AM_Prim group, which 553	

primarily differed in terms of the specific combinations of primates with high align and match 554	

probabilities, we found distinct enrichments. Notably, four different states from the group 555	

AM_Prim, 74, 86, 76, and 77, showed maximal enrichments for the DNA, LINE, LTR, and SINE 556	

repeat classes respectively (Figure 4D). State 74, which is characterized by high align and 557	

match probabilities for all primates, had an enrichment of 5.6 fold for DNA repeats, while the 558	

enrichment for the other three classes were between 1.0 and 1.8 fold. On the other hand, state 559	

86, which lacked alignability of a subset of primates, had a 3.0 fold enrichment for LINE repeats, 560	

while the enrichment for the other classes were between 0.6 and 1.6 fold. States 76 and 77 had 561	

3.3 and 4.5 fold enrichments for LTR and SINE respectively compared to 1.1 and 2.1 fold for 562	

SINE and LTR respectively. State 76 and state 77 both had high align probabilities through 563	
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primates up to and including squirrel monkey, with the exception that state 77 lacked alignability 564	

to gorilla. Despite these subtle differences in the alignment probabilities, these states had 565	

substantial differences in their repeat enrichment profiles. 566	

 567	

Relationship of conservation states to chromatin states 568	

We compared our conservation states to annotations of the genome based on a 25-569	

chromatin state model defined on 127 samples of diverse cell and tissue types using imputed 570	

data (Figures 4A and S15).5,39 For each conservation state we determined the median 571	

enrichment of each chromatin state across the 127 samples. Eleven different conservations 572	

states were maximally enriched for at least one of the 25-chromatin states. Conservation state 573	

28 showed the greatest enrichment for any chromatin state, with a 35 fold enrichment for a 574	

chromatin state associated with active promoters, and was maximally enriched for four other 575	

promoter associated chromatin states. Conservation state 1 was maximally enriched for five 576	

chromatin states all associated with transcribed and exonic regions39 (3.8-8.7 fold), which is 577	

consistent with this conservation state being most enriched for exons. Conservation state 2 had 578	

the maximal enrichment for five enhancer associated chromatin states (3.1-4.7 fold), while 579	

conservation state 5 had high enrichments for these states and also had the greatest 580	

enrichment of any conservation state for a chromatin state primarily associated with just DNase 581	

I hypersensitivity (2.5 fold). These and other distinct enrichments of the conservation states for 582	

the different chromatin states highlight that conservation states are able to capture multi-583	

dimensional information in the genome.  584	

 585	

Conservation states capture enrichment patterns of DNase I hypersensitive sites across cell and 586	

tissue types 587	

The previous analysis demonstrated that conservation states can exhibit different 588	

enrichment patterns for different chromatin states. We next investigated whether different 589	
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conservation states also capture distinct enrichment patterns for a chromatin mark across cell 590	

and tissue types. For this we analyzed DNase I hypersensitive sites (DHS) from 53 of the 127 591	

samples considered above for which maps of experimentally observed DHS were available from 592	

the Roadmap Epigenomics Consortium.5 We focused on the 21 conservation states that 593	

exhibited at least 2 fold enrichment in at least one sample (Figure 4C). We then row normalized 594	

the enrichments in order to focus on the relative enrichment patterns across cell and tissue 595	

types (Methods). Hierarchical clustering of the enrichment patterns revealed two major clusters 596	

of states (Figure 4C). One of these clusters contained 14 of the 21 states and was associated 597	

with strong enrichments for fetal related samples. Ten of the states in this cluster have 598	

maximum enrichment for a fetal sample, while the remaining four states have maximum 599	

enrichment for the cell type Human Umbilical Vein Endothelial Cells (HUVEC). The second 600	

major cluster consisted of seven states, all of which were enriched for CpG islands (Figures 2B 601	

and S8). The DHS from samples that showed the greatest enrichments in states in these 602	

clusters also had the greatest enrichment of CpG islands (Figure 4C, Methods), but were 603	

biologically diverse in terms of the type of cell or tissue and could potentially reflect technical 604	

experimental differences.   605	

 606	

Relationship of conservation states to constraint based annotations 607	

We next investigated the relationship of our conservation state annotations with calls 608	

and univariate scores of evolutionary constraint. Specifically, we considered constrained 609	

element sets based on four methods (GERP++, SiPhy-omega, SiPhy-pi, and PhastCons) and 610	

constraint scores based on three methods (GERP++, PhastCons, and PhyloP) publicly available 611	

for hg19 and also defined on Multiz alignments. The PhastCons and PhyloP scores and 612	

elements we compared to were defined on the same 100-way vertebrate alignment. The 613	

available GERP++, SiPhy-omega, and SiPhy-pi score and elements were derived from different 614	

versions of Multiz alignments and only considered mammals.  615	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


