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Abstract

Motivation: Long-read sequencing and novel long-range assays have revolutionized de novo genome
assembly by automating the reconstruction of reference-quality genomes. In particular, Hi-C sequencing
is becoming an economical method for generating chromosome-scale scaffolds. Despite its increasing
popularity, there are limited open-source tools available. Errors, particularly inversions and fusions across
chromosomes, remain higher than alternate scaffolding technologies.
Results: We present a novel open-source Hi-C scaffolder that does not require an a priori estimate of
chromosome number and minimizes errors by scaffolding with the assistance of an assembly graph. We
demonstrate higher accuracy than the state-of-the-art methods across a variety of Hi-C library preparations
and input assembly sizes.
Availability and Implementation: The Python and C++ code for our method is openly available at
https://github.com/machinegun/SALSA
Contact: sergey.koren@nih.gov, adam.phillippy@nih.gov
Supplementary information: Not available online.

1 Introduction
Genome assembly is the process of reconstructing a complete genome
sequence from significantly shorter sequencing reads. Most genome
projects rely on whole genome shotgun sequencing which yields an
oversampling of each genomic locus. Reads originating from the same
locus are identified using assembly software, which can use these
overlaps to reconstruct the genome sequence (Nagarajan and Pop, 2013;
Miller et al., 2010). Most approaches are based on either a de Bruijn
(Pevzner et al., 2001) or a string graph (Myers, 2005) formulation.
Repetitive sequences exceeding the sequencing read length (Nagarajan
and Pop, 2009) introduce ambiguity and prevent complete reconstruction.
Unambiguous reconstructions of the sequence are output as "unitigs" (or
often "contigs"). Ambiguous reconstructions are output as edges linking
unitigs. Scaffolding utilizes long-range linking information such as BAC
or fosmid clones (Venter et al., 1996; Gnerre et al., 2011), optical maps

(Schwartz et al., 1993; Dong et al., 2013; Shelton et al., 2015), linked
reads (Zheng et al., 2016; Weisenfeld et al., 2017; Yeo et al., 2017),
or chromosomal conformation capture (Simonis et al., 2006) to order
and orient unitigs. If the linking information spans large distances on
the chromosome, the resulting scaffolds can span entire chromosomes
or chromosome arms.

Hi-C is a sequencing-based assay originally designed to interrogate the
3D structure of the genome inside a cell nucleus by measuring the contact
frequency between all pairs of loci in the genome (Lieberman-Aiden et al.,
2009). The contact frequency between a pair of loci strongly correlates with
the one-dimensional distance between them. Hi-C data can provide linkage
information across a variety of length scales, spanning tens of megabases.
As a result, Hi-C data can be used for genome scaffolding. Shortly after
its introduction, Hi-C was used to generate chromosome-scale scaffolds
(Burton et al., 2013; Kaplan and Dekker, 2013; Marie-Nelly et al., 2014;
Bickhart et al., 2017; Dudchenko et al., 2017).

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 7, 2018. ; https://doi.org/10.1101/261149doi: bioRxiv preprint 

https://doi.org/10.1101/261149


i
i

“main” — 2018/2/6 — 16:36 — page 2 — #2 i
i

i
i

i
i

2 Ghurye et al.

LACHESIS (Burton et al., 2013) is an early method for Hi-C
scaffolding which first clusters unitigs into a user-specified number of
chromosome groups and then orients and orders the unitigs in each
group independently to generate scaffolds. Thus, the scaffolds inherit
any assembly errors present in the unitigs. The original SALSA (Ghurye
et al., 2017) method first corrects the input assembly, using a lack of Hi-
C coverage as evidence of error. It then orients and orders the corrected
unitigs to generate scaffolds. However, SALSA requires manual parameter
tuning for each dataset which affects the contiguity and correctness of the
final scaffolds. Recently, the 3D-DNA (Dudchenko et al., 2017) method
was introduced and demonstrated on a draft assembly of the Aedes aegypti
genome. 3D-DNA also corrects the errors in the input assembly and then
iteratively orients and orders unitigs into a single megascaffold. This
megascaffold is then broken into a user-specified number of chromosomes,
identifying chromosomal ends based the on Hi-C contact map.

