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Abstract

The interpretation of neuronal spike train recordings often relies on abstract statistical models that allow
for principled parameter estimation and model selection but provide only limited insights into underlying
microcircuits. In contrast, mechanistic models are useful to interpret microcircuit dynamics, but are rarely
quantitatively matched to experimental data due to methodological challenges. Here we present analytical
methods to efficiently fit spiking circuit models to single-trial spike trains. Using the maximal-likelihood
approach, we statistically infer the mean and variance of hidden inputs, neuronal adaptation properties and
connectivity for coupled integrate-and-fire neurons. Evaluations based on simulated data, and validations
using ground truth recordings in vitro and in vivo demonstrated that parameter estimation is very accurate,
even for highly sub-sampled networks. We finally apply our methods to recordings from cortical neurons of
awake ferrets and reveal population-level equalization between hidden excitatory and inhibitory inputs. The
methods introduced here enable a quantitative, mechanistic interpretation of recorded neuronal population
activity.

Introduction

In recent years neuronal spike train data have been collected at an increasing pace, with the ultimate aim
of unraveling how neural circuitry implements computations that underlie behavior. Often these data are
acquired from extracellular electrophysiological recordings in vivo without knowledge of neuronal input and
connections between neurons. To interpret such data, the recorded spike trains are frequently analyzed by
fitting parametric phenomenological models that describe statistical dependencies in the data. A typical
example consists in fitting generalized linear models to characterize the mapping between measured (sensory)
input and neuronal spiking activity [1–5]. These approaches are very useful for quantifying the structure
in the data, and benefit from statistically principled parameter estimation and model selection methods.
However, their interpretative power is limited as the underlying models typically do not incorporate prior
biophysical constraints, and therefore have a limited capacity for identifying circuit mechanisms.

Mechanistic models of coupled neurons on the other hand involve interpretable variables and parameters,
and have proven essential for analyzing neural circuits. A prominent class of models for this purpose are
spiking neuron models of the integrate-and-fire (I&F) type. Models of this class implement in a simplified
manner the key biophysical constraints and can reproduce and predict neuronal activity with a remarkable
degree of accuracy [6–8], essentially matching the performance of biophysically detailed models with many
parameters [9,10]; thus, they have become state-of-the-art models for describing neural activity in in-vivo like
conditions [7, 11, 12]. In particular, they have been applied in a multitude of studies on local circuits [13–19],
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network dynamics [20–24] as well as in neuromorphic hardware systems [25–27]. I&F neurons can be fit in
straightforward ways to membrane voltage recordings with knowledge of the neuronal input, typically from
in-vitro preparations [7, 9, 11, 12, 28–30]. Having only access to the spike times as in a typical in-vivo setting
however poses a substantial challenge for the estimation of parameters. Estimation methods that rely on
numerical simulations to maximize a likelihood or minimize a cost function [31–33] strongly suffer from the
presence of intrinsic variability (noise) in this case. Consequently, qualitatively comparing the model output
with experimental data is typically the only validation of mechanistic spiking circuit models.

To date, model selection methods based on extracellular recordings are thus much more advanced and
principled for statistical/phenomenological models than for mechanistic circuit models. To bridge this
methodological gap, here we present analytical tools to efficiently fit I&F circuits to observed spike times
from a single trial. By maximizing analytically computed likelihood functions, we infer the statistics of
hidden inputs, neuronal adaptation properties and synaptic coupling strengths, and evaluate our approach
extensively using simulated data. Importantly, we validate our inference methods for these three features
using in-vitro and in-vivo ground truth data from whole-cell [34] and combined juxtacellular-extracellular
recordings [35]. We finally apply the methods to extracellular recordings from primary auditory cortex of
awake behaving ferrets, in particular, assessing the hidden neuronal inputs based on single-unit spike times.

Our work demonstrates that neuronal and network properties can be accurately and efficiently estimated
from spike trains using biophysically constrained I&F models, and indicates the potential of this approach
for the inference of microcircuit models from extracellular recordings. Numerical implementations for our
methods are provided under a free license as an open source project.