25	
	

We consistently found conservation states 1-5 to be highly enriched (>9 fold) for all 616	

constrained element sets (Figures 2B and S16A). These states were also among the top six 617	

states in terms of mean score for constraint scores considered (Figure S16B). Consistent with 618	

this, states 1-5 were the states that had the highest average matching probability across 619	

mammals. Two other states exhibited at least 6 fold enrichment for at least one constrained 620	

element set: states 54 and 100. State 100, associated with putative artifacts, showed high 621	

enrichments for PhastCons elements (15 fold) and high average scores for PhastCons and 622	

PhyloP. This is consistent with this state having high aligning and matching probabilities 623	

primarily in non-mammalian vertebrates and these elements and scores being defined using 624	

such species. State 54 was consistently enriched for all the constrained elements (4-7 fold), but 625	

did not show high mean base-wise scores particularly for the GERP++ and PhyloP scores. This 626	

difference of high enrichment in constrained elements but not base-wise scores is consistent 627	

with state 54 having high alignability through most vertebrates, but low matching outside 628	

primates. More generally, we found that constrained element calls did not have the resolution to 629	

exhibit biologically relevant single nucleotide variation in enrichments around regulatory motifs 630	

and exon start and ends as we saw with our conservation state annotations, with the exception 631	

of those from PhastCons (Figures 3 and S17).  632	

The objective of our conservation state annotations is different than that of binary calls 633	

and univariate scores of evolutionary constraint, which have a more specific and complementary 634	

goal. However, to better understand their relative biologically relevant information we compared 635	

their ability to recover annotated starts and ends of exons and TSS and TES of genes 636	

separately for protein coding and pseudogenes, as there are well established genome 637	

annotations of these features (Figures 5A-C and S18). In almost all cases the conservation 638	

states had greater information available for recovering annotated gene features. The only 639	

exceptions were that PhyloP scores could achieve higher precision at low recall levels for 640	
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protein coding exon starts and ends, and that SiPhy-pi elements had slightly higher precision for 641	

TSS of protein coding genes at their one recall point.  642	

We also compared the ability of conservation states to recover bases covered by DHS, 643	

both genome-wide and restricted to non-exonic bases, and repeated these analyses when also 644	

restricting to bases distal to a TSS (Figures S19 and S20, Methods). When considering DHS 645	

bases in aggregate over 53 cell and tissue types both genome-wide and restricting to non-646	

exonic bases, we found that at the same recall level the conservation states could identify bases 647	

in a DHS at greater precision than all constraint scores considered and PhastCons constrained 648	

elements. GERP++, SiPhy-pi and SiPhy-Omega elements did have higher precision at their 649	

single recall point (Figure S19). Similar results were seen when just considering distal regions, 650	

except for some of the scores in the non-exonic comparison at very low recall levels. The 651	

relative precision at the same recall levels between conservation states and the GERP++, 652	

SiPhy-pi and SiPhy-Omega constrained element sets did not hold for all cell types (Figure S20). 653	

The increase in precision for those constrained element sets in the aggregate evaluation over 654	

constraint scores, PhastCons elements, and ConsHMM annotations might be related to the 655	

coarser resolution at which they were defined (Figure S17). We note that the information about 656	

DHS in the conservation states was complementary to that in constrained element sets, as 657	

evidenced by the substantial variation in DHS enrichments of bases within constrained elements 658	

depending on their conservation state (Figures 5D, S21 and S22). For example, bases in 659	

PhastCons constrained elements falling in 35 different states were depleted for Fetal Brain DHS 660	

in non-exonic regions, covering 10% of PhastCons bases, while bases in PhastCons elements 661	

in 12 other states were over 5-fold enriched, covering 37% of PhastCons bases. Additionally, 662	

we saw cases where certain states had greater enrichments for DHS for their bases not in a 663	

constrained element compared to bases in a constrained element in other states. On the other 664	

hand, constrained element calls offered additional information, as we observed that in most 665	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 17, 2018. ; https://doi.org/10.1101/262097doi: bioRxiv preprint 

https://doi.org/10.1101/262097
http://creativecommons.org/licenses/by-nc-nd/4.0/


27	
	

cases, for a given conservation state, bases that were in a constrained element call had greater 666	

enrichment for DHS than those that were not.  667	

We also analyzed the enrichments of our conservation states for previously defined 668	

nine-subsets of PhastCons constrained non-exonic elements (CNEEs) based on a directed 669	

phylogenetic approach that assigned each element to a phylogenetic branch point of origin 670	

