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Abstract 17 

Comparative genomics sequence data is an important source of information for interpreting 18 

genomes. Genome-wide annotations based on this data have largely focused on univariate 19 

scores or binary calls of evolutionary constraint. Here we present a complementary whole 20 

genome annotation approach, ConsHMM, which applies a multivariate hidden Markov model to 21 

learn de novo different ‘conservation states’ based on the combinatorial and spatial patterns of 22 

which species align to and match a reference genome in a multiple species DNA sequence 23 

alignment. We applied ConsHMM to a 100-way vertebrate sequence alignment to annotate the 24 

human genome at single nucleotide resolution into 100 different conservation states. These 25 

states have distinct enrichments for other genomic information including gene annotations, 26 
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chromatin states, and repeat families, which were used to characterize their biological 27 

significance. Conservation states have greater or complementary predictive information than 28 

standard constraint based measures for a variety of genome annotations. Bases in constrained 29 

elements have distinct heritability enrichments depending on the conservation state assignment 30 

demonstrating their relevance to analyzing phenotypic associated variation. The conservation 31 

states also highlight similarities and differences between constrained bases identified based on 32 

inter and intra species approaches. The ConsHMM method and conservation state annotations 33 

provide a valuable resource for interpreting genetic variation. 34 

 35 

Introduction 36 

The large majority of phenotype-associated variants implicated by genome-wide 37 

association studies (GWAS) fall outside of protein coding regions.1 Identifying the causal 38 

variants and interpreting their biological role in these less well understood non-coding regions is 39 

a significant challenge.2 Large scale mapping of epigenomic data across different cell and tissue 40 

types has been one approach for annotating and interpreting the non-coding regions of the 41 

genome.3–5 Using comparative genomics data to identify regions of evolutionary constraint has 42 

been a complementary approach for these purposes.6–9  43 

In addition to providing evolutionary information, comparative genomics data has the 44 

advantage of providing information at single-nucleotide resolution. Furthermore, it is cell type 45 

agnostic and thus informative even when the relevant cell or tissue type has not been 46 

experimentally profiled.10,11 The most commonly used representations of this information are 47 

univariate scores and binary elements of evolutionary constraint, which are called based on a 48 

multiple species DNA sequence alignment and assumed models of evolution and selection.8,9,12–
49 

14 Supporting the importance of these annotations, heritability analyses have recently implicated 50 

evolutionary constrained elements as one of the annotations most enriched for phenotype 51 

associated variants.15 These scores and elements have also been highly informative features to 52 
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integrative methods for prioritizing pathogenic variants.16–19 Further improvements for predicting 53 

pathogenic variants in coding regions have been made to the integrative scores by incorporating 54 

features defined directly from a multiple sequence alignment.20 55 

While highly useful, the representation of comparative genomics information into 56 

univariate scores or binary elements is limited in the amount of information it can convey about 57 

the underlying multiple sequence alignment at a specific base. This limitation has become more 58 

pronounced given the large number of species sequenced and incorporated into multi-species 59 

alignments such as a 100-way alignment to the human genome.21 Approaches have been 60 

developed to associate constrained elements, regions, or individual bases with specific 61 

branches in a phylogenetic tree.22–28 While also useful, such directed approaches are biased to 62 

only representing certain types of patterns present in the alignment. An alternative approach 63 

used for comparative genomic based annotation learned patterns of different classes of 64 

mutations between human and orangutan29, but this approach was only applicable at a broad 65 

region level and only incorporated information from one non-human genome. 66 

Analogous to the many sequenced genomes available for comparative analysis, many 67 

different datasets are available for annotating the genome based on epigenomic data. 68 

Approaches that define ‘chromatin states’ based on combinatorial and spatial patterns in these 69 

datasets have effectively summarized the information in them to provide de novo genome 70 

annotations.4,30–32 Inspired by the success of these approaches, here we develop a new 71 

method, ConsHMM, that extends ChromHMM31 to systematically annotate genomes into 72 

‘conservation states’ at single nucleotide resolution. The conservation states assignments are 73 

based on the combinatorial and spatial patterns of which species align to and which match a 74 

reference genome at each nucleotide in a multiple species DNA sequence alignment. 75 

ConsHMM takes a relatively unbiased modeling approach that does not explicitly assume a 76 

specific phylogenetic relationship between species. The set of conservation patterns ConsHMM 77 

can infer are thus flexible and determined directly from the DNA sequence alignment. 78 
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We applied ConsHMM to assign a conservation state to each nucleotide of the human 79 

genome. These states are able to capture distinct enrichments for other genomic annotations 80 

such as gene annotations, CpG islands, repeat families, chromatin states, and genetic variation. 81 

These conservation state annotations are a resource for interpreting the genome and potential 82 

disease-associated variation, which complement both existing conservation and epigenomic-83 

based annotations. 84 

 85 

Material and Methods 86 

 87 

Modeling conservation states with ConsHMM 88 

ConsHMM takes as input an N-way multi-species sequence alignment to a designated 89 

reference genome. For each base in the reference genome, i, ConsHMM encodes the multiple 90 

species alignment into a vector, vi, of length N-1. An element of the vector, vi,j, corresponds to 91 

one of three possible observation for species j at position i. The three possible observations are: 92 

(1) the other species aligns with a non-indel nucleotide symbol present matching the reference 93 

nucleotide, (2) the other species aligns with a non-indel nucleotide symbol present, but does not 94 

match the reference nucleotide, or (3) the other species does not align with a non-indel 95 

nucleotide symbol present.  96 

 ConsHMM assumes that these observations are generated from a multivariate HMM 97 

where the emission parameters are assumed to be generated by a product of independent 98 

multinomial random variables, corresponding to each species in the alignment. Formally, the 99 

model is defined based on a fixed number of states K, and number of species in the multiple 100 

sequence alignment N. For each state k (k = 1,…,K), species j (j = 1,...,N-1) and possible 101 

observation m (m = 1, 2, or 3 as described above), there is an emission parameter: pk,j,m 102 

corresponding to the probability in state k for species j of having observation m. For each 103 

possible observation m, let Im(vi,j) = 1 if vi,j = m, and 0 otherwise. Let bt,u be a parameter for the 104 
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probability of transitioning from state t to state u. Let � � � denote a chromosome, where � is 105 

the set of all chromosomes in the reference genome of the multiple species alignment, and let 106 

Lc be the number of bases on chromosome c. Let ak (k = 1,…,K) be a parameter for the 107 

probability of the first base on a chromosome being in state k. Let sc � Sc be a hidden state 108 

sequence on chromosome c and Sc be the set of all such possible state sequences. Let �� 109 

denote position h on chromosome c. Let ���  denote the hidden state at position ��  for state 110 

sequence sc.  111 

 112 

We learn a setting of the model parameters that aims to optimize 113 
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 114 