There are several shortcomings common across currently available
tools. They require the user to specify the number of chromosomes a priori.
This can be challenging in novel genomes where no karyotype is available.
An incorrect guess often leads to mis-joins that fuse chromosomes.
They are also sensitive to input assembly contiguity and Hi-C library
variations and require tuning of parameters for each dataset. Inversions
are common when the input unitigs are short, as orientation is determined
by maximizing the interaction frequency between unitig ends across all
possible orientations (Burton et al., 2013). When unitigs are long, there
are few interactions spanning the full length of the unitig, making the true
orientation apparent from the higher weight of links. However, in the case
of short unitigs, there are interactions spanning the full length of the unitig,
making the true orientation have a similar weight to incorrect orientations.
Biological factors, such as topologically associated domains (TADs) also
confound this analysis (Dixon et al., 2012).

In this work, we introduce SALSA2 – an open source software that
combines Hi-C linkage information with the ambiguous-edge information
from a genome assembly graph to better resolve unitig orientations. We
also propose a novel stopping condition, which does not require an a
priori estimate of chromosome count, as it naturally stops when the Hi-C
information is exhausted. We show that SALSA2 has fewer orientation,
ordering, and chimeric errors across a wide range of assembly contiguities.
We also demonstrate robustness to different Hi-C libraries with varying
intra-chromosomal contact frequencies. When compared to 3D-DNA,
SALSA2 generates more accurate scaffolds across all conditions tested.
To our knowledge, this is the first method to leverage assembly graph
information for scaffolding Hi-C data.

2 Methods
Figure 1(A) shows the overview of the SALSA2 pipeline. A draft assembly
is generated from long reads such as Pacific Biosciences (Eid et al., 2009)
or Oxford Nanopore (Jain et al., 2016). SALSA2 requires the unitig
sequences and, optionally, a GFA-format graph (Li, 2016) representing the
ambiguous reconstructions. Hi-C reads are aligned to the unitig sequences,
and unitigs are optionally split in regions lacking Hi-C coverage. A
hybrid scaffold graph is constructed using both ambiguous edges from
the GFA and edges from the Hi-C reads, scoring edges according to a
"best buddy" scheme. Scaffolds are iteratively constructed from this graph
using a greedy weighted maximum matching. A mis-join detection step is
performed after each iteration to check if any of the joins made during this
round are incorrect. Incorrect joins are broken and the edges blacklisted
during subsequent iterations. This process continues until the majority
of joins made in the prior iteration are incorrect. This provides a natural
stopping condition, when accurate Hi-C links have been exhausted. Below,
we describe each of the steps in detail.
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Fig. 1. (A) Overview of the SALSA2 scaffolding algorithm. (B) Linkage information
obtained from the alignment of Hi-C reads to the assembly. (C) The assembly graph obtained
from the assembler. (D) A hybrid scaffold graph constructed from the links obtained from
the Hi-C read alignments and the overlap graph. Solid edges indicate the linkages between
different unitigs and dotted edges indicate the links between the ends of the same unitig. (E)
Maximal matching obtained from the graph using a greedy weighted maximum matching
algorithm. (F) Edges between the ends of same unitigs are added back to the matching.

2.1 Read alignment

Hi-C paired end reads are aligned to unitigs using the BWA aligner (Li
and Durbin, 2009)(parameters: -t 12 -B 8) as single end reads. Reads
which align across ligation junctions are chimeric and are trimmed to retain
only the start of the read which aligns prior to the ligation junction. After
filtering the chimeric reads, the pairing information is restored. Any PCR
duplicates in the paired-end alignments are removed using Picard tools
(Wysoker et al., 2013). Read pairs aligned to different unitigs are used
to construct the initial scaffold graph. The suggested mapping pipeline is
available at http://github.com/ArimaGenomics/mapping_pipeline.