(Figure S23A).22 This demonstrated the heterogeneous nature of some of the resulting 671	

assignments when relying on directed phylogenetic partitioning approaches. For example, 672	

bases in elements assigned to originating at the branch point of the Tetrapod clade showed a 673	

high enrichment (37 fold) for state 2, as would be expected since state 2 is associated with 674	

aligning and matching through all vertebrates except fish, but an even greater enrichment (51 675	

fold) for state 100, associated with putative artifacts (Figure S23A). We also evaluated whether 676	

within non-exonic regions any subset of CNEE assigned to a specific clade exhibits enrichments 677	

comparable to enrichments seen with the conservation states for CpG islands within non-exonic 678	

regions (Figure S23C). The most enriched subset of CNEE bases was only 6.7 fold enriched 679	

compared to the 37.6 fold enrichment observed for state 28 in non-exonic regions, and only 680	

covered 1.9% of non-exonic CpG island bases compared to 12.8% of such bases covered in 681	

state 28. A similar pattern of enrichments was observed when considering only the CNEEs 682	

overlapping a PhastCons element called on the same alignment as the conservation states 683	

(Figure S23B and S23D). These results highlight that the conservation states are able to 684	

capture additional biologically relevant information present in the alignment that is not captured 685	

by directed phylogenetic branch assignments of constrained elements. 686	

 687	

Bases prioritized by different variant prioritization scores have distinct conservation state 688	

enrichment patterns 689	

 In addition to scores defined based on just interspecies constraint, a variety of other 690	

scores have been proposed to prioritize variants, including some based on intra-species 691	
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constraint or integrating inter-species constraint with other genomic annotations. A number of 692	

these scores are widely used, even though a systematic understanding of different types of 693	

bases prioritized by various scores is generally lacking. We leveraged the conservation state 694	

annotations to more systematically understand the bases prioritized by a variety of different 695	

scores in terms of their underlying pattern of conservation. 696	

Specifically, we analyzed the conservation states’ genome-wide enrichments of bases 697	

prioritized by 12-different scores (CADD (v1.4), CDTS, DANN, Eigen, Eigen-PC, FATHMM-XF, 698	

FIRE, fitCons, GERP++, PhastCons, PhyloP, and REMM) to be in the top 1, 5, and 10% of the 699	

genome as well as the enrichment specifically in non-coding regions for those 12-scores and 700	

two additional ones defined only on non-coding regions, LINSIGHT and FunSeq2 (Figures 6A,  701	

6B and S24-S27).8,9,13,16,18,19,37,45,50–54 We observed an overall strong enrichment for bases 702	

prioritized by most scores for a specific set of conservation states. For example, the top 1% 703	

CADD bases showed a 77.2 fold enrichment for state 1, amounting to 46% of the top 1% CADD 704	

bases falling in this state. This enrichment was greater than that observed for any interspecies 705	

constraint score, despite the CADD score being defined on a diverse set of genomic 706	

annotations, including many non-conservation based annotations. There was a general 707	

consistency in states with higher enrichment across the various measures. For example, when 708	

considering the top 1% bases for the genome-wide analysis, the set of states that were among 709	

the top five most enriched by at least one of the 12 scores contained only 13 states. Nine of 710	

these 13 states (states 1-5, 7, 28, 54, 100) were in the top five for at least three scores. 711	

However, there were important differences for the scores in the relative enrichment among 712	

these top states, and in several cases a single score prioritized other states. 713	

One interesting result was the wide disagreement among the scores of the relative 714	

importance of state 2, the most enhancer enriched state, and state 28, the most promoter 715	

enriched state, particularly in non-coding regions. For example, when considering top 1% bases 716	

in non-coding regions, state 2 was the second or third most enriched state for CADD, Eigen, 717	
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FATHMM-XF, GERP++, LINSIGHT, PhastCons, PhyloP, and REMM prioritized variants, with 718	

fold enrichments in the range of 24.9-47.2. On the other hand, state 28 was not one of the top 719	

five most enriched states for any of those scores and its enrichments ranged between 0.3-6.2. 720	

In contrast, for CDTS, DANN, and Eigen-PC state 2 only had enrichments between 0.8-2.1, 721	

while state 28 was the first or second most enriched state for each score, with enrichments 722	

ranging from 7.6-18.6. Also surprising was that DANN showed a depletion for state 2, which 723	

showed high matching through all vertebrates except fish, but enriched for states that were only 724	

associated with subsets of primates. For example, states 92, 93, and 96 did not have an 725	

alignment frequency greater than 0.05 for any species past Gibbon, but were among the top five 726	

states with the greatest enrichments for DANN prioritized variants, with enrichments in the 727	

range 4.2-5.8. None of the other 13 scores considered showed enrichment for these states. This 728	

is despite DANN using the same overall framework as CADD except using a deep neural 729	

network, and previously reporting to be better able to predict the simulated variants used to train 730	