Once a model is learned, each nucleotide is assigned to the state with maximum 115 

posterior probability. To conduct the model learning and state assignments, ConsHMM calls an 116 

extended version of the ChromHMM31 software originally designed to solve an analogous 117 

problem of annotating the genome into chromatin states based on combinatorial and spatial 118 

patterns of the presence of different chromatin marks. The modeling in ConsHMM differs from 119 

the typical use of ChromHMM in three main respects: (1) the observation for each feature 120 

comes from a three-way multinomial distribution as opposed to a Bernoulli distribution, (2) it is 121 

applied at single nucleotide resolution opposed to 200-bp resolution, (3) it is applied with more 122 

features than ChromHMM models have used in the past. (2) and (3) raise scalability issues in 123 

terms of time and memory which we addressed in an updated version of ChromHMM (see 124 

below). 125 

 To apply ChromHMM in the context of three-way multinomial distributions, ConsHMM 126 

represents the three possible observations at position i for a species j with two binary variables, 127 
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yij and zij, corresponding to aligning and matching the reference genome respectively. yij has the 128 

value of 1 if the other species aligns to the reference with a non-indel nucleotide and 0 129 

otherwise. zij has the value of 1 if the other species has the same nucleotide as the reference 130 

sequence and has a value of 0 if the other species has a different nucleotide present than the 131 

reference. In the case in which yij=0, there is no nucleotide to compare to the reference and that 132 

value of the zij variable is considered missing (encoded with a ‘2’ for ChromHMM). If the value of 133 

an observed variable is missing, ChromHMM excludes the Bernoulli random variable 134 

corresponding to the observation from the emission distribution calculation at that position. For 135 

each state k and species j, ChromHMM thus learns two parameters, fk,j and gk,j. fk,j corresponds 136 

to the probability that at a given position in state k, species j aligns to the reference genome with 137 

a non-indel nucleotide that is P(yi,j=1| ��=k). gk,j corresponds to the probability that at a given 138 

position in state k, species j matches the reference genome conditioned on species j aligning 139 

with a non-indel nucleotide that is P(zi,j = 1| yi,j=1 and ��=k). This representation is equivalent to 140 

the three-way multinomial distribution, (pk,j,1, pk,j,2, pk,j,3) described above where pk,j,1 = P(yi,j=1, 141 

zi,j=1 | �� = k), pk,j,2 = P(yi,j=1, zi,j=0 | �� = k), and pk,j,3 = P(yij=0 | �� = k), since pk,j,1 = fk,j �gk,j,, pk,j,2 = 142 

fk,j � (1-gk,j), and pk,j,3 = 1 – fk,j. 143 

 144 

Multiple species sequence alignment choice 145 

Our method and software can be applied to any multiple species sequence alignment 146 

which is available in multiple alignment format (MAF) or which can be converted into this format. 147 

For the results presented here we applied it to the 100-way Multiz vertebrate alignment with 148 

human (hg19) as the reference genome.21,33  149 

 150 

Scaling-up ConsHMM to single base resolution with hundreds of features 151 

Since for our application ConsHMM needs to run ChromHMM at single base resolution (‘-b 1’ 152 

flag) with 198 features after our binary encoding (2 for each non-human species in the 100-way 153 
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alignment), we had to address scalability issues in terms of both memory and time. To address 154 

the memory issue we modified ChromHMM to support only loading in main memory input for 155 

chromosomes it is actively processing, as previously ChromHMM would only support loading all 156 

data into main memory upfront. This option can now be accessed in ChromHMM through the ‘-157 

lowmem’ flag. To reduce the time required we used 12-parallel processors (‘-p 12’ flag) and we 158 

trained on a different random subset of the human genome on each iteration of the Baum-welch 159 

algorithm. We divided each chromosome into 200kb segments (with the exception of the last 160 

segment of each chromosome which was less than this) in order to form a random subset of the 161 

human genome. We modified ChromHMM to allow training for each iteration on a randomly 162 

selected subset of 150 of these segments (‘-n 150’ flag) corresponding to 30MB per iteration. 163 

We ran this for 200 iterations by adding the ‘-d -1’ flag, which removed one of ChromHMM’s 164 

default stopping criterion based on computed likelihood change on the sampled data, since the 165 

likelihood is now expected to both increase and decrease between iterations as different 166 

sequences are sampled. These new options were included in version 1.13 of ChromHMM. The 167 

unique code to ConsHMM is written in Python. The code of ConsHMM shared with ChromHMM 168 

is written in Java and included with ConsHMM.  169 

 170 

Generating genome-wide annotations  171 

After learning a 100-state model, we used it to segment and annotate the genome at 172 

base-pair resolution into one of the 100 conservation states. Each base in the human genome is 173 

classified into the state with the highest posterior probability. ConsHMM does this by running the 174 

MakeSegmentation command of ChromHMM. Due to computational constraints, the 175 

segmentation could not be generated for entire chromosomes at once. Instead, we ran 176 

MakeSegmentation on the same 200kb partitioning made for learning the model. We then 177 

merged the resulting files together using ConsHMM’s mergeSegmentation.py command with 178 
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slice size parameter set to 200,000 (‘-s 200000’ flag) and the number of states parameter set to 179 

100 (‘-n 100 flag’).  180 

 181 

Computing enrichments for external annotations 182 

All overlap enrichments for external annotations were computed using the ChromHMM 183 

OverlapEnrichment command. OverlapEnrichment computes enrichments for an external 184 

annotation in each state assuming a uniform background distribution. Specifically the fold 185 

enrichment of a state for an external annotation is  186 

 187 
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 188 

Positional enrichments of states relative to an anchor point from an external annotation 189 

were computed using the ChromHMM NeighborhoodEnrichment command at single base 190 

resolution (‘-b 1’ flag), single base spacing from the anchor point (‘-s 1’) and using the ‘-l’ and ‘-r’ 191 

flags to specify the size of the region of interest around the anchor point. The ‘-lowmem’ flag 192 

was also used for computing the enrichments for OverlapEnrichment and 193 

NeighborhoodEnrichment. 194 

 195 

External data sources for enrichment analyses 196 

The external annotations of repeat elements were obtained from the UCSC Genome Browser 197 

RepeatMasker track.21,34 We generated an annotation for whether a base overlapped any repeat 198 

element, as well as separate annotations for bases falling in each class and family of repeat 199 

elements. The gene annotations were obtained from GENCODE v19 for hg1935. CpG Island 200 

annotations were obtained from the UCSC genome browser. Annotations of SNPs with >=1% 201 

minor allele frequency were obtained from the commonSNP147 track from the UCSC genome 202 
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browser, which is based on dbSNP build 147. GWAS catalog variants were obtained from the 203 

NHGRI-EBI Catalog, accessed on Dec 5, 2016.36 For annotations of DHS from the Roadmap 204 

Epigenomics Consortium, we used Macs2 narrowPeak calls.5 The Fetal Brain and HepG2 DHS 205 

used were of epigenome sample E082 and E118 respectively. For the median non-exonic DHS 206 

enrichments and ranking of states in the heritability partitioning analysis we used narrowPeak 207 

calls from the ENCODE consortium.3 208 

PhyloP and PhastCons scores and constrained element calls were obtained from the 209 

UCSC genome browser. Assembly gap annotations were obtained from the Gap track from the 210 

UCSC genome browser. The context-dependent tolerance score (CDTS) used was that based 211 

on a cohort of 7784 unrelated individuals, following the analyses in Iulio et al.37, which focused 212 

on this version of the score. The CDTS and variants from this cohort were both lifted from hg38 213 

to hg19 using liftOver tool from the UCSC Genome Browser.21 214 

 215 

Choice of number of states 216 

We learned models with each number of states between 2 and 100 states. We set 100 217 

as the maximum number of states we would consider for computational tractability and 218 

maintaining a manageable number of states for analysis. The choice of a maximum of 100 also 219 

corresponds to the number of species used and allows for the possibility of each state to cover 220 