Results

Our results are structured as follows. We outline our methods in section 1 and evaluate them in the
subsequent sections using both simulated data and ground truth recordings: for statistical inference of
fluctuating background input in section 2, input perturbations in section 3, synaptic coupling in section 4, and
neuronal adaptation in section 5. In section 6 we then apply our methods to spike trains from extracellular
recordings of behaving ferrets. Section 7 summarizes information on implementation and computational
demands.

1. Maximum likelihood estimation for integrate-and-fire neurons

Maximum likelihood estimation is a principled method for fitting statistical models to observations. Given
observed data D and a model that depends on a vector of parameters θ, the estimated value θ̂ of the
parameter vector is determined by maximizing the likelihood that the observations are generated by the
model,

θ̂ := argmaxθ p(D|θ). (1)

This method features several attractive properties, among them: (i) the distribution of maximum likelihood
estimates is asymptotically Gaussian with mean given by the true value of θ; (ii) the variances of the
parameter estimates achieve a theoretical lower bound, the Cramer-Rao bound (given by the reciprocal of
the Fisher information) as the sample size increases [36]. It should further be noted that maximizing the
likelihood p(D|θ) within plausible limits for the parameter values is equivalent to maximizing the posterior
probability density for the parameters given the data, p(θ|D), without prior knowledge about the parameters
except for the limits (i.e., assuming a uniform prior distribution of θ).

Let us first focus on single neurons (for networks see Results section 4). The data we have are neuronal
spike times, which we collect in the ordered set

D := {t1, . . . , tK}. (2)

We consider neuron models of the integrate-and-fire (I&F) type, which describe the membrane voltage
dynamics by a differential equation together with a reset condition that simplifies the complex, but rather
stereotyped, dynamics of action potentials (spikes). Here we focus on the classical leaky I&F model [37] but
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also consider a refined variant that includes a nonlinear description of the spike-generating sodium current
at spike initiation and is known as exponential I&F model [38]. An extended I&F model that accounts for
neuronal (spike rate) adaptation [9, 39, 40] is included in Results section 5. Each model neuron receives
fluctuating inputs described by a Gaussian white noise process with (time-varying) mean µ(t) and standard
deviation σ.

We would like to point out that not all model parameters need to be estimated. The membrane voltage
can be scaled such that the remaining parameters of interest for estimation are those for the input together
with the membrane time constant τm in case of the leaky I&F model, and additionally the reset voltage Vr in
case of the exponential I&F model (for details see Methods section 1).

We are interested in the likelihood p(D|θ) of observing the spike train D from the model with parameter
vector θ. As spike emission in I&F models is a renewal process (except in presence of adaptation, see below)
this likelihood can be factorized as

p(D|θ) =
K−1∏
k=1

p(tk+1|tk, µ[tk, tk+1],θ), (3)

where µ[tk, tk+1] := {µ(t) | t ∈ [tk, tk+1]} denotes the mean input time series across the time interval [tk, tk+1].
In words, each factor in Eq. (3) is the probability density value of a spike time conditioned on knowledge
about the previous spike time, the parameters contained in θ and the mean input time series across the
inter-spike interval (ISI). We assume that µ[tk, tk+1] can be determined using available knowledge, which
includes the parameters in θ as well as previous (observed) spike times.

For robust and rapid parameter estimation using established optimization techniques we need to compute
p(D|θ) as accurately and efficiently as possible. Typical simulation-based techniques are not well suited
because they can only achieve a noisy approximation of the likelihood that depends on the realization of the
input fluctuations and is difficult to maximize. This poses a methodological challenge which can be overcome
using analytical tools that have been developed for I&F neurons in the context of the forward problem of
calculating model output for given parameters [41–45]. These tools led us to the following methods that we
explored for the inverse problem of parameter estimation:

� Method 1 calculates the factors of the likelihood (Eq. (3), right hand side) via the inter-spike interval
(ISI) probability density pISI, using

p(tk+1|tk, µ[tk, tk+1],θ) = pISI(sk|µISI[0, sk],θ), (4)

where sk := tk+1 − tk is the length of the k-th ISI and µISI is the mean input across that ISI given
by µISI[0, sk] = µ[tk, tk+1]. We obtain pISI by solving a Fokker-Planck partial differential equation
using two different numerical solution schemes which serve for different model scenarios (for details
see Methods section 2). One of these schemes relies on the Fourier transform and provides an efficient
approximation for small amplitude variations of the mean input,