CADD51. We verified that this difference with CADD also held for the original version of the 731	

CADD score that used the same features as DANN (Figure S25). FitCons and FunSeq2 had 732	

more balanced and relatively lower maximum enrichments for states 2 and 28. The FIRE score 733	

was an outlier in that the maximum enrichment it had for any conservation state was only 2.8. 734	

States for which FIRE prioritized bases showed the greatest enrichment included states such as 735	

77, 80, and 85, which only showed substantial alignments among primates. The FIRE score 736	

was trained based on predicting expression quantitative trait loci (eQTL) in lymphoblastoid cell 737	

lines, which is a very different training objective than the other scores considered. It was 738	

previously noted that this led to background selection being the most important feature to this 739	

score.50 740	

There were also strong disagreements about the relative importance of other states 741	

across scores. State 100, associated with likely alignment artifacts, was one such state. For 742	

example, at the top 1% threshold for the non-coding genome analysis, the state was among the 743	
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most enriched states for FATHMM-XF, FitCons, PhastCons and PhyloP with enrichments in the 744	

range 14.7-34.5, while other scores showed more modest enrichments or even depletions, 745	

highlighting differences in the vulnerability of each score to likely alignment artifacts. State 54, 746	

which associated with high aligning through most vertebrates but not matching, was another 747	

state with wide disagreement among scores in the importance of those bases, particularly in the 748	

genome-wide analysis. At the top 1% threshold in the genome-wide analyses, this was the third 749	

most enriched state based on CDTS, Eigen-PC, FIRE, and fitCons, with the enrichment for 750	

fitCons reaching 21.1. In contrast, state 54 was depleted for the top GERP++ and REMM bases. 751	

The high enrichment of fitCons for these bases is expected, as the features it considers lack the 752	

resolution to differentiate the third codon position from the more conserved first and second 753	

codon positions when scoring coding regions. There were also differences in the relative 754	

importance given to state 1. For example, when considering variants genome-wide at the top 755	

1% threshold, nine scores had the strongest enrichment for this state, but EIGEN, EIGEN-PC, 756	

and FIRE did not. EIGEN-PC did show the strongest enrichment for state 1 at other thresholds 757	

and EIGEN did when restricting to non-coding genome at all thresholds. However, their 758	

inconsistent ranking of state 1 is likely reflective of the unsupervised prioritization scheme used 759	

by these scores. Overall, these results show that the ConsHMM state annotations provides 760	

insights into key differences in variants prioritized by various scores by systematically and in an 761	

unbiased way capturing biologically diverse classes of nucleotides at single nucleotide 762	

resolution.  763	

 764	

Enrichment of conservation states for human genetic variation 765	

Previous analyses have found a depletion of human genetic variation in evolutionarily 766	

constrained elements.7 Consistent with that, the greatest depletion (3.3 fold depletion) of 767	

common SNPs from dbSNP is in state 1, the state most enriched for constrained elements. 768	

Interestingly, six states, A_SMam states 55-57 and AM_Prim states 87-89, had enrichments in 769	
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the range 5 to 8 fold for common SNPs. These were also the six states with greatest enrichment 770	

of CG dinucleotides (Figure S12). These six states have in common that they show high align 771	

probabilities for most primates, but low match probabilities for some of those same primates. 772	

These states are thus associated with substantial variation both among primates and among 773	

humans. We observed similar patterns of enrichment for variants identified from whole genome 774	

sequencing (WGS) of a cohort of 7784 unrelated individuals37, with the levels of state 775	

enrichments and depletions increasing with the minor allele frequency (Figure S28).  776	

When analyzing the enrichment of GWAS catalog variants36 relative to the background 777	

of common SNPs we saw opposite enrichment patterns for these states (Figure 6C and 6D). 778	

For example, relative to this background, state 1 was most enriched for GWAS catalog variants, 779	

which is consistent with previous observations of constrained elements enriching for GWAS 780	

variants.7 On the other hand, states 55-57 and 87-89 showed the greatest depletion. These 781	

results suggest that common variants are less likely to be phenotypically significant if they fall in 782	

conservation states most enriched for common genetic variation.    783	

 784	

Constrained element enrichment for partitioned heritability of complex traits depends on 785	

conservation state 786	

Previous analyses have suggested a strong enrichment of constrained elements and 787	