1% of the genome. We analyzed the Bayesian Information Criterion (BIC) for models with each 221 

number of states between 2 and 100, and found that the BIC generally decreases as the 222 

number of states increases in the range considered (Supplementary Fig. 1). The BIC was 223 

calculated using the BIC_HMM function from the HMMpa R package.38 Analyzing the 100-state 224 

model’s internal confidence estimate of its state assignments also supported a larger number of 225 

states. Specifically, for each state in the 100-state model we computed the average posterior 226 

probability of that state at each base in the genome assigned to it, and confirmed consistently 227 

high average posterior probability values in the range [0.92,1.00] with a median of 0.97 228 
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(Supplementary Fig. 2). The posterior probabilities were computed by running the 229 

MakeSegmentation command in ChromHMM with the ‘-printposterior’ flag. We also investigated 230 

if additional states in models with larger number of states were biologically relevant. Specifically, 231 

we computed enrichments for various external annotations for models with each number of 232 

states between 2 and 100 to determine if biologically relevant enrichments were only robustly 233 

observed in models with more than a certain number of states. In the case of CpG islands, we 234 

observed that only models with at least 87 states consistently obtained >15 fold enrichment and 235 

only models with at least 95 states consistently obtained >30 fold enrichment (Supplementary 236 

Fig. 3). We saw a similar pattern of increasing enrichments for annotated TSSs for models with 237 

large number of states. We therefore decided to analyze the largest model, 100 states, that we 238 

were considering. We note that annotations based on chromatin states used fewer number of 239 

states, but were also defined on fewer features at a coarser resolution and had a less uniform 240 

genome coverage.4,30,39  241 

 242 

State clustering 243 

We clustered the states based on the correlation of vectors containing the values fk,j and 244 

fk,j �gk,j for each species j defined above. State clustering was performed using the hclust 245 

hierarchical clustering function from the cba R package.40 The leaves of the resulting 246 

hierarchical tree were ordered according to the optimal leaf ordering algorithm41 implemented in 247 

the order.optimal R function from the cba package. We then cut the tree such that the 8 major 248 

groups of states were designated. The full tree is provided in Supplementary Fig. 4. 249 

 250 

Gene Ontology enrichments 251 

For each state and each protein coding gene based on GENCODE we computed the 252 

number of bases in that state that are within +/- 2kb of the gene’s TSS. In the case of genes 253 

with multiple annotated TSSs, we used the outermost TSS. We then created a ranking of genes 254 
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for every state by sorting the genes in descending order of this number of bases. For each state 255 

we then created a set of 969 genes that represent the top 5% of genes in the state among the 256 

19,397 genes we considered. We performed a Gene Ontology enrichment analysis (ontology 257 

and annotations files from Nov. 24th, 2016) for the top genes in each state using the STEM 258 

software in batch mode with default options and the set of all genes considered as 259 

background.42 STEM computed an uncorrected p-value based on the hypergeometric 260 

distribution for each term displayed in the figures summarizing the analysis. STEM also reported 261 

corrected p-values for testing multiple GO terms for a single state based on randomization to 262 

three significant digits, which was less than 0.001 for all p-values mentioned in the main text.     263 

 264 

Transcription factor binding site motif enrichments 265 

 We computed the enrichment of the conservation states within 15 bases upstream and 266 

downstream of the center point of the POU5F1 and STAT known transcription factor-binding site 267 

motifs. The enrichment was computed relative to the background regions of the genome that 268 

were used to identify the motifs, which excluded repeat elements, coding sequence, and 3’ 269 

UTRs.43 The known1 version of the motifs was used for both motifs.  270 

 271 

Precision recall analysis for recovery of gene annotations and DHS 272 

We randomly split the 200kb genome segments used for training the model and 273 

segmentation into two halves corresponding to training and testing data. For each target set in 274 

the precision-recall analyses we ordered the ConsHMM states in decreasing order of their 275 

enrichment for the target among the training set bases. We then used that ordering to iteratively 276 

add the testing set bases in each state to form cumulative sets of bases predicted to be of the 277 

target set and computed the precision and recall for them. For each constraint score we 278 

computed the precision-recall curve for predicting the target set in the test data using two 279 

methods. For the first method we directly ordered bases in descending order of their assigned 280 
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score. For the second method, we split the sorted scores into 400 bins such that each bin 281 

contains on average 0.25% of the genome, which was the size of the smallest state of the 282 

ConsHMM model (0.25% of the genome in state 100). Specifically, we assigned all bases in the 283 

genome where the score was not defined to one bin and then divided the remaining bases 284 

uniformly among the 399 other bins based on their score. In some cases score increments were 285 

at the boundary between two bins at their provided floating-point precision, or overlapped 286 

multiple bins. In these cases we uniformly split the target bases assigned to that score 287 

increment into multiple bins proportionally to the overall percentage of the score increment 288 

falling in each bin. We then treated the 400 bins as 400 states and followed the same procedure 289 

described for the ConsHMM states. We also computed the precision and recall of bases in each 290 

constrained element set for predicting the target set on the testing data. 291 

 292 

Clustering of cell-type specific DNase I hypersensitive site enrichments 293 

For the clustering of DHS analysis, we first computed the enrichments of all conservation 294 

states for DHS for 53 samples processed by the Roadmap Epigenomics consortium5, of which 295 

16 were originally generated by the ENCODE project consortium.3 We then selected the subset 296 

of states that had a fold enrichment of at least 2 in at least one sample, leading to a subset of 21 297 

conservation states. To more directly focus on each state’s relative enrichments across 298 

samples, we log2 transformed each enrichment value, and then normalized the enrichments for 299 

each state by subtracting the mean enrichment across samples and dividing by the standard 300 

deviation. We then hierarchically clustered the states based on the correlation of their 301 

enrichments across samples and hierarchically clustered the samples based on their 302 

correlations across states using the pheatmap R package.44 303 

 304 

Heritability partitioning analysis  305 
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The heritability partitioning was performed using the LD-score regression ldsc software. 306 

15 We partitioned the PhastCons constrained elements into two halves based on a ranking of the 307 

conservation states. We focused on the PhastCons constrained elements for this analysis, since 308 

it was the only element set defined on the same alignments as our conservation states. We 309 

focused on halves since the LD-score regression estimates can be unstable for annotations 310 

covering too small of a percentage of the genome.15 To determine the two halves we ranked the 311 

conservation states in descending order of median fold-enrichment of non-exonic bases for 312 

DHS from 125 experiments from the University of Washington ENCODE group.3 We then 313 

divided bases in PhastCons elements between the top 7 ranked states (1-5, 8 and 28), which 314 

contain 51.9% of bases in PhastCons elements, and the bottom 93 states, which contain the 315 

other 48.1% of bases in PhastCons elements. We applied ldsc to these two sets for 8 traits (age 316 

at menarche, BMI, coronary artery disease, educational attainment, height, LDL levels, 317 

schizophrenia and smoking behavior), all of which were previously considered in heritability 318 

partitioning analysis.15 We followed the procedure for partitioning heritability as done in 319 

Finucane et al.15, including using a baseline annotation set and 500 base-pair windows around 320 

annotations to dampen the artificial inflation of heritability in neighboring regions caused by 321 

linkage disequilibrium. The baseline annotation set contains a range of annotations including 322 