µ(t) = µ0 + Jµ1(t) (5)

pISI(sk|µISI[0, sk],θ) ≈ p0ISI(sk|µ0
ISI,θ) + J p1ISI(sk|µ1

ISI[0, sk],θ) (6)

with µ0
ISI = µ0 and µ1

ISI[0, sk] = µ1[tk, tk+1], for small |J |. We refer to it as method 1a. The other
numerical scheme employs a finite volume discretization and is accurate for arbitrary variations of the
mean input but computationally more demanding. We refer to it as method 1b.

� Method 2 uses an approximation of the spike train by an inhomogeneous Poisson (point) process. The
spike rate r(t) of that process is effectively described by a simple differential equation derived from the
integrate-and-fire model and depends on the mean input up to time t as well as the other parameters
in θ (for details see Methods section 3). In this case the factors in Eq. (3), right, are expressed as

p(tk+1|tk, µ[tk, tk+1],θ) ≈ r(tk+1|µ[t1, tk+1],θ) exp

(
−
∫ tk+1

tk

r(τ |µ[t1, τ ],θ) dτ

)
. (7)

The most accurate and advantageous method depends on the specific setting, as illustrated for different
scenarios in the following sections.
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2. Inference of background inputs

We first consider the spontaneous activity of an isolated recorded neuron. This situation is modeled with an
I&F neuron receiving a stationary noisy background input with constant mean µ and standard deviation
σ which are the parameters to be estimated. For this scenario method 1a is very efficient and sufficiently
accurate, and therefore well suited.

2.1 Evaluation using in-silico ground truth data

An example of the simulated ground truth data, which consists of the membrane voltage time series including
spike times, is shown in Fig. 1A together with ISI and membrane voltage histograms. Note that for estimation
we only use the spike times. By maximizing the likelihood (specifically, its logarithm, see Methods section 4)
the true parameter values are well recovered (Fig. 1B) and we obtain an accurate estimate of the ISI density.
In addition, we also obtain an accurate estimate for the (unobserved) membrane voltage density, which can
be calculated using a slight modification of method 1 in a straightforward way once the parameter values are
determined. Here the remaining parameter of interest, the membrane time constant τm, was set to the true
value; fixing τm at a wrong value instead (e.g., with a relative error of 50 %) still leads to a good fit in terms
of spike train likelihood (relative error < 0.1 %).

We next evaluated the estimation accuracy for different numbers of observed spikes (Fig. 1C). As little as
50 spikes already lead to a good solution with a maximum average relative error (with respect to the true
parameter values) of about 10 %. Naturally, the estimation accuracy increases with the number of observed
spikes. Moreover, the variance of the parameter estimates decreases as the number of spikes increases, and
approaches the Cramer-Rao bound (which we calculated analytically, see Methods section 5) as expected for
a maximum likelihood estimator. This quantity limits the variance of any unbiased estimator from below.

To further quantify how well the different parameters can be estimated from a spike train of a given
length, we computed the Fisher information (per ISI), shown in Fig. 1D. For a reasonable range of input
parameter values, we consistently find that µ is easier to estimate than σ. τm is clearly more difficult to
estimate than both other parameters. For comparison, we considered the exponential I&F model which
involves additional parameters (Fig. 1E): according to the Fisher information for this model, estimation of µ
is again easier than σ, and τm is the most difficult to estimate. For each parameter, the Fisher information
appears to vary weakly with the value of the parameter.

2.2 Validation using in-vitro ground truth data

We validated our inference method using somatic whole-cell recordings of cortical pyramidal cells (PYRs) [34]
and fast-spiking interneurons (INTs) exposed to injected fluctuating currents. A range of stimulus statistics,
in terms of different values for the mean µI and standard deviation σI of these noise currents, was applied
and each cell responded to multiple different stimuli (examples are shown in Fig. 2A; for details see Methods
section 7.1). We estimated the input parameters (µ and σ) of an I&F neuron from the observed spike train
for each stimulus by maximizing the spike train likelihood. Note that since we considered only spikes, and
not the membrane potential, we did not estimate the input resistance and rest potential; therefore, the input
parameters were defined up to arbitrary offset and scale factors.