DHS for phenotype heritability.15,55 As we saw large differences in DHS enrichments of 788	

constrained elements depending on the conservation state, we investigated the extent to which 789	

constrained elements in conservation states most enriched for DHS enriched for phenotype 790	

heritability compared to the remaining states. Specifically, we ranked the conservation states in 791	

descending order of their median enrichment for DHS from a compendium of 123 experiments 792	

from the ENCODE consortium, within the non-exonic portion of the state (Figure 2B, 793	

Methods).3 We then partitioned bases in PhastCons constrained elements into two almost 794	

equal size sets based on whether they overlapped one of the top seven ranked conservation 795	
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states (states 1-5, 8, 28) or not. We then computed the heritability for these two sets for eight 796	

phenotypes in the context of a set of baseline annotations that include DHS annotations 797	

(Methods).15 For seven of the phenotypes, we found that bases in constrained elements 798	

overlapping the top seven states had greater enrichment than those in the remaining 93 states, 799	

often substantially so (Figure 6E). These results suggest additional value in the conservation 800	

state annotations for isolating more likely disease relevant variants. 801	

 802	

Discussion 803	

We presented a framework for genome annotation based on comparative genomics 804	

sequence data. Our approach learns a set of conservation states de novo using a multivariate 805	

HMM based on the combinatorial and spatial patterns of which species align and match a 806	

reference genome in a multi-species DNA sequence alignment. We applied this approach to 807	

annotate the human genome at single nucleotide resolution into one of 100 conservation states.  808	

Conservation state annotations exhibited substantial enrichments for a wide range of other 809	

genomic annotations that were not provided to the model in training, thus supporting their 810	

biological significance. Specific conservation states exhibited strong enrichments for various 811	

gene annotations including exons, TSS and TES of genes, while others showed strong 812	

enrichments for specific types of repeat elements. Conservation states showed differential 813	

enrichment patterns for various classes of genes and DHS from multiple cell types, even though 814	

they were defined independently of any functional genomics data. Specific conservation states 815	

exhibited enrichments for common human variants, while a different set of states exhibited 816	

enrichments for variants identified by GWAS relative to common variation. 817	

ConsHMM differs from other comparative genomics based annotation approaches in 818	

several respects. One difference is that it takes an unsupervised approach that does not 819	

explicitly use a phylogenetic tree, except to the extent to which a phylogenetic tree was used to 820	

generate the input multi-species sequence alignment. This leads to relatively unbiased, simple 821	
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and interpretable models. However, many state patterns discovered are consistent with 822	

expected observations from commonly assumed phylogenetic relationships of the species. 823	

While states’ parameters often decreased with divergence time from human, there were a 824	

number of exceptions. Some of these exceptions corresponded to missing specific sub-clades 825	

of species, particularly those with long branch lengths. For example, a number of states were 826	

not represented by mouse and rat, while being represented by more distally diverged mammals. 827	

Other exceptions isolated putative artifacts in the alignments that might otherwise confound 828	

analyses, as we saw for two states heavily enriched for pseudogenes. ConsHMM also differs 829	

from other commonly used modeling approaches in how it explicitly differentiates non-aligning 830	

bases from aligning non-matching bases, which allowed it, for example, to identify states 831	

particularly associated with third codon positions. Another difference between the ConsHMM 832	

annotations and standard constraint measures is that the ConsHMM annotations are defined 833	

directly relative to the variant present in the genome being annotated. When applying 834	

ConsHMM to annotate the human genome, a mutation unique to human would be expected to 835	

have a much larger effect on the ConsHMM annotations than a mutation unique to a single 836	

other species. This would not in general be expected to be the case for constraint measures 837	

that do not differentiate the target genome for annotation from other genomes in an alignment. 838	

An interesting future direction would be to produce and analyze individual specific ConsHMM 839	

annotations. 840	

Our conservation state annotation is complementary to existing binary calls and scores 841	

of evolutionary constraint based on phylogenetic modeling. Both locations called as constrained 842	

and those called as non-constrained are heterogeneous in their assigned conservation state. 843	

Our annotations thus provide additional descriptive information about the conservation patterns 844	

at each base. In terms of information for predicting external annotations, we found that in many 845	

cases the conservation states had greater information than constraint scores or elements. 846	

Notably, our modeling approach identified a conservation state, state 28, associated with a 847	
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pattern of aligning and matching some mammalian and non-mammalian vertebrates, but not 848	

with high probability for any one species. This conservation state strongly enriched for 849	

transcription start sites and CpG islands, and was not well captured by phylogenetic modeling 850	

approaches. For other cases, such as DHS, the relative information depended on the 851	

constrained element set or score being compared. Importantly, we observed that DHS 852	

information provided by the states was complementary to information in the constrained element 853	

calls. We also used the conservation state annotations to systematically understand key 854	

similarities and differences in the patterns of conservation in bases prioritized by a large number 855	

of different variant prioritization scores, including scores based on integrating diverse features 856	