Suspicious intervals 
for different cutoffs

C
utoffs

Split mis-assembled unitig

Fig. 2. Example of the mis-assembly detection algorithm in SALSA2. The plot shows the
position on x-axis and the physical coverage on the y-axis. The dotted horizontal lines
show the different thresholds tested to find low physical coverage intervals. The lines at the
bottom show the suspicious intervals identified by the algorithm. The dotted line through the
intervals shows the maximal clique. The smallest interval (purple) in the clique is identified
as mis-assembly and the unitig is broken in three parts at its boundaries.

the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) isthis version posted February 7, 2018. ; https://doi.org/10.1101/261149doi: bioRxiv preprint 

https://doi.org/10.1101/261149


i
i

“main” — 2018/2/6 — 16:36 — page 3 — #3 i
i

i
i

i
i

Assembly-graph based Hi-C scaffolding 3

2.2 Unitig correction

As any assembly is likely to contain mis-assembled sequences, SALSA2
uses the physical coverage of Hi-C pairs to identify suspicious regions
and break the sequence at the likely point of mis-assembly. We define the
physical coverage of a Hi-C read pair as the region on the unitig spanned
by the start of the leftmost fragment and the end of the rightmost fragment.
A drop in physical coverage indicates a likely assembly error. We extend
the mis-assembly detection algorithm from SALSA which split a unitig
when a fixed minimum coverage threshold was not met. A drawback of
this approach is that coverage can vary, both due to sequencing depth and
variation in Hi-C link density.

Figure 2 sketches the new unitig correction algorithm implemented
in SALSA2. Instead of a single coverage threshold, a set of suspicious
intervals is found with a sweep of thresholds. Using the collection of
intervals as an interval graph, we find the maximal clique. This can be
done in O(NlogN) time, where N is the number of intervals. For any
clique of a minimum size, the region between the start and end of the
smallest interval in the clique is flagged as a mis-assembly and the unitig
is split into three pieces — the sequence to the left of the region, the
junction region itself, and the sequence to the right of the region.

2.3 Assembly graph construction

For our experiments, we use the unitig assembly graph produced by Canu
(Koren et al., 2017) (Figure 1(C)), as this is the more conservative graph
output. SALSA2 requires only a GFA format (Li, 2016) representation of
the assembly. Since most long read genome assemblers such as FALCON
(Chin et al., 2016), miniasm (Li, 2016), Canu (Koren et al., 2017), and
Flye (Kolmogorov et al., 2018) provide assembly graphs in GFA format,
their output is compatible with SALSA2 for scaffolding.

2.4 Scaffold graph construction

The scaffold graph is defined as G(V,E), where nodes V are the ends of
unitigs and edgesE are derived from the Hi-C read mapping (Figure 1B).
The idea of using unitig ends as nodes is similar to that used by the string
graph formulation (Myers, 2005).

Modeling each unitig as two nodes allows a pair of unitigs to have
multiple edges in any of the four possible orientations (forward-forward,
forward-reverse, reverse-forward, and reverse-reverse). The graph then
contains two edge types - one explicitly connects two different unitigs
based on Hi-C data, while the other implicitly connects the two ends of
the same unitig.

We normalize the Hi-C read counts by the frequency of restriction
enzyme cut sites in each unitig. This normalization reduces the bias in the
number of shared read pairs due to the unitig length as the number of Hi-C
reads sequenced from a particular region are proportional to the number
of restriction enzyme cut sites in that region. For each unitig, we denote
the number of times a cut site appears as C(V ). We define edges weights
of G as:

W (u, v) =
N(u, v)

C(u) + C(v)

whereN(u, v) is the number of Hi-C read pairs mapped to the ends of the
unitigs u and v.

We observed that the globally highest edge weight does not always
capture the correct orientation and ordering information due to variations in
Hi-C interaction frequencies within a genome. To address this, we defined
a modified edge ratio, similar to the one described in (Dudchenko et al.,
2017), which captures the relative weights of all the neighboring edges for
a particular node.

The best buddy weight BB(u, v) is the weight W (u, v) divided by
the maximal weight of any edge incident upon nodes u or v, excluding

the (u, v) edge itself. Computing best buddy weight naively would take
O(|E|2) time. This is computationally prohibitive since the graph, G,
is usually dense. If the maximum weighted edge incident on each node
is stored with the node, the running time for the computation becomes
O(|E|). We retain only edges where BB(u, v) > 1. This keeps only the
edges which are the best incident edge on both u and v. Once used, the
edges are removed from subsequent iterations. Thus, the most confident
edges are used first but initially low scoring edges can become best in
subsequent iterations.