Model fitting yielded an accurate reproduction of the ISI distributions (Fig. 2A). Importantly, the
estimated input statistics well captured the true stimulus statistics (Fig. 2B,C). In particular, estimated and
true mean input as well as estimated and true input standard deviations were strongly correlated for all cells
(Fig. 2 B, C). The correlation coefficients between estimated and ground truth values for INTs are larger than
those for PYRs, as reflected by the concave shape of the estimated µ values as a function of µI . This shape
indicates a saturation mechanism that is not included in the I&F model. Indeed, it can in part be explained by
the intrinsic adaptation property of PYRs (see Results section 5 below). Furthermore, correlation coefficients
are slightly increased for longer stimuli (15 s compared to 5 s duration) due to improved estimation accuracy
for longer spike trains.
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Figure 1. Estimation results for background input statistics using simulated data. A: example membrane
voltage time series with indicated spike times from a leaky I&F neuron (Eqs. (9)–(11)) together with membrane
voltage and ISI histograms, and associated densities pV , pISI calculated using the Fokker-Planck equation (see Methods
sections 2 and 3). Method 1a was used for parameter estimation. B: log-likelihood log p(D|θ) as a function of the
input mean µ and variance σ based on 400 spike times from the example in A, with true and estimated parameter
values indicated. C: mean and central 50 % of estimates (i.e., 25th-75th percentile) for µ and σ as a function of
number of spikes K, together with standard deviation about the mean and the theoretical bound according to the
Cramer-Rao inequality (see Methods section 5) indicated by dashed and dotted lines, respectively. Arrows mark true
values. Bottom: mean and central 50 % of relative errors between estimated and true parameter values as a function
of K. Insets: empirical density of estimated parameter values with true values indicated for K = 100 and K = 400. D:
spike rate and ISI coefficient of variation (CV) calculated using the Fokker-Planck equation (see Methods sections 2
and 3) as a function of µ and σ, and Fisher Information per ISI (I) for µ, σ and τm. E: same as D for the exponential
I&F model instead of the leaky I&F model, including Fisher Information per ISI for the reset voltage Vr.

3. Inference of input perturbations

We next consider the effects of partially known, time-dependent inputs to the recorded neuron. These inputs
may reflect hypothesized synaptic or stimulus-driven inputs at known times. Specifically, for the evaluation
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Figure 2. Estimation results for background input statistics using in-vitro data. A: examples of recorded
membrane voltage in response to noise stimulus current with indicated mean µI and standard deviation σI (vertical
bar marks µI ± σI) together with ISI histogram and density pISI that corresponds to the fitted I&F model for a PYR
(left) and an INT (right). Method 1a was used for parameter estimation. B: estimated input parameters (µ, σ) versus
empirical input statistics (µI , σI) with Pearson correlation coefficient % indicated for an example PYR and INT each.
C: % for input mean and standard deviation for all seven PYRs and six INTs and for two stimulus durations.

we consider µ(t) = µ0 + Jµ1(t), where µ0 denotes the background mean input (cf. Results section 2) and
µ1(t) is described by the superposition of alpha functions with time constant τ , which are triggered at known
times (for details see Methods section 1). These times can be thought of, for example, as observed spike times
of another (pre-synaptic) neuron. We estimate the perturbation strength J as well as τ which determines
the temporal extent over which the perturbation acts. For this scenario we apply and compare the methods
1a and 2. Method 1b is computationally too costly here because pISI needs to be computed for each ISI
separately (since the mean input variation across an ISI depends on the time of ISI onset relative to the
trigger times).