(Figure 6A and 6B). The conservation state annotations provide a powerful framework for 857	

gaining such an understanding, since the corresponding conservation patterns are defined 858	

systematically in an unbiased way, at single nucleotide resolution and capture a diverse set of 859	

biological features. Furthermore, we observed that bases in constrained elements showed 860	

substantially different enrichments for phenotype-associated heritability, depending on their 861	

conservation state. 862	

The conservation states are both inspired by, and provide complementary information to, 863	

existing chromatin state annotation approaches. While the states from the two approaches are 864	

based on very different data and have fundamental differences, they also exhibited substantial 865	

cross-enrichments. In general, conservation states have the advantage of providing information 866	

at single nucleotide resolution, which we demonstrated by showing enrichments patterns in and 867	

around coding exons and regulatory motifs. Conservation states can also provide information 868	

about bases in the genome even if the relevant cell type has not been experimentally profiled, 869	

while chromatin states have the advantage of directly providing cell type specific information.   870	

We expect many applications for the methodology and annotations we have presented 871	

here. While we applied ConsHMM here to one multiple species alignment, a 100-way Multiz 872	

human alignment, the methodology is general, and thus can be readily applied to alignments to 873	
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other species or alignments generated by other methods.26 The annotations we produced serve 874	

as a resource to directly interpret other genomic datasets or variant prioritization scores. They 875	

could also potentially be integrated with other complementary genomic annotations in methods 876	

that produce integrated variant prioritization scores. This work represents a step in the direction 877	

of improving whole genome annotations, which will continue to be of increasing importance 878	

towards understanding health and disease as the availability of whole genome sequencing data 879	

increases. 880	
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 https://github.com/ernstlab/ConsHMM 910	

 DANN score: 911	

 https://cbcl.ics.uci.edu/public_data/DANN/data/ 912	

 EIGEN and Eigen-PC score: 913	

 https://xioniti01.u.hpc.mssm.edu/v1.1/ 914	

 ENCODE DHS:  915	

 http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/ 916	

 FATHMM-XF score: 917	

 http://fathmm.biocompute.org.uk/fathmm-xf/ 918	

 FIRE score: 919	

 https://sites.google.com/site/fireregulatoryvariation/ 920	

 fitCons score: 921	

 http://compgen.cshl.edu/fitCons/0downloads/tracks/i6/scores/ 922	

 FunSeq2 score: 923	

 http://org.gersteinlab.funseq.s3-website-us-east-924	

1.amazonaws.com/funseq2.1.2/hg19_NCscore_funseq216.tsv.bgz 925	
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	 GENCODE v19:  926	

 https://www.gencodegenes.org/releases/19.html 927	

 GERP++ scores and constrained element calls: 928	

 http://mendel.stanford.edu/SidowLab/downloads/gerp/ 929	

 GWAS catalog variants: 930	

 LINSIGHT score: 931	

 http://compgen.cshl.edu/~yihuang/tracks/LINSIGHT.bw 932	

 Motif instances and background: 933	

 http://compbio.mit.edu/encode-motifs/ 934	

 https://www.ebi.ac.uk/gwas/ 935	

 Multiz 100-way alignment to hg19 reference: 936	

 http://hgdownload.soe.ucsc.edu/goldenPath/hg19/multiz100way/  937	

 REMM score: 938	

 https://zenodo.org/record/1197579/files/ReMM.v0.3.1.tsv.gz 939	

 Roadmap Epigenomics DHS: 940	

 http://egg2.wustl.edu/roadmap/data/byFileType/peaks/consolidated/narrowPeak/ 941	

 SiPhy-omega and SiPhy-pi constrained element calls (hg19 liftOver):  942	

	 https://www.broadinstitute.org/mammals-models/29-mammals-project-supplementary-943	

info  944	
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	1099	
	1100	
	1101	
Figure Legends 1102	

Figure 1: Illustration of ConsHMM modeling approach. (A) The input to ConsHMM is a 1103	

multi-species alignment, which is illustrated for a subset of 6 species aligned to the human 1104	

sequence. At each position and for each species ConsHMM represents the information as one 1105	

of three observations: (1) aligns with a non-indel nucleotide matching the human sequence 1106	

shown in blue, (2) aligns with a non-indel nucleotide not matching the human sequence shown 1107	

in yellow, or (3) does not align with a non-indel nucleotide shown in gray. (B) Illustration of 1108	

conservation state assignments at a locus chr22:25,024,640-25,024,812. Only states assigned 1109	

to at least one nucleotide in the locus are shown. Below the conservation state assignments is a 1110	