For the assembly graph, we define a similar ratio. Since the edge
weights are optional in the GFA specification and do not directly relate to
the proximity of two unitigs on the chromosome, we use the graph topology
to establish this relationship. Let ū denote the reverse complement of the
unitig u. Let σ(u, v) denote the length of shortest path between u and
v. For each edge (u, v) in the scaffold graph, we find the shortest path
between unitigs u and v in every possible orientation, that is, σ(u, v),
σ(u, v̄), σ(ū, v) and σ(ū, v̄). With this, the score for a pair of unitigs is
defined as follows:

Score(u, v) =

min
x′∈{u,ū}−{x},y′∈{v,v̄}−{y}

σ(x′, y′)

min
x∈{u,ū},y∈{v,v̄}

σ(x, y)

where x and y are the orientations in which u and v are connected
by a shortest path in the assembly graph. Essentially, Score(u, v) is
the ratio of the length of the second shortest path to the length of the
shortest path in all possible orientations. Once again, we retain edges
where Score(u, v) > 1. If the orientation implied by the assembly graph
differs from the orientation implied by the Hi-C data, we remove the Hi-
C edge and retain the assembly graph edge (Figure 1D). Computing the
score graph requires |E| shortest path queries, yielding total runtime of
O(|E| ∗ (|V |+ |E|)) since we do not use the edge weights.

2.5 Unitig layout

Once we have the hybrid graph, we lay out the unitigs to generate
scaffolds. Since there are implicit edges in the graph G between the
beginning and end of each unitig, the problem of computing a scaffold
layout can be modeled as finding a weighted maximum matching in a
general graph, with edge weights being our ratio weights. If we find the
weighted maximum matching of the non-implicit edges (that is, edges
between different unitigs) in the graph, adding the implicit edges to this
matching would yield a complete traversal. However, adding implicit
edges to the matching can introduce a cycle. Such cycles are removed
by removing the lowest weight non-implicit edge. Computing a maximal
matching takes O(|E||V |2) time (Edmonds, 1965). We iteratively find a
maximum matching in the graph by removing nodes found in the previous
iteration. Using the optimal maximum matching algorithm this would
take O(|E||V |3) time, which would be extremely slow for large graphs.
Instead, we use a greedy maximal matching algorithm which is guaranteed
to find a matching within 1/2-approximation of the optimum (Poloczek
and Szegedy, 2012). The greedy matching algorithm takes O(|E|) time,
thereby making the total runtime O(|V ||E|). The algorithm for unitig
layout is sketched in Algorithm 1. Figure 1(D - F) show the layout on an
example graph.

Junctions in the graph can prevent some nodes from being included
in larger scaffolds. At a junction, only one of the possible unitigs can
be included in the matching, demoting the other unitigs at the junction
to alternate matchings. To account for this, we try to insert unitigs from
small scaffolds (less than five unitigs) into all possible positions in the large
scaffolds in all possible orientations. A unitig is inserted into the scaffold
at the position and orientation which maximizes the sum of edge weights
between it and all adjacent unitigs at that location. If the gain in the sum
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of edge weights is not sufficient, the unitig is not inserted into any of the
existing scaffolds but can be scaffolded in subsequent iterations.

Algorithm 1 Unitig Layout Algorithm
E : Edges sorted by the best buddy weight
M : Set to store maximal matchings
G : The scaffold graph
while all nodes in G are not matched do
M∗ = {}
for e ∈ E sorted by best buddy weights do

if e can be added to M∗ then
M∗ = M∗ ∪ e

end if
end for
M = M ∪M∗

Remove nodes and edges which are part of M∗ from G
end while

2.6 Iterative mis-join correction

Since the unitig layout is greedy, it can introduce errors by selecting a
false Hi-C link which was not eliminated by our ratio scoring. These errors
propagate downstream, causing large chimeric scaffolds and chromosomal
fusions. We examine each join made within all the scaffolds in the last
iteration for correctness. Any join with low spanning Hi-C support relative
to the rest of the scaffold is broken and the links are blacklisted for further
iterations.

We compute the physical coverage spanned by all read pairs aligned
in a window of size w around each join. For each window, w, we
create an auxiliary array, which stores −1 at position i if the physical
coverage is greater than some cutoff δ and 1, otherwise. We then find
the maximum sum subarray in this auxiliary array, since it captures the
longest stretch of low physical coverage. If the position being tested
for a mis-join lies within the region spanned by the maximal clique
generated with the maximum sum subarray intervals for different cutoffs
(Figure 2), the join is marked as incorrect. The physical coverage can
be computed in O(w + N) time, where N is the number of read pairs
aligned in window w. The maximum sum subarray computation takes
O(w) time. If K is the number of cutoffs(δ) tested for the suspicious
join finding, then the total runtime of mis-assembly detection becomes
O(K(N + 2 ∗w)). The parameter K controls the specificity of the mis-
assembly detection, thereby avoiding false positives. The algorithm for
mis-join detection is sketched in Algorithm 2. When the majority of joins
made in a particular iteration are flagged as incorrect by the algorithm,
SASLA2 stops scaffolding and reports the scaffolds generated in the
penultimate iteration as the final result.