Estimation accuracy for a range of perturbation strengths is shown in Fig. 3A,B. Note that the input
perturbations are relatively weak, producing mild deflections of the membrane voltage which are difficult to
recognize visually in the membrane voltage time series in the presence of noisy background input (Fig. 3A).
Both methods perform comparably well for weak input perturbations. As |J | increases the estimation accuracy
of method 2 increases, whereas that of method 1a decreases (Fig. 3B) because it is based on a linear, weak
coupling approximation.

We further assessed the sensitivity of the estimation methods to detect (weak) input perturbations in
comparison to a model-free method based on cross-correlograms (CCGs) between spike trains and perturbation
times (Fig. 3C,D; for details see Methods section 6). The model-free approach estimates the probability that
the input and the spike train are coupled, but does not provide additional information on the shape of that
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coupling. Both model-based estimation methods are more sensitive in detecting weak perturbations than the
model-free approach, with method 1a expectedly performing best (Fig. 3D).

Figure 3. Estimation results for input perturbations. A: three example membrane voltage and mean input
time series (true and reconstructed ones using the estimated parameter values) for weak excitatory (center) and
somewhat stronger inhibitory (top) and excitatory (bottom) perturbations. Methods 1a and 2 were used for parameter
estimation. B: central 50 % of estimates (i.e., 25th-75th percentile) for J and τ as a function of true J for two spike
train lengths (100 s, light color; 500 s, dark color). Arrows indicate the parameter choices in A. C: normalized CCGs
(i.e., spike density curves aligned to perturbation onset times), with significance threshold (orange dashed) for the
indicated mean input perturbations, corresponding to the examples in A. The CCGs are normalized such that their
integral over all lags equals 1. D: detection sensitivity as a function of J computed from the estimation methods (solid
lines) or using CCGs (dashed line) based on spike trains of length 100 s (cf. C). For details see Methods section 6.

4. Inference of synaptic coupling

In the previous section we showed that we can successfully estimate the perturbations in the spiking of an
individual neuron that may be elicited by inputs from another neuron. We now turn to estimating synaptic
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couplings in a network. We consider the situation in which we have observed spike trains of N neurons. We
fit these data using a network model in which each neuron i receives independent fluctuating background
input with (neuron-specific) mean and variance µi and σ2

i , and neurons are coupled through delayed current
pulses which cause post-synaptic potentials of size Ji,j , for i, j ∈ {1, . . . , N}. Our aim is therefore to estimate
the coupling strengths in addition to the statistics of background inputs caused by unobserved neurons.

We collect the observed spike times of all N neurons in the set D and separate the matrix of coupling
strengths J from all other parameters in θ for improved clarity. Note that the overall mean input for neuron
i can therefore be expressed as µi +

∑N
j=1 Ji,jµ

1
j (t) where Ji,jµ

1
j (t) describes the synaptic input for neuron i

elicited by neuron j. The likelihood p(D|θ,J) can be factorized into ISI probability density values, where
each factor is determined by the parameters in θ together with a specific subset of all coupling strengths
and knowledge of the spike times that we have observed. Assuming reasonably weak coupling strengths each
of these factors can be approximated by the sum of the ISI probability density value in absence of input
perturbations and a first order correction due to neuronal coupling (cf. Eq. (6) and Methods section 2) to
obtain

p(D|θ,J) ≈
N∏
i=1

Ki−1∏
k=1

p0ISI(s
k
i |µ0

ISI,θ) +
N∑
j=1

Ji,j p
1
ISI(s

k
i |µ1

ISI,j [0, s
k
i ],θ) (8)

with µ0
ISI = µi and µ1

ISI,j [0, s
k
i ] = µ1

j [t
k
i , t

k+1
i ], where tki denotes the k-th of Ki observed spike times and

ski := tk+1
i − tki the length of the k-th ISI of neuron i. Note that the mean input perturbations µ1

ISI,j depend
on the spike times of neuron j. The approximation (8) allows for the application of method 1a, by which the
likelihood can be calculated in an efficient way.

4.1 Evaluation using network simulations

We first evaluated our method on simulated ground truth data for relatively small (N = 10) as well as larger
(N = 50) fully observed networks of neurons. The estimated parameters show a remarkable degree of accuracy
(Fig. 4A-D).