DHS. For our analysis, we first removed the constrained element set already included in the 323 

baseline annotation set, then added our two halves of PhastCons elements and finally ran the 324 

ldsc software on the full set of annotations. 325 

 326 

Results 327 

 328 

Annotating the human genome into conservation states 329 

 We developed a novel approach, ConsHMM, to annotate a genome into different 330 

conservation states based on a multiple species DNA sequence alignment (Fig. 1a, Methods). 331 
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We model the combinatorial patterns within the alignment of which species align to and which 332 

match a reference genome, for which we used the human genome. Specifically, at each 333 

nucleotide in the human genome we encode one of three possible observations for each other 334 

species in the alignment: (1) aligns with a nucleotide present that is the same as the human 335 

reference genome, (2) aligns with a nucleotide present that is different than the human 336 

reference genome, or (3) does not have a nucleotide present in the alignment for that position. 337 

We further model these observations as being generated from a multivariate hidden Markov 338 

model (HMM), which probabilistically captures both the combinatorial patterns in the 339 

observations and their spatial context. Specifically, we assume that in each state the probability 340 

of observing a specific combination of observations is determined by a product of independent 341 

multinomial random variables. The parameters to the distributions of these multinomial random 342 

variables will differ between states and are learned from the data. After the model is learned, 343 

each nucleotide in the human genome is assigned to the state that had the maximum posterior 344 

probability of generating the observations. 345 

ConsHMM builds on ChromHMM31, which has previously been applied to annotate 346 

genomes based on epigenomic data at 200-bp resolution30, to now annotate genomes at single 347 

nucleotide resolution based on a multiple species DNA sequence alignment (Methods). We 348 

applied ConsHMM to a 100-way Multiz vertebrate alignment with the human genome and 349 

focused our analysis here on a model learned using 100 states in order to balance recovery of 350 

additional biological features and model tractability (Fig. 2, Supplementary Fig. 1-8), 351 

Supplementary Tables 1,2, Methods). We illustrate the ConsHMM conservation state 352 

annotations at two different loci showing that different bases that are associated with calls of 353 

evolutionary constraint from existing approaches can have very different underlying alignment 354 

patterns and conservation state assignments (Fig. 1b, Supplementary Fig. 9). Conservation 355 

state annotations genome-wide are available online (Web Resources). 356 

 357 
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Major groups of conservation states 358 

We hierarchically clustered the conservation states based on their align and match 359 

probabilities, and then cut the resulting dendrogram to reveal eight notable groups of states or 360 

distinct individual states (Fig. 2a, Supplementary Fig. 4, Supplementary Table 3, Methods). 361 

The first of these subsets of states was a single state (State 1; AM_allVert) that showed high 362 

align and match probabilities through essentially all vertebrate species considered. The second 363 

subset showed relatively high align and match probabilities for all mammals and some non-364 

mammalian vertebrates (States 2-4; AM_nonMam). The third subset showed relatively high 365 

align and match probabilities for most if not all mammals, but not non-mammalian vertebrates 366 

(States 5-22; AM_Mam). The fourth subset showed high align probabilities for many mammalian 367 

species, but had low align probabilities for notable species such as mouse and rat for many of 368 

the states in the group (States 23-46; AM_SMam). The combination of the absence of mouse 369 

and rat alignments with the presence of mammals that are assumed to have diverged earlier is 370 

consistent with the previously observed increased substitution rates for mouse and rat.7 The fifth 371 

subset showed high align probabilities for many mammalian species, but did not show high 372 

match probabilities (States 47-63; A_SMam). The sixth subset showed high align probabilities 373 

for most primates, but not for other species (States 64-89; AM_Prim). The seventh subset 374 

showed high align probabilities for at most a subset of primates (States 90-99; AM_SPrim). The 375 

final subset was a single state (State 100; artifact) that showed a noteworthy pattern of high 376 

align and match probabilities for most primates and non-mammalian vertebrates, but low 377 

probabilities for non-primate mammals, consistent with a previous observation that inclusion of 378 

non-mammalian vertebrates can be associated with increased presence of suspiciously aligned 379 

regions.45  380 

 381 

Conservation states exhibit distinct patterns of positional enrichments relative to gene 382 

annotations and regulatory motif instances 383 
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The conservation states showed strong and distinct positional enrichments relative to 384 

GENCODE35 annotated gene features including transcription start sites (TSS), transcription end 385 

sites (TES), exon start sites, and exon end sites for both protein coding genes and 386 

pseudogenes (Fig. 3a-d, Supplementary Fig. 10). Notable positional enrichments were also 387 

seen for regulatory motifs instances (Fig. 3e,f). Relative to starts of exons of protein coding 388 

genes seven of the states (States 1-4, 7, 28, and 54) had 13 fold or greater enrichment for some 389 

position within 20 base pairs of exon starts, both when considering all such exons and subsets 390 

of exons in specific coding phases (Fig. 3a, Supplementary Fig. 10a-c). All of these states 391 

showed alignability for some non-mammalian vertebrates in addition to most mammals. Within 392 

exons we saw the strongest enrichment for States 1-4 and 54, and among these state 1 showed 393 

the strongest enrichment as expected given its high match probabilities through all vertebrates 394 

(Figs. 2b, 3a-b, Supplementary Fig. 10a-e). Interestingly, state 1 showed very strong 395 

enrichment (>80 fold) in the two nucleotides immediately upstream of the exon start with the 396 

third upstream nucleotide also having high enrichment (46 fold) (Supplementary Fig. 10c). 397 

These three nucleotide positions correspond to the positions of the canonical 3’ splice site 398 

sequence that is highly conserved throughout vertebrates.46 At the ends of exons of protein 399 

coding genes (Fig. 3b), state 1 maintained a >40 fold enrichment for six nucleotides past the 400 

end of coding sequence corresponding to positions of the known canonical 5’ splice site 401 

sequence.46 Downstream of the start of protein-coding exons, the enrichment profile for state 1 402 

showed a 3-bp oscillation period, with a dip of enrichment at each 3rd base corresponding to 403 

codon wobble positions. In contrast, states 3 and 54, which were both associated with high align 404 

probabilities through many vertebrates and lower match probabilities, showed the inverse 405 

oscillation pattern to state 1 (Fig. 3a, Supplementary Fig. 10a-c).  406 

Relative to TSS of protein coding genes, state 28 had the strongest enrichment reaching 407 

a maximum enrichment 30 fold at the TSS (Fig. 3c). State 28 was associated with moderate 408 

align and match probabilities for almost all the species present in the alignment. Consistent with 409 
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its enrichment for TSSs state 28 also had the greatest enrichment for CpG islands (32 fold). 410 

However, state 28 also showed a 20 fold enrichment of CpG islands >2kb away from any TSS 411 

of protein coding genes and a 10 fold enrichment for TSS of protein coding genes >2kb away 412 

from a CpG island, suggesting the possibility that both of these features are making a partially 413 

independent contribution to the association, or the presence of additional unannotated TSSs 414 

that are associated with CpG islands.47 Relative to TES of protein coding gene we saw the 415 

enrichment peak for state 2 at almost 12 fold (Supplementary Fig. 10f), which had high align 416 

and match probabilities for almost all vertebrates except for fish. 417 

Relative to pseudogene exon starts and ends, states 100 and 82, both associated with 418 

alignability to distal vertebrates without many mammals closer to human, had strong 419 

enrichments peaking at greater than 100 and 38 fold respectively (Supplementary Fig. 10g,h). 420 

These two states also showed the greatest enrichment relative to TSSs of pseudogenes 421 

peaking at 184 and 68 fold for states 100 or 82 respectively (Fig. 3d) and for TESs of 422 

pseudogenes peaking at 199 and 61 fold respectively (Supplementary Fig. 10i).  423 