3 Results

3.1 Dataset description

We created artificial assemblies, each containing unitigs of same size, by
splitting the GRCh38 (Schneider et al., 2017) reference into fixed sized
unitigs of 200 to 900 kbp. This gave us eight assemblies. The assembly
graph for each input is built by adding edges for any adjacent unitigs in
the genome.

For real data, we use the recently published NA12878 human dataset
sequenced with Oxford Nanopore (Jain et al., 2017) and assembled
with Canu (Koren et al., 2017). We use a Hi-C library from Arima
Genomics (Arima Genomics, San Diego, CA) sequenced to 40x coverage

Algorithm 2 Misjoin detection and correction algorithm
Cov : Physical coverage array for a window size w around a scaffold
join at position p on a scaffold
A : Auxiliary array
I : Maximum sum subarray intervals
for δ ∈ {min_coverage, max_coverage} do

if Cov[i] ≤ δ then
A[i] = 1

else
A[i] = −1

end if
sδ, eδ = maximum_sum_subarray(A)

I = I ∪ {sδ, eδ}
end for
s, e =maximal_clique_interval(I)
if p ∈ {s, e} then

Break the scaffold at position p
end if

(SRX3651893). We compare results with the original SALSA, SALSA2
without the assembly graph input, and 3D-DNA. We did not compare
our results with LACHESIS because it is no longer supported and is
outperformed by 3D-DNA (Dudchenko et al., 2017). SALSA2 was run
using default parameters, with the exception of graph incorporation, as
listed. For 3D-DNA, alignments were generated using the Juicer alignment
pipeline (Durand et al., 2016b) with defaults (-m haploid -t 15000 -s 2),
except for mis-assembly detection, as listed. The chromosome number
was set to 23 for all experiments. A genome size of 3.2 Gbp was used for
contiguity statistics for all assemblies.

For evaluation, we also used the GRCh38 reference to define a set
of true and false links from the Hi-C graph. We mapped the assembly
to the reference with MUMmer3.23 (nucmer -c 500 -l 20) (Kurtz et al.,
2004) and generated a tiling using MUMmer’s show-tiling utility. For this
"true link" dataset, any link joining unitigs in the same chromosome in
the correct orientation was marked as true. This also gives the true unitig
position, orientation, and chromosome assignment. We masked sequences
in GRCh38 which matched known structural variants from a previous
assembly of NA12878 (Pendleton et al., 2015) to avoid counting true
variations as scaffolding errors.
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Fig. 3. Precision at different cutoffs for Hi-C links. The plot on the left shows the curve
for the SALSA2 best buddy weight cutoffs and the plot on the right shows the curve for a
fixed Hi-C pair count cutoff, used in SALSA1, across changing coverage.
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Fig. 4. Comparison of orientation, ordering, and chimeric errors in the scaffolds produced by SALSA2 and 3D-DNA on the simulated data. As expected, the number of errors for all error
types decrease with increasing input unitig size. Incorporating the assembly graph reduces error across all categories and most assembly sizes, with the largest decrease seen in orientation
errors. SALSA2 utilizing the graph has 2-4 fold fewer errors than 3D-DNA.

3.2 Scoring effectiveness

For correct scaffolding, we want to filter false edges and retain only
the correct linkage information between pairs of unitigs. Our previous
algorithm used a fixed, user-defined minimum for edges connecting a pair
of unitigs. The drawback of a fixed cutoff is that it cannot handle variations
in coverage within the assembly and varies between any pair of sequencing
datasets. To compare the scoring methods, we down-sample the alignments
into three different sets with 0.25, 0.5 and 0.75 of the original coverage
and computed the precision of filtering based on the ratio score and a fixed
threshold. The precision remained almost constant for the ratio cutoff on
all datasets, whereas the precision changes rapidly for different coverages
and a fixed threshold (Figure 3).