In a realistic scenario, the N recorded neurons belong to a larger network that is sub-sampled through
the measurement process. The unobserved neurons therefore contribute additional, hidden inputs. In the
fitted model, the effect of these unobserved neurons on neuron i is absorbed in the estimated statistics
(µi, σi) of the background noise. Specifically, the total external input of neuron i, originating from a large
number Mi of unobserved neurons whose spike trains are represented by independent Poisson processes
with rates rj , can be approximated for reasonably small coupling strengths with a background noise of

mean µi =
∑N+Mi

j=N+1 Ji,jrj and variance σ2
i =

∑N+Mi

j=N+1 J
2
i,jrj (diffusion approximation [46]). Because of

shared connections from unobserved neurons, the inputs received by the different observed neurons are in
general correlated, with correlation strength that depends on the degree of overlap between the unobserved
pre-synaptic populations. The model we fit to the observed data however assumes uncorrelated background
inputs (conditioned on possibly correlated means and variances).

To assess the influence of correlations due to unobserved common inputs, we first fitted our model to data
generated from a network with correlated background inputs. The estimation accuracy of synaptic strengths
is still good in case of weak correlations of the external input fluctuations (correlation coefficient c ≤ 0.05 for
each pair of observed neurons) but clearly decreases as these correlations increase (Fig. 4E). In particular,
positive correlations c > 0 lead to an overestimation of the coupling strengths. Empirical values for these
so-called noise correlations from experimental studies are typically very small [24, 47,48].

We next evaluated our method on data generated by explicitly sub-sampling (partially observed) networks
of 800 excitatory and 200 inhibitory neurons that were rather sparsely and randomly connected with
probabilities 0.1-0.2 (Figs. 4F,G). Estimation accuracy of connectivity structure and coupling strengths was
surprisingly good for sufficiently long simulated recordings in this scenario.

In sum, our approach yields good estimation results for sub-sampled networks as long as the correlations
between the hidden (external) input fluctuations on a fine timescale are not too large. Notably, the method
can further be accommodated for shared (unknown) variations of input statistics, and thus, time-varying
spike rates, caused by unobserved neurons or network interaction (see next section).
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Figure 4. Estimation results for synaptic coupling strengths using simulated data. A: example coupling
matrix (true and estimated) using a 5 min. long (simulated) recording of N = 10 spike trains and estimation
method 1a. B: Pearson correlation coefficient % between true and estimated coupling strengths as a function of
spike train length (simulated recording duration) from a large number of networks. C: density of estimated vs. true
coupling strengths for 3 spike train lengths (corresponding to B). D: estimated vs. true coupling strengths from
a network of N = 50 neurons. E: density of estimated vs. true coupling strengths for correlated external input
fluctuations (input correlation coefficient c = 0.05, 0.1). In A-D we used c = 0. F: observed spike trains as well as
true and estimated coupling strengths of N = 20 neurons from a randomly coupled network of Ntot = 1000 (800
excitatory, 200 inhibitory) neurons with connection probabilities 0.1 for excitatory and 0.2 for inhibitory synapses,
heterogeneous (unknown) synaptic strengths and statistics of external inputs; c = 0. A discrimination threshold for
the presence/absence of connections was applied (indicated by dotted lines; for details see Methods section 1). G:
receiver operating characteristic (ROC) curves for the detection of synapses, i.e., true positive rate vs. false positive
rate as the discrimination threshold varies. Solid lines represent averages over 3 networks. The green dot corresponds
to the estimation result in F. Dashed line represents random guessing.

4.2 Validation using in-vivo ground truth data

We validated our inference of synaptic coupling using simultaneous extracellular recordings and juxtacellular
stimulations of hippocampal neuronal ensembles in awake mice [35]. Following the approach developed
in [35], we estimated connectivity by applying our model-based method to spontaneous, extracellularly
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recorded spiking activity, and assessed the accuracy of our estimates by comparison with ground-truth data.
Ground-truth connectivity was obtained by evoking spikes in single PYRs juxtacellularly using short current
pulses, while recording extracellular spike trains of local INTs (for an example see Fig. 5A). Ground truth
values for the presence and absence of synaptic connections were derived from spike train CCGs using the
evoked presynaptic spikes, taking into account co-modulation caused by common network drive (for details
see Methods section 7.2).