 Relative to instances of regulatory motifs different conservation states showed single 424 

nucleotide enrichment variation, often associated with variation in the amount of information in 425 

the positional-weight matrix (Fig. 3e-f and Methods).43 For example, in the case of the POU5F1 426 

and STAT motifs we saw state 2 from the AM_nonMam group and state 5 from the AM_Mam 427 

group respectively reach 1.8 fold enrichments but have lower enrichments (1.4-1.5) at some 428 

nucleotides with lower information content. For the STAT motif, states 55-57, associated with 429 

high align probabilities for most mammals, but high match probabilities only for a few primates, 430 

enrichments peaked at the CG dinucleotide in the center of the motif consistent with their 431 

genome-wide enrichments for CG dinucleotides (Fig. 3e, Supplementary Fig. 11).   432 

 433 

Enrichment of conservation states for different gene classes 434 
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The previous analyses demonstrated that different conservation states have distinct 435 

enrichments in promoter regions of genes. We next investigated whether different conservation 436 

states also exhibit distinct enrichments for different classes of genes after controlling for the 437 

state’s relative preference for promoter regions. Specifically, for each state we determined the 438 

5% of genes with the greatest presence of the state in its promoter region and evaluated Gene 439 

Ontology (GO) enrichments for those genes, revealing distinct enrichment patterns (Fig. 4b, 440 

Supplementary Fig. 12, Methods). For example, even among states 1-3, all of which had high 441 

alignability through at least birds and matching through mammals, we observed substantial 442 

differences in their gene preferences. Out of these three states, state 1 (the AM_allVert group) 443 

was the only one enriched for nucleosomes (p<10-41; 10.5 fold), while state 3, which had high 444 

matching only through mammals, was the only one with a significant enrichment for a set of 445 

genes related to sensory perception of smell (p<10-300; 15.5 fold). State 2, which had high align 446 

and match probabilities through all vertebrates except fish, was the state most enriched for 447 

cellular developmental processes (p<10-30; 1.8 fold), which did not show enrichment in state 3. 448 

We also observed notable enrichments for states with overall lower align or match probabilities. 449 

For example, state 89, associated with high alignability and low matching in primates as well as 450 

some alignability and low matching in non-primate mammals, was the state most enriched for 451 

antigen binding (p<10-14; 6.7 fold). This is consistent with antigen binding being associated with 452 

many species, but fast evolving.48 453 

 454 

Enrichments for repeat elements in conservation states 455 

The conservation states showed a wide range of enrichments and depletions (from 2 456 

fold enrichment to 133 fold depletion) for bases overlapping any repeat element (Fig. 2b, Fig. 457 

4d, Supplementary Fig. 13).21,34 Different states had distinct patterns of enrichments for 458 

different repeat classes and families, even though in some cases the difference in state 459 

parameters was subtle. For instance, among states in the AM_Prim group, which primarily 460 
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differed in terms of the specific combinations of primates with high align and match probabilities, 461 

we found distinct enrichments. Notably, four different states from the group AM_Prim, 74, 86, 462 

76, and 77, showed maximal enrichments for the DNA, LINE, LTR, and SINE repeat classes 463 

respectively (Fig. 4d). State 74, which is characterized by high align and match probabilities for 464 

all primates, had an enrichment of 5.6 fold for DNA repeats, while the enrichment for the other 465 

three classes were between 1.0 and 1.8 fold. On the other hand, state 86, which lacked 466 

alignability of a subset of primates, had a 3.0 fold enrichment for LINE repeats, while the 467 

enrichment for the other classes were between 0.6 and 1.6 fold. States 76 and 77 had 3.3 and 468 

4.5 fold enrichments for LTR and SINE respectively compared to 1.1 and 2.1 fold for SINE and 469 

LTR respectively. State 76 and state 77 both had high align probabilities through primates up to 470 

and including squirrel monkey, with the exception that State 77 lacked alignability to gorilla. 471 

Despite these subtle differences in the alignment probabilities, these states had substantial 472 

differences in their repeat enrichment profiles. 473 

 474 

Relationship of conservation states to chromatin states 475 

We compared our conservation states to annotations of the genome based on a 25-476 

chromatin state imputation based model defined on 127 samples of diverse cell and tissue 477 

types5,39 (Fig. 4a, Supplementary Fig. 14). For each conservation state we determined the 478 

median enrichment of each chromatin state across the 127 samples. Eleven different 479 

conservations states were maximally enriched for at least one of the 25-chromatin states. 480 

Conservation state 28 showed the greatest enrichment for any chromatin state, with a 35 fold 481 

enrichment for a chromatin state associated with active promoters, and was maximally enriched 482 

for four other promoter associated states. Conservation state 1 was maximally enriched for five 483 

chromatin states all associated with transcribed and exonic regions39 (3.8-8.7 fold), which is 484 

consistent with this conservation state being most enriched for exons. Conservation state 2 had 485 

the maximal enrichment for five enhancer associated states (3.1-4.7 fold), while conservation 486 
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state 5 had high enrichments for these states and also had the greatest enrichment of any 487 

conservation state for a state primarily associated with just DNase I hypersensitivity (2.5 fold). 488 

These and other distinct enrichments of the conservation states for the different chromatin 489 

states highlight that conservation states are able to capture multi-dimensional information in the 490 

genome.  491 

 492 

Conservation states capture enrichment patterns of DNase I hypersensitive sites across cell and 493 

tissue types 494 

The previous analysis demonstrated that conservation states can exhibit different 495 

enrichment patterns for different chromatin states. We next investigated whether different 496 

conservation states also capture distinct enrichment patterns for a chromatin mark across cell 497 

and tissue types. For this we analyzed DNase I hypersensitive sites (DHS) from 53 of the 127 498 

samples considered above for which maps of experimentally observed DHS were available from 499 

the Roadmap Epigenomics Consortium.5 We focused on the 21 conservation states that 500 

exhibited at least 2 fold enrichment in at least one sample (Fig. 4c). We then row normalized 501 

the enrichments in order to focus on the relative enrichment patterns across cell and tissue 502 

types (Methods). Hierarchical clustering of the enrichment patterns revealed two major clusters 503 

of states (Fig. 4c). One of these clusters contained 14 of the 21 states and was associated with 504 

strong enrichments for fetal related samples. Ten of the states in this cluster have maximum 505 

enrichment for a fetal sample, while the remaining four states have maximum enrichment for the 506 

cell type Human Umbilical Vein Cells (HUVEC). The second major cluster consisted of seven 507 

states, all of which were enriched for CpG islands (Fig. 2b, Supplementary Fig. 8). The 508 

samples that showed the greatest enrichment in states in these clusters also had the greatest 509 

enrichment of CpG islands (Fig. 4c), but were biologically diverse in terms of the type of cell or 510 

tissue and could potentially reflect technical experimental differences.   511 

 512 
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Relationship of conservation states to constraint based annotations 513 

We next investigated the relationship of our conservation state annotations with calls 514 

and univariate scores of evolutionary constraint. Specifically, we considered constrained 515 

element sets based on four methods (GERP++, SiPhy-omega, SiPhy-pi, and PhastCons) and 516 

constraint scores based on three methods (GERP++, PhastCons, and PhyloP) publicly available 517 

for hg19 and also defined on Multiz alignments (Fig. 2b, Supplementary Fig. 15). The 518 