3.3 Evaluation on simulated unitigs

3.3.1 Assembly correction
We simulated assembly error by randomly joining 200 pairs of unitigs from
each simulated assembly. All erroneous joins were made between unitigs
that are more than 10 Mbp apart or were assigned to different chromosomes
in the reference. The remaining unitigs were unaltered. We then aligned
the Arima-HiC data and ran our assembly correction algorithm. When
the algorithm marked a mis-join within 20 kbp of a true error we called
it a true positive, otherwise we called it a false positive. Any unmarked
error was called a false negative. The average sensitivity over all simulated
assemblies was 77.62% and the specificity was 86.13%. The sensitivity
was highest for larger unitigs (50% for 200 kbp versus >90% for untigs
greater than 500 kbp) implying that our algorithm is able to accurately
identify errors in large unitigs, which can have a negative impact on the
final scaffolds if not corrected.

3.3.2 Scaffold mis-join validation
As before, we simulated erroneous scaffolds by joining unitigs which
were not within 10 Mbp in the reference or were assigned to different
chromosomes. Rather than pairs of unitigs, each erroneous scaffold
joined 10 unitigs and we generated 200 such erroneous scaffolds. The
remaining unitigs were correctly scaffolded (ten unitigs per scaffold) based
on their location in the reference. The average sensitivity was 68.89%

and specificity was 100% (no correct scaffolds were broken). Most of
the un-flagged joins occurred near the ends of scaffolds and could be
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Fig. 5. (A) NGA50 statistic for different input unitig sizes and (B) The length of longest
error-free block for different input unitig sizes. Once again, the assembly graph typically
increases both the NGA50 and the largest correct block.

captured by decreasing the window size. Similar to assembly correction,
we observed that sensitivity was highest with larger input unitigs. This
evaluation highlights the accuracy of the mis-join detection algorithm to
avoid over-scaffolding and provide a suitable stopping condition.

3.3.3 Scaffold accuracy
We evaluated scaffolds across three categories of error: orientation, order,
and chimera. An orientation error occurs whenever the orientation of a
unitig in a scaffold differs from that of the scaffold in the reference. An
ordering error occurs when a set of three unitigs adjacent in a scaffold have
non-monotonic coordinates in the reference. A chimera error occurs when
any pair of unitigs adjacent in a scaffold align to different chromosomes
in the reference. We broke the assembly at these errors and computed
corrected scaffold lengths and NGA50 (analogous to the NGA50 defined
by Salzberg et al. (Salzberg et al., 2012)). This statistic corrects for large
but incorrect scaffolds which have a high NG50 but are not useful for
downstream analysis because of errors.

Hi-C scaffolding errors, particularly orientation errors, increased with
decreasing assembly contiguity. We evaluated scaffolding methods across
a variety of simulated unitig sizes. Figure 4 shows the comparison of these
errors for 3D-DNA, SALSA2 without the assembly graph, and SALSA2
with the graph. SALSA2 produced fewer errors than 3D-DNA across
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(A) (B) (C)

Fig. 6. Feature Response Curve for (A) assemblies obtained from unitigs as input (B) assemblies obtained from mitotic Hi-C data and (C) assemblies obtained using Dovetail Chicago data.
The best assemblies lie near the top left of the plot, with the largest area under the curve. The FRC for 3D-DNA scaffolds with Chicago input is a straight line because 3D-DNA generated a
single 2.7 Gbp super-scaffold which contained the majority of the genome sequence.

Dataset Method NG50(Mbp) NGA50(Mbp) Longest Chunk (Mbp) Orientation Errors Ordering Errors Chimeric Errors
Arima-HiC SALSA2 true links 83.31 79.48 172.19 78 101 0

SALSA2 w graph 125.34 57.20 165.11 156 289 142
SALSA2 wo graph 101.96 56.84 155.68 168 302 152

3D-DNA 137.88 28.61 130.88 233 405 178
SALSA1 19.09 14.81 73.14 99 176 96

Mitotic Hi-C SALSA2 w graph 69.23 26.46 145.53 117 98 58
3D-DNA w correction 16.34 0.064 0.96 12017 11687 7217

3D-DNA wo correction 141.18 21.47 84.00 345 320 163
Chicago SALSA2 w graph 6.15 4.63 34.60 59 72 128