An important issue with respect to the basic assumptions of our model is that spontaneous activity
appeared to be highly non-stationary, so that the spike trains of the recorded neurons were typically co-
modulated. To infer synaptic couplings from the spontaneous spike trains with our model-based approach,
we accounted for network co-modulation in two ways: (i) through small temporal perturbations of the PYR
spike times, used to compute coupling strength z-scores; (ii) through estimated variations of the background
mean input for the (potentially postsynaptic) INTs, that is, µ0

ISI = µi in Eq. (8) was allowed to vary between
ISIs. These variations were inferred from the instantaneous spike rate, which typically varied at multiple
timescales over the duration of the recordings that lasted up to ∼2 h (Fig. 5A). We, therefore, estimated the
variations of mean input at three different timescales separately and inferred synaptic couplings for each of
these (see Methods section 7.2). In addition, we combined those results, using the largest absolute z-score
across the three timescales for each connection.

Figure 5. Estimation results for synaptic couplings using in-vivo data. A: example spike trains of a
juxtacellularly recorded PYR and an extracellularly recorded INT, with stimulation pulses indicated (top panel).
Instantaneous spike rate of the INT computed via kernel density estimation using a Gaussian kernel with width σG as
indicated (center panel). Bottom: CCG between spontaneous PYR and INT spike times and as computed from an
I&F neuron fitted to the INT spike train together with estimated coupling strength and delay. Method 1a was used
for parameter estimation. Note that CCGs were not used for model-based inference. B: ROC curves for 78 PYR-INT
pairs using the spontaneous PYR spikes for three different values of σG (left), for the combined timescales inference
variant (center), and for reduced numbers of PYR spikes (right).

Although spontaneous activity was highly non-stationary, our inference of the connectivity appeared to be
very accurate. Comparisons with ground truth estimates demonstrated (balanced) accuracy of up to 0.95 (for
the intermediate timescale variant; Fig. 5B). Moreover, reducing the number of spikes used for inference did
not lead to an appreciable decrease of reproduction accuracy. Notably, our method exhibited high sensitivity
as revealed by large z-score values for all true connections (2.47-7.36) and maximal accuracy attained at a
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large discrimination value (Jzthresh = 3.49) for the combined timescales variant; when using all instead of max.
1000 PYR spikes for estimation that discrimination value becomes even larger (Jzthresh = 8.09).

5. Inference of neuronal adaptation

We next extend the model neurons to account for spike rate adaptation – an important property of many
types of neurons, including pyramidal cells [49–51]. It can be observed by a gradual change in spiking activity
following an immediate response upon an abrupt change of input strength, as shown in Fig. 6A (see also
Fig. 7A). This behavior is typically mediated by a slowly decaying transmembrane potassium current, which
rapidly accumulates when the neuron spikes repeatedly. In the extended I&F neuron model [39, 40] this
adaptation current is represented by an additional variable w that is incremented at spike times by a value
∆w, exponentially decays with (slow) time constant τw in between spikes, and subtracts from the mean input
µ0, acting as a negative feedback to the membrane voltage (Fig. 6A, see Methods section 1).

Figure 6. Estimation results for neuronal adaptation using simulated data. A: membrane voltage with
indicated spike times (top) and adaptation variable (center) of an adaptive leaky I&F neuron in response to a step of
mean input (bottom, for small input noise intensity σ). B: example membrane voltage and true adaptation current
time series as well as the reconstruction using estimated adaptation parameters ∆w, τw (based on 1000 spikes) and the
observed spike times. The adaptation current is considered as normalized by the (unknown) membrane capacitance
and therefore in units of mV/ms. Method 1b was used for estimation. C: mean and central 50 % of estimates
(i.e., 25th-75th percentile) for ∆w and τw as a function of number of spikes K. Bottom: mean and central 50 % of
relative errors between estimated and true parameter values as a function of K. Insets: empirical density of estimated
parameter values with true values indicated for K = 200 and K = 800.