PhastCons and PhyloP scores and elements we compared to were defined on the same 100-519 

way vertebrate alignment. The available GERP++, SiPhy-omega, and SiPhy-pi score and 520 

elements were derived from different versions of Multiz alignments and only considered 521 

mammals.  522 

We consistently found conservation states 1-5 to be highly enriched (>9 fold) for all 523 

constrained element sets (Fig. 2b, Supplementary Fig. 15a). These states were also among 524 

the top six states in terms of mean score for constraint scores considered (Supplementary Fig. 525 

15b). Consistent with this, states 1-5 were the states that had the highest average matching 526 

probability across mammals. Two other states exhibited at least 6 fold enrichment for at least 527 

one constrained element set: states 54 and 100. State 100, associated with putative artifacts, 528 

showed high enrichments for PhastCons elements (15 fold) and high average scores for 529 

PhastCons and PhyloP. This is consistent with this state having high aligning and matching 530 

probabilities primarily in non-mammalian vertebrates and these elements and scores being 531 

defined using such species. State 54 was consistently enriched for all the constrained elements 532 

(4-7 fold), but did not show high mean base-wise scores. The difference of high enrichment in 533 

constrained elements but not base-wise scores is consistent with state 54 having high 534 

alignability through most vertebrates, but low matching outside primates. More generally, we 535 

found that constrained element calls did not have the resolution to exhibit biologically relevant 536 

single nucleotide variation in enrichments around regulatory motifs and exon start and ends as 537 
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we saw with our conservation state annotations, with the exception of those from PhastCons 538 

(Fig. 3, Supplementary Fig. 16).  539 

The objective of our conservation state annotations is different than that of binary calls 540 

and univariate scores of evolutionary constraint, which have a more specific and complementary 541 

goal. However, to better understand their relative biologically relevant information we compared 542 

their ability to recover annotated starts and ends of exons and TSS and TES of genes 543 

separately for protein coding and pseudogenes (Fig. 5a-c, Supplementary Fig. 17). In almost 544 

all cases the conservation states had greater information available for recovering annotated 545 

gene features. The only exceptions were that PhyloP scores could achieve higher precision at 546 

low recall levels for protein coding exon starts and ends and that SiPhy-pi elements had slightly 547 

higher precision for TSS of protein coding genes at their one recall point.  548 

We also compared the ability of conservation states to recover bases covered by DHS 549 

sites in specific cell types both genome-wide and restricted to non-exonic bases 550 

(Supplementary Fig. 18). For these analyses we generally found that at the same recall level 551 

the conservation states could identify bases in a DHS at greater precision than constraint 552 

scores. Compared to constrained elements the relative ability depended both on the specific 553 

constrained element set being compared and the specific DHS experiment. Importantly, the 554 

information about DHS in the conservation states was complementary to that in the constrained 555 

element sets as evidenced by large variation in DHS enrichments of bases within constrained 556 

elements depending on their conservation state (Fig. 5d, Supplementary Fig. 19). For 557 

example, the enrichment of bases in PhastCons constrained elements for Fetal Brain DHS in 558 

non-exonic regions ranged from 0.3 to 10.1 fold depending on the conservation state. 559 

Additionally, we saw cases where certain states had greater enrichments for DHS for their 560 

bases not in a constrained element compared to bases in a constrained element in other states. 561 

On the other hand, constrained element calls offered additional information as we observed that 562 
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in most cases, for a given conservation state, bases that were in a constrained element call had 563 

greater enrichment for DHS than those that were not. 564 

We also analyzed the enrichments of our conservation states for previously defined 565 

nine-subsets of PhastCons constrained non-exonic elements (CNEEs) based on a directed 566 

phylogenetic approach that assigned each element to a phylogenetic branch point of origin 567 

(Supplementary Fig. 20a).22 This demonstrated in some cases the heterogeneous nature of 568 

the resulting assignments when relying on directed phylogenetic partitioning approaches. For 569 

example bases in elements assigned to originating at the branch point of the Tetrapod clade 570 

showed a 37 fold enrichment for state 2, as would be expected since state 2 is associated with 571 

aligning and matching through all vertebrates except fish, but an even greater enrichment (51 572 

fold) for state 100, associated with putative artifacts. A similar pattern of enrichments was 573 

observed when considering only the CNEEs overlapping a PhastCons element called on the 574 

same alignment as the conservation states (Supplementary Fig. 20b).   575 

 576 

Enrichment of conservation states for human genetic variation 577 

Previous analyses have found a depletion of human genetic variation in evolutionarily 578 

constrained elements.7 Consistent with that, the greatest depletion (3.3 fold depletion) of 579 

common SNPs from dbSNP is in state 1, the state most enriched for constrained elements. 580 

Interestingly, six states, A_SMam states 55-57 and AM_Prim states 87-89, had enrichments in 581 

the range 5 to 8 fold for common SNPs. These were also the six states with greatest enrichment 582 

of CG dinucleotides (Supplementary Fig. 11). These six states have in common that they show 583 

high align probabilities for most primates, but low match probabilities for some of those same 584 

primates. These states are thus associated with substantial variation both among primates and 585 

among humans. We observed similar patterns of enrichment for variants identified from whole 586 

genome sequencing (WGS) of a cohort of 7784 unrelated individuals37, with the levels of state 587 
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enrichments and depletions increasing with the minor allele frequency (Supplementary Fig. 588 

21a).  589 

When analyzing the enrichment of GWAS catalog variants36 relative to the background 590 

of common SNPs we saw opposite enrichment patterns for these states (Fig. 6a,b). For 591 

example, relative to this background, state 1 was most enriched for GWAS catalog variants, 592 

which is consistent with previous observations of constrained elements enriching for GWAS 593 

variants.7 On the other hand, states 55-57 and 87-89 showed the greatest depletion. These 594 

results suggest that common variants are less likely to be phenotypically significant if they fall in 595 

conservation states most enriched for common genetic variation.  596 

 597 

Conservation states capture similarities and differences between context-dependent tolerance 598 

score and inter-species constraint in humans 599 

 A recent study defined a context-dependent tolerance score (CDTS) based on the local 600 

depletion of genetic variations in the same WGS data of 7794 unrelated individuals relative to 601 

expectation determined by the DNA sequence context.37 Bases prioritized by the score were 602 

reported to identify regulatory elements of the genome while having limited overlap with bases 603 

prioritized by GERP++.  We used our more detailed conservation state annotations to better 604 

understand the relationship between bases prioritized by CDTS and those falling in GERP++ 605 

defined constrained elements (Figure 6c, Supplementary Fig. 15a, 21b). Bases in GERP++ 606 

elements and top 1% CDTS bases both showed the highest enrichments for state 1 (14.3 fold 607 

and 13.3 fold respectively), which was the state strongly enriched for protein coding exons. On 608 

the other hand states 2 and 28 highlight the differences in bases prioritized by these two sets, 609 

with state 2 preferentially enriched for GERP++ bases relative to top 1% CDTS (12.6 fold vs. 2.4 610 

fold) and state 28 preferentially enriched for top 1 % CDTS (9.6 fold vs. 3.0 fold). State 28 was 611 

the state strongly associated with annotated promoters of protein coding genes (Fig 3c) and 612 

CpG islands (32.1 fold) while state 2 was the state most strongly enriched for candidate 613 
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enhancers defined by the chromatin states (Figure 4a), but with limited enrichment for CpG 614 