3D-DNA w correction 2,641.31 2.62 12.76 244 186 1550
3D-DNA wo correction 1,648.92 4.52 34.60 119 100 711

Table 1. Assembly scaffold and correctness statistics for NA12878 assemblies scaffolded with different Hi-C libraries. The NG50 of human reference GRCh38
is 145 Mbp. The ratio between NG50 and NGA50 represents how many erroneous joins affect large scaffolds in the assembly. A high ratio between NGA50 and
NG50 indicates a more accurate assembly. We observe that 3D-DNA mis-assembly detections shears the input with both the mitotic Hi-C and Chicago data so we
include results both with and without this assembly correction. In case of Chicago data, 3D-DNA generates a large super-scaffold containing more than 50% of the
genome, giving a very high NG50 but a poor NGA50 and ratio.

all error types and input sizes. The number of correctly oriented unitigs
increased significantly when assembly graph information was integrated
with the scaffolding, particularly for lower input unitig sizes (Figure 4).
For example, at 400 kbp, the orientation errors with the graph were
comparable to the orientation errors of the graph-less approach at 900 kbp.
The NGA50 for SALSA2 also increased when assembly graph information
was included (Figure 5). This highlights the power of the assembly graph
to improve scaffolding and correct errors, especially on lower contiguity
assemblies. This also indicates that generating a conservative assembly,
rather than maximizing contiguity, can be preferable for input to Hi-C
scaffolding.

3.4 Evaluation on NA12878

Table 1 lists the metrics for NA12878 scaffolds. We include an idealized
scenario, using only reference-filtered Hi-C edges for comparison. As
expected, the scaffolds generated using only true links had the highest
NGA50 value and longest error-free scaffold block. SALSA2 scaffolds
were more accurate and contiguous than the scaffolds generated by
SALSA1 and 3D-DNA, even without use of the assembly graph. The
addition of the graph further improved the NGA50 and longest error-free
scaffold length.

We also evaluated the assemblies using Feature Response Curves
(FRC) based on scaffolding errors (Vezzi et al., 2012). An assembly
can have a high raw error count but still be of high quality if the errors

1   2   3      4   5       6   7  8   9 10 1112

13 14 15    16 1718     19 20 2122      X

1   2   3      4   5       6   7  8   9 10 1112

13 14 15    16 1718     19 20 2122      X

Fig. 7. Chromosome ideogram generated using the coloredChromosomes (Böhringer et al.,
2002) package. Each color switch denotes a change in the aligned sequence, either due to
large structural error or the end of a unitig/scaffold. Left: input unitigs aligned to the
GRCh38 reference genome. Right: SALSA2 scaffolds aligned to the GRCh38 reference
genome. More than ten chromosomes are in a single scaffold. Chromosomes 1 and 7 are
more fragmented due to scaffolding errors which break the alignment.

are restricted to only short scaffolds. FRC captures this by showing
how quickly error is accumulated, starting from the largest scaffolds.
Figure 6(A) shows the FRC for different assemblies, where the X-axis
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Fig. 8. Contiguity plot for scaffolds generated with (A) standard Arima-HiC data (B) mitotic Hi-C data and (C) Chicago data. The X-axis denotes the NGAX statistic and the Y-axis denotes
the corrected block length to reach the NGAX value. SALSA2 results were generated using the assembly graph, unless otherwise noted.

denotes the cumulative % of assembly errors and the Y-axis denotes the
cumulative assembly size. The assemblies with more area under the curve
accumulate fewer errors in larger scaffolds and hence are more accurate.
SALSA2 scaffolds with and without the graph have similar areas under the
curve and closely match the curve of the assembly using only true links.
The 3D-DNA scaffolds have the lowest area under the curve, implying that
most errors in the assembly occur in the long scaffolds. This is confirmed
by the lower NGA50 value for the 3D-DNA assembly (Table 1).

Apart from the correctness, SALSA2 scaffolds were highly contiguous
and reached an NG50 of 125 Mbp (cf. GRCh38 NG50 of 145 Mbp).
Figure 7 shows the alignment ideogram for the input unitigs as well as
the SALSA2 assembly. Every color change indicates an alignment break,
either due to error or due to the end of a sequence. The input unitigs are
fragmented with multiple unitigs aligning to the same chromosome, while
the SALSA2 scaffolds are highly contiguous and span entire chromosomes
in many cases. Figure 8(A) shows the contiguity plot with corrected NG
stats. As expected, the assembly generated with only true links has the
highest values for all NGA stats. The curve for SALSA2 assemblies with
and without the assembly graph closely matches this curve, implying
that the scaffolds generated with SALSA2 are approaching the optimal
assembly of this Arima-HiC data.