In contrast to classical I&F neurons, in the generalized model with adaptation, spiking is not a renewal
process: given a spike time tk the probability of the next spike depends on all previous spike times. That
dependence is however indirect, as it is mediated through the effective mean input µ(t)− w(t) across the ISI
[tk, tk+1]. This effective mean input can be explicitly expressed using the parameter values in θ together
with the observed spike times, and then inserted in Eqs. (3) and (4) for estimation. Here, method 1b is best
suited and can be applied efficiently by exploiting the fact that w varies within ISIs in a rather stereotyped
way; that is, pISI does not need to be computed for each ISI separately (for details see Methods section 1).
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Methods 1a and 2 are less well suited for this scenario because the adaptation variable can accumulate to
substantial values, thereby opposing the assumption of weak variations of the mean input; moreover, the
spike train of an adapting neuron deviates strongly from a Poisson process.

5.1 Evaluation using in-silico ground truth data

We first evaluated the inference method using simulated ground truth for constant statistics of the background
inputs (cf. Results section 1). An example of the membrane voltage and adaptation current time series is
depicted in Fig. 6B. The true values for the adaptation parameters (the strength ∆w and time constant τw)
are well recovered and we obtain an accurate estimate of the adaptation current as it evolves over time. Here,
too, the estimation accuracy depends on the number of observed spikes (Fig. 6C) and relative errors are on
average less than 10 % for 500 spikes.

5.2 Validation using in-vitro recordings

To validate our inference method for adaptation parameters, we used the recordings of neurons stimulated by
noise currents that we examined in Results section 2. Several cells, predominantly PYRs, exhibited spike rate
adaptation (for an example see Fig. 7A). Accordingly, the adaptive I&F model yielded a clearly improved
fit compared to the nonadaptive model for all but one PYRs as shown by the Akaike information criterion
(AIC), which takes into account both goodness of fit and complexity of a model (Fig. 7B; for details see
Methods section 7.1). On the other hand, for all except one INTs the nonadaptive model turned out to be
the preferred one, which is consistent with the observation that INTs (generally) exhibit little spike rate
adaptation compared to PYRs [52].

Figure 7. Comparison between inferred adaptive and nonadaptive models using in-vitro data. A:
example recorded membrane voltage in response to an injected noisy step current showing spike rate adaptation. B:
AIC difference (∆AIC) between the nonadaptive and adaptive leaky I&F models for all seven PYRs and six INTs. C:
estimated mean input µ as a function of empirical mean input µI for the adaptive and nonadaptive models (magenta
and black symbols, respectively) for three example cells. % denotes Pearson correlation coefficient. D: % for input
mean and standard deviation for the two models and all neurons. Estimation results in B-D were obtained using 15 s
long stimuli.
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We examined the mean input estimates from the adaptive model in comparison to the nonadaptive model
for the neurons where the adaptive model was preferred (Fig. 7C,D). Note that the intrinsic adaptation
current effectively subtracts from the mean input (but does not affect the input standard deviation). For
all of those cells, including adaptation increased the correlation coefficient between estimated and empirical
mean input. The remaining room for improvement of this correlation for PYRs indicates that there are likely
multiple adaptation mechanisms (with different timescales) at work [52].

These results provide an indirect validation of our method and demonstrate its potential to infer intrinsic
neuronal adaptation properties based on observed spike trains alone.

6. Estimation of neuronal inputs from in-vivo spike train data

Finally, we apply our method to spike train data obtained from extracellular multi-channel recordings in
primary auditory cortex of awake behaving ferrets [53]. The animals were listening to regular sequences of
click stimuli separated by periods of silence. Using a spike sorting algorithm, single unit spike trains were
extracted (for details see Methods section 7.3).

We fitted a simple microcircuit model to these data. In the model, a leaky I&F model neuron received
feed-forward excitatory and inhibitory inputs triggered by the clicks [17, 54, 55], as well as a fluctuating
background input. The background input is characterized by its mean µ0 and standard deviation σ, the
click-triggered inputs are described using alpha functions with strengths Je, Ji and time constants τe, τi,
respectively. Note that this model is a slightly extended version of the one used in Results section 3. For
each cell (single unit) we