color encoding of the input multiple sequence alignment according to panel (A). The major clade 1111	

of species as annotated on the UCSC genome browser21 are labeled and ordered based on 1112	

divergence from human. Above the conservation state assignments are PhastCons constrained 1113	

elements and scores and PhlyoP constraint scores. This figure and Figure S9 together illustrate 1114	

that positions of nucleotides that have the same status in terms of being in a constrained 1115	

element or not or have similar constraint scores can be assigned to different conservation states 1116	

depending on the patterns in the underlying multiple-species alignment. 1117	

 1118	
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Figure 2: Conservation state emission parameters learned by ConsHMM and enrichments 1119	

for other genomic annotations. (A) Each row in the heatmap corresponds to a conservation 1120	

state. For each state and species, the left half of the heatmap gives the probability of aligning to 1121	

the human sequence, which is one minus the probability of the not aligning emission. 1122	

Analogously, the right half of the heatmap gives the probability of observing the matching 1123	

emission. Each individual column corresponds to one species with the individual names 1124	

displayed in Figure S5. For both halves, species are grouped by the major clades and ordered 1125	

based on the hg19.100way.nh phylogenetic tree from the UCSC genome browser, with species 1126	

that diverged more recently shown closer to the left.21 The conservation states are ordered 1127	

based on the results of applying hierarchical clustering and optimal leaf ordering.41 The states 1128	

are divided into eight major groups based on cutting the dendrogram of the clustering. The 1129	

groups are indicated by color bars on the left hand side and a white row between them. 1130	

Transition parameters between states of the model can be found in Figure S6. (B) The columns 1131	

of the heatmap indicate the relative enrichments of conservation states for external genomic 1132	

annotations (Methods). For each column, the enrichments were normalized to a [0,1] range by 1133	

subtracting the minimum value of the column and dividing by the range and colored based on 1134	

the indicated scale. Values for these enrichments and additional enrichments can be found in 1135	

Figure S8 and Table S2 and enrichments for individual repeat classes and families can be 1136	

found in Figure S14.   1137	

 1138	

Figure 3: Conservation state positional enrichments. Plots of positional fold enrichments of 1139	

conservation states relative to (A) start of exons of protein coding genes in phase 0, (B) end of 1140	

exons of protein coding genes and (C,D) TSS of (C) protein coding, and (D) pseudogenes 1141	

genes. Positive values represent the number of bases downstream in the 5’ to 3’ direction of 1142	

transcription, while negative values represent the number of bases upstream. Enrichments 1143	

relative to gene annotations are based on a genome-wide background. The subset of states 1144	
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included in panels (A)-(D) were the states that had at least a 3 fold enrichment at some position 1145	

within +/-2kb from the anchor point. (E,F)  Also shown are positional plots relative to the central 1146	

nucleotide of a set of instances of (E) STAT and (F) POU5F1 motifs. The subset of states 1147	

included in (E), (F) are the states that had an enrichment of at least 1.5 for some position within 1148	

+/-15bp from the center nucleotide of either motif. Enrichments for motif instances were 1149	

computed relative to the portion of the genome scanned for regulatory motifs in Kheradpour and 1150	

Kellis (2014), which excludes coding, 3’UTRs, and repeat elements. Additional position 1151	

enrichment plots can be found in Figure S11.  1152	

 1153	

Figure 4: Conservation states enrichment for chromatin states, GO terms, DHS and 1154	

repeat elements. (A) Median fold enrichment of conservation states (rows) for one of 25 1155	

chromatin states from a previously defined chromatin state model defined across 127 samples 1156	

of diverse cell and tissue types (columns).15 Only conservation states that had the maximum 1157	

value for at least one chromatin state are shown, and those values are boxed. See Figure S15 1158	

for the enrichments of all conservation states. (B) –log10 p-value (uncorrected) of the 1159	

conservation states (rows) for the GO term (columns) where each conservation state is 1160	

associated with its top 5% genes based on promoter regions (Methods). Only GO terms which 1161	

were the most enriched term for some conservation state are shown, restricted to the top 10 1162	

terms based on the significance of the enrichment. Only conservation states that had the most 1163	

significant enrichment for one of the displayed GO terms are shown, with the maximal 1164	

enrichments boxed. The full set of conservation states with additional GO terms are in Figure 1165	

S13. (C) Relative enrichments of conservation states for DHS across cell and tissue types. Only 1166	

conservation states with at least a 2 fold enrichment in one sample considered are shown. 1167	

Enrichment values were log2 transformed and then row normalized by subtracting the mean 1168	

(right heatmap) and dividing by the standard deviation. States and experiments were then 1169	

hierarchically clustered and revealed two major clusters. In the top cluster conservation states 1170	
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showed the greatest enrichment for experiments in which the DHS also strongly enriched for 1171	