Islands (1.5 fold) (Figure 6c). These and other state enrichments highlight specific cross-615 

species conservation patterns that are unique to each approach to capturing constraint, as well 616 

as shared.  617 

 618 

Constrained element enrichment for partitioned heritability of complex traits depends on 619 

conservation state 620 

Previous analyses have suggested a strong enrichment of constrained elements and 621 

DHS for phenotype heritability.15,49 As we saw large differences in DHS enrichments of 622 

constrained elements depending on the conservation state, we investigated the extent to which 623 

constrained elements in conservation states most enriched for DHS enriched for phenotype 624 

heritability compared to the remaining states. Specifically, we ranked the conservation states in 625 

descending order of their median enrichment for DHS from a compendium of 125 experiments 626 

from the ENCODE consortium, within the non-exonic portion of the state (Fig. 2b, Methods).3 627 

We then partitioned bases in PhastCons constrained elements into two almost equal size sets 628 

based on whether they overlapped one of the top seven ranked conservation states (states 1-5, 629 

8, 28) or not. We then computed the heritability for these two sets for eight phenotypes in the 630 

context of a set of baseline annotations that include DHS annotations (Methods).15 For seven of 631 

the phenotypes, we found that bases in constrained element overlapping the top seven states 632 

had greater enrichment than those in the remaining 93 states, often substantially so (Fig. 6d). 633 

These results suggest additional value in the conservation state annotations for isolating more 634 

likely disease relevant variants. 635 

 636 

Discussion 637 

We presented a new framework for genome annotation based on comparative genomics 638 

sequence data. Our approach learns a set of conservation states de novo using a multivariate 639 
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HMM based on the combinatorial and spatial patterns of which species align and match a 640 

reference genome in a multi-species DNA sequence alignment. We applied this approach to 641 

annotate the human genome at single nucleotide resolution into one of 100 conservation states.  642 

Conservation state annotations exhibited substantial enrichments for a wide range of other 643 

genomic annotations that were not provided to the model in training, thus supporting their 644 

biological significance. Specific conservation states exhibited strong enrichments for various 645 

gene annotations including exons and TSS and TES of genes. Conservation states showed 646 

differential enrichment patterns for various classes of genes and DHS from multiple cell types, 647 

even though they were defined independently of any functional genomics data. Specific 648 

conservation states exhibited enrichments for common human variants, while a different set of 649 

states exhibited enrichments for variants identified by GWAS relative to common variation. 650 

ConsHMM provides a novel approach to comparative genomics based genome 651 

annotation. ConsHMM differs from other comparative genomic based annotation approaches in 652 

that it takes an unsupervised approach that does not explicitly use a phylogenetic tree, except to 653 

the extent to which a phylogenetic tree was used to generate the input multi-species sequence 654 

alignment. This leads to relatively unbiased, simple and interpretable models. However, many 655 

state patterns discovered are consistent with expected observations from commonly assumed 656 

phylogenetic relationships of the species. While states’ parameters often decreased with 657 

divergence time from human, there were a number of exceptions. Some of these exceptions 658 

corresponded to missing specific sub-clades of species, particularly those with long branch 659 

lengths. For example, a number of states were not represented by mouse and rat while being 660 

represented by more distally diverged mammals. Other exceptions isolated putative artifacts in 661 

the alignments that might otherwise confound analyses, as we saw for two states heavily 662 

enriched for pseudogenes. 663 

Our conservation state annotation is complementary to existing binary calls and scores 664 

of evolutionary constraint based on phylogenetic modeling. Both locations called as constrained 665 
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and those called as non-constrained are heterogeneous in their assigned conservation state. 666 

Our annotations thus provide additional descriptive information about the conservation patterns 667 

at each base. In terms of information for predicting external annotations, we found that in many 668 

cases the conservation states had greater information than constraint scores or elements. For 669 

other cases, such as DHS, the relative information depended on the constrained element set or 670 

score being compared. Importantly, we observed that DHS information provided by the states 671 

was complementary to information in the constrained element calls. We also showed how our 672 

conservation state annotations can clarify the relationship between traditional interspecies 673 

constraint annotations and the recently proposed CDTS measure, as we saw states uniquely 674 

strongly enriched in the set of bases prioritized by each approach. Additionally, we observed 675 

that bases in constrained elements showed substantially different enrichments for phenotype-676 

associated heritability, depending on their conservation state. 677 

The conservation states are both inspired by, and provide complementary information to, 678 

existing chromatin state annotation approaches. While the states from the two approaches are 679 

based on very different data and have fundamental differences, they also exhibited substantial 680 

cross-enrichments. In general, conservation states have the advantage of providing information 681 

at single nucleotide resolution, which we demonstrated by showing enrichments patterns in and 682 

around coding exons and regulatory motifs. Conservation states can also provide information 683 

about bases in the genome even if the relevant cell type has not been experimentally profiled, 684 

while chromatin states have the advantage of directly providing cell type specific information.   685 

We expect many applications for the methodology and annotations we have presented 686 

here. While we applied ConsHMM here to one multiple species alignment, a 100-way Multiz 687 

human alignment, the methodology is general, and thus can be readily applied to alignments to 688 

other species or alignments generated by other methods.26 The annotations we produced serve 689 

as a resource to directly interpret other genomic datasets. They can also be integrated with 690 

complementary functional genomics or comparative information in methods that aim to better 691 
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prioritize disease relevant variants.16–19,50,51 This work represents a step in the direction of 692 

improving whole genome annotations, which will continue to be of increasing importance 693 

towards understanding health and disease as the availability of whole genome sequencing data 694 

increases. 695 
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 876 

Figure Legends 877 

Figure 1: Illustration of ConsHMM modeling approach. (a) The input to ConsHMM is a multi-878 

species alignment, which is illustrated for a subset of 6 species aligned to the human sequence. 879 

At each position and for each species ConsHMM represents the information as one of three 880 

observations: (1) aligns with a non-indel nucleotide matching the human sequence shown in 881 

blue, (2) aligns with a non-indel nucleotide not matching the human sequence shown in yellow, 882 
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or (3) does not align with a non-indel nucleotide shown in gray. (b) Illustration of conservation 883 

state assignments at a locus chr22:25,024,640-25,024,812. Only states assigned to at least one 884 

nucleotide in the locus are shown. Below the conservation state assignments is a color 885 

encoding of the input multiple sequence alignment according to panel (a). The major clade of 886 

species as annotated on the UCSC genome browser21 are labeled and ordered based on 887 

divergence from human. Above the conservation state assignments are PhastCons constrained 888 

elements and scores and PhlyoP constraint scores. The figure and Supplementary Fig. 9 889 

together illustrate that positions of nucleotides that have the same status in terms of being in a 890 

constrained element or not or have similar constraint scores can be assigned to different 891 

conservation states depending on the patterns in the underlying multiple-species alignment. 892 

 893 

Figure 2: Conservation state emission parameters learned by ConsHMM and enrichments 894 

for other genomic annotations. (a) Each row in the heatmap corresponds to a conservation 895 

state. For each state and species, the left half of the heatmap gives the probability of aligning to 896 

the human sequence, which is one minus the probability of the not aligning emission. 897 

Analogously, the right half of the heatmap gives the probability of observing the matching 898 

emission. Each individual column corresponds to one species with the individual names 899 

displayed in Supplementary Fig. 5. For both halves species are grouped by the major clades 900 

and ordered based on the hg19.100way.nh phylogenetic tree from the UCSC genome browser, 901 

with species that diverged more recently shown closer to the left.21 The conservation states are 902 

ordered based on the results of applying hierarchical clustering and optimal leaf ordering.41 The 903 

states are divided into eight major groups based on cutting the dendrogram of the clustering. 904 