3.5 Robustness to input library

(A) (B) (C)

Fig. 9. Contact map of Hi-C interactions on Chromosome 3 generated by the Juicebox
software (Durand et al., 2016a). The cells sequenced in (A) normal conditions, (B) during
mitosis, and (C) Dovetail Chicago

We next tested scaffolding using two libraries with different Hi-C
contact patterns. The first, from (Naumova et al., 2013), is sequenced
during mitosis. This removes the topological domains and generates fewer

off-diagonal interactions. The second, the L1 library from (Putnam et al.,
2016), is an in vitro chromatin sequencing library (Chicago) generated by
Dovetail Genomics. It also removes off-diagonal matches but has shorter-
range interactions, limited by the size of the input molecules. As seen from
the contact map in Figure 9, both the mitotic Hi-C and Chicago libraries
follow different interaction distributions than the standard Hi-C (Arima-
HiC in this case). We ran SALSA2 with defaults and 3D-DNA with both
the assembly correction turned on and off.

For mitotic Hi-C data, we observed that the 3D-DNA mis-assembly
correction algorithm sheared the input assembly into small pieces, which
resulted in more than 12,000 errors and more than half of the unitigs
incorrectly oriented or ordered. Without mis-assembly correction, the 3D-
DNA assembly has a higher number of orientation (345 vs. 117) and
ordering (320 vs. 98) errors compared to SALSA2. The feature response
curve for the 3D-DNA assembly with breaking is almost a diagonal
(Figure 6(B)) because the sheared unitigs appeared to be randomly joined.
SALSA2 scaffolds contain longer stretches of correct scaffolds compared
to 3D-DNA with and without mis-assembly correction (Figure 8(B)).

For the Chicago libraries, 3D-DNA mis-assembly detection once again
sheared the input unitigs. It generated a single 2.7 Gbp scaffold and
was unable to split it into the requested number of chromosomes. 3D-
DNA uses signatures of chromosome ends (Dudchenko et al., 2017) to
identify break positions which are not present in Chicago data. As a
result, it generated more chimeric joins compared to SALSA2 (1,550 vs.
128 errors). However, the number of order and orientation errors was
similar across the methods. Even in the large single scaffold generated
by 3D-DNA, the sizes of the correctly oriented and ordered blocks were
smaller than SALSA2 (Figure 8(C)). Since Chicago libraries do not provide
chromosome-spanning contact information for scaffolding, the NG50
value for SALSA is 6.15 Mbp, comparable to the equivalent coverage
assembly (50% L1+L2) in (Putnam et al., 2016) but much smaller than
Hi-C libraries. SALSA2 is robust to changing contact distributions. In the
case of Chicago data it produced a less contiguous assembly due to the
shorter interaction distance. However, it avoids introducing false joins,
unlike 3D-DNA, which appears tuned for a specific contact model.

4 Conclusion
In this work, we present the first Hi-C scaffolding method that integrates an
assembly graph to produce high-accuracy, chromosome-scale assemblies.
Our experiments on both simulated and real sequencing data for the human
genome demonstrate the benefits of using an assembly graph to guide
scaffolding. We also show that SALSA2 outperforms alternative Hi-C
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scaffolding tools on assemblies of varied contiguity, using multiple Hi-C
library preparations.

Hi-C scaffolding has been historically prone to inversion errors
when the input assembly is highly fragmented. The integration of the
assembly graph with the scaffolding process can overcome this limitation.
Existing Hi-C scaffolding methods also require an estimate for the number
of chromosomes in the genome. Since SALSA2’s mis-join correction
algorithm stops scaffolding after the useful linking information in a
dataset is exhausted, no chromosome count is needed as input. As the
Genome10K consortium (Koepfli et al., 2015) and independent scientists
begin to sequence novel lineages in the tree of life, it may be impractical
to generate physical or genetics maps for every organism. Thus, Hi-C
sequencing combined with SALSA2 presents an economical alternative
for the reconstruction of chromosome-scale assemblies.
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