CpG islands (top heatmap). In the bottom cluster conservation states generally had the 1172	

strongest relative preference for a number of fetal related samples. (D) Enrichment of 1173	

conservation states with the maximal enrichment for LINE, SINE, LTR or DNA repeats next to 1174	

the state align probabilities for primates. These states all had low align probabilities outside of 1175	

primates, but their differences among primates corresponded to substantial differences in repeat 1176	

enrichments. 1177	

 1178	

Figure 5: Relationship of conservation states with constrained elements and scores. 1179	

Precision-recall plots for recovery of (A) TSS of protein coding genes, (B) TES of protein coding 1180	

genes, and (C) the start of exons of protein coding genes. Recovery based on ordering 1181	

ConsHMM conservation states for their enrichment for the target set in the training data, then 1182	

cumulatively adding the states in that ranked order and evaluating on the test data is shown with 1183	

a series of blue dots (Methods). The first few conservation states added are labeled with their 1184	

state number. Recovery based on ranking from highest to lowest value of constraint scores is 1185	

shown with continuous lines. Recovery based on score partitioning into 400 bins and 1186	

subsequent ordering based on enrichment for the target set in the training data, then 1187	

cumulatively adding bins in that ranked order and evaluating on the test data is shown in a 1188	

series of dots of the same color as the continuous line corresponding to the score. Recovery of 1189	

target test bases by a constrained element set is shown with a single dot for each constrained 1190	

element set. See Figure S18-20 for plots based on additional targets. (D) The graph shows the 1191	

fold enrichment for Fetal Brain DHS5 within the non-exonic portion of each conservation state, 1192	

separately for those bases in a PhastCons constrained element (pink) and bases not in such an 1193	

element (blue). Enrichments within constrained elements varied substantially depending on the 1194	

conservation state. For a given conservation state, bases in a constrained element had greater 1195	

enrichments than bases not in a constrained element, illustrating complementary information of 1196	
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conservation states and constrained elements. See Figure S21 for graphs based on different 1197	

element sets or DHS data and Figure S22 for these enrichments plotted against the size of the 1198	

set. 	1199	

 1200	

Figure 6: Conservation states and association with human genetic variation.  (A) Fold 1201	

enrichments of bases ranked in the top 1% genome-wide by 12 variant prioritization scores. 1202	

Only states that were among the top five most enriched states for at least one score are shown. 1203	

The enrichment of the top five ranking states for each score is colored according to the ranking 1204	

and the color scale shown on right. (B) Enrichments of bases ranked in the top 1% of the non-1205	

coding genome by 14 variant prioritization scores. The criteria for selecting states to display and 1206	

coloring enrichments was the same as in panel (A). Enrichments at additional thresholds and for 1207	

all states both genome-wide and for the non-coding genome are in Figure S24-S27. The 1208	

enrichments for CADD shown here are based on v1.4, while enrichments based on the original 1209	

version of CADD are also shown in Figure S25-S27. (C) The panel displays the log2 fold 1210	

enrichment of each state for common SNPs (pink) and GWAS catalog variants relative to 1211	

common SNPs (blue). State 1, associated with high alignability and matching through all 1212	

vertebrates, showed the greatest depletion of common SNPs and the highest enrichment for 1213	

GWAS variants relative to common SNPs. States 55-57 and 87-89 exhibited the opposite 1214	

pattern having the greatest enrichment for common SNPs and the greatest depletion of GWAS 1215	

variants relative to this background. The second most depleted state for common SNPs, which 1216	

did not show enrichment for GWAS catalog SNPs, was state 96 which captured large gaps in 1217	

the assembly (Figure S8). (D) Panel shows the representation of state emission parameters 1218	

from Figure 2A for the subset of states highlighted in panel (C). The states with the greatest 1219	

depletion of GWAS variants all had relatively high alignability at least through primates, but low 1220	

matching probabilities for almost all species except a few closely related primates. (E) Applying 1221	

the heritability partitioning enrichment method of Finucane et al.15 on two disjoint subsets of 1222	
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bases in PhastCons elements, with eight phenotypes previously analyzed with heritability 1223	

partitioning in the context of a baseline set of annotations (Methods).15 One set of bases are 1224	

those in PhastCons elements that are also in one of the seven conservation states showing the 1225	

greatest enrichment for DHS in its non-exonic portion (States 1-5, 8, and 28) covering 51.9% of 1226	

PhastCons bases (pink). The other set are those bases in PhastCons elements overlapping the 1227	

remaining 93 states covering 48.1% of PhastCons bases (blue). 1228	
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