The groups are indicated by color bars on the left hand side and a white row between them. 905 

Transition parameters between states of the model can be found in Supplementary Fig. 6. (b) 906 

The columns of the heatmap indicate the relative enrichments of conservation states for 907 

external genomic annotations (Methods). For each column, the enrichments were normalized to 908 
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a [0,1] range by subtracting the minimum value of the column and dividing by the range and 909 

colored based on the indicated scale. Values for these enrichments and additional enrichments 910 

can be found in Supplementary Fig. 8 and Supplementary Table 2 and enrichments for 911 

individual repeat classes and families can be found in Supplementary Fig. 13.   912 

 913 

Figure 3: Conservation state positional enrichments. Plots of positional fold enrichments of 914 

conservation states relative to (a) start of exons of protein coding genes in phase 0, (b) end of 915 

exons of protein coding genes and TSS of (c) protein coding, and (d) pseudogenes genes. 916 

Positive values represent the number of bases downstream in the 5’ to 3’ direction of 917 

transcription, while negative values represent the number of bases upstream. Enrichments 918 

relative to gene annotations are based on a genome-wide background. The subset of states 919 

included in panels (a)-(d) were the states that had at least a 3 fold enrichment at some position 920 

within +/-2kb from the anchor point. Also shown are positional plots relative to the central 921 

nucleotide of a set of instances of (e) STAT and (f) POU5F1 motifs. The subset of states 922 

included in (e), (f) are the states that had an enrichment of at least 1.5 for some position within 923 

+/- 15bp from the center nucleotide of either motif. Enrichments for motif instances were 924 

computed relative to the portion of the genome scanned for regulatory motifs in Kheradpour and 925 

Kellis (2014), which excludes coding, 3’UTR, and repeat elements. Additional position 926 

enrichment plots can be found in Supplementary Fig. 10.  927 

 928 

Figure 4: Conservation states enrichment for chromatin states, GO terms, DHS and 929 

repeat elements. (a) Median fold enrichment of conservation states (rows) for one of 25 930 

chromatin states from a previously defined chromatin state model defined across 127 samples 931 

of diverse cell and tissue types (columns).15 Only conservation states that had the maximum 932 

value for at least one chromatin state are shown, and those values are boxed. See 933 

Supplementary Fig. 14 for the enrichments of all conservation states. (b) –log10 p-value 934 
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(uncorrected) of the conservation states (rows) for the GO term (columns) where each 935 

conservation state is associated with its top 5% genes based on promoter regions (Methods). 936 

Only GO terms which were the most enriched term for some conservation state are shown, 937 

restricted to the top 10 terms based on the significance of the enrichment. Only conservation 938 

states that had the most significant enrichment for one of the displayed GO terms are shown, 939 

with the maximal enrichments boxed. The full set of conservation states with additional GO 940 

terms are in Supplementary Fig. 12. (c) Relative enrichments of conservation states for DHS 941 

across cell and tissue types. Only conservation states with at least a 2 fold enrichment in one 942 

sample considered are shown. Enrichment values were log2 transformed and then row 943 

normalized by subtracting the mean (right heatmap) and dividing by the standard deviation. 944 

States and experiments were then hierarchically clustered and revealed two major clusters. In 945 

the top cluster conservation states showed the greatest enrichment for experiments in which the 946 

DHS also strongly enriched for CpG islands (top heatmap). In the bottom cluster conservation 947 

states generally had the strongest relative preference for a number of fetal related samples. (d) 948 

Enrichment of conservation states with the maximal enrichment for LINE, SINE, LTR or DNA 949 

repeats next to the state align probabilities for primates. These states all had low align 950 

probabilities outside of primates, but their differences among primates corresponded to 951 

substantial differences in repeat enrichments. 952 

 953 

Figure 5: Relationship of conservation states with constrained elements and scores. 954 

Precision-recall plots for recovery of (a) TSS of protein coding genes, (b) TES of protein coding 955 

genes, and (c) the start of exons of protein coding genes. Recovery based on ordering 956 

ConsHMM conservation states for their enrichment for the target set in the training data, then 957 

cumulatively adding the states in that ranked order and evaluating on the test data is shown with 958 

a series of blue dots (Methods). The first few conservation states added are labeled with their 959 

state number. Recovery based on ranking from highest to lowest value of constraint scores is 960 
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shown with continuous lines. Recovery based on score partitioning into 400 bins and 961 

subsequent ordering based on enrichment for the target set in the training data, then 962 

cumulatively adding bins in that ranked order and evaluating on the test data is shown in a 963 

series of dots of the same color as the continuous line corresponding to the score. Recovery of 964 

target test bases by a constrained element set is shown with a single dot for each constrained 965 

element set. See Supplementary Figs. 17-18 for plots based on additional targets. (d) The 966 

graph shows the fold enrichment for Fetal Brain DHS5 within the non-exonic portion of each 967 

conservation state, separately for those bases in a PhastCons constrained element (pink) and 968 

bases not in such an element (blue). Enrichments within constrained elements varied 969 

substantially depending on the conservation state. For a given conservation state, bases in a 970 

constrained element had greater enrichments than bases not in a constrained element, 971 

illustrating complementary information of conservation states and constrained elements. See 972 

Supplementary Fig. 19 for graphs based on different element sets or DHS data.  973 

 974 

Figure 6: Conservation states and association with human genetic variation.  (a) The 975 

panel displays the log2 fold enrichment of each state for common SNPs (pink) and GWAS 976 

catalog variants relative to common SNPs (blue). State 1, associated with high alignability and 977 

matching through all vertebrates, showed the greatest depletion of common SNPs and the 978 

highest enrichment for GWAS variants relative to common SNPs. States 55-57 and 87-89 979 

exhibited the opposite pattern having the greatest enrichment for common SNPs and the 980 

greatest depletion of GWAS variants relative to this background. The second most depleted 981 

state for common SNPs, which did not show enrichment for GWAS catalog SNPs, was state 96 982 

which captured large gaps in the assembly (Supplementary Fig. 8). (b) Panel shows the 983 

representation of state emission parameters from Fig. 2a for the subset of states highlighted in 984 

panel (a). The states with the greatest depletion of GWAS variants all had relatively high 985 

alignability at least through primates, but low matching probabilities for almost all species except 986 
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a few closely related primates. (c) Scatter plot of conservation state fold enrichments of top 1% 987 

CDTS bases (x-axis) and GERP++ elements (y-axis). The states are colored by their group 988 

assignment and the size of the point corresponds to the enrichment for CpG islands as 989 

indicated based on the scale on the right. Those states which were at least four fold enriched in 990 

either set are labeled. (d) Applying the heritability partitioning enrichment method of Finucane et 991 

al.15 on two disjoint subsets of bases in PhastCons elements, with eight phenotypes previously 992 

analyzed with heritability partitioning in the context of a baseline set of annotations (Methods).15 993 

One set of bases are those in PhastCons elements that are also in one of the seven 994 

conservation states showing the greatest enrichment for DHS in its non-exonic portion (States 995 

1-5, 8, and 28) covering 51.9% of PhastCons bases (pink). The other set are those bases in 996 

PhastCons elements overlapping the remaining 93 states covering 48.1% of PhastCons bases 997 

(blue). 998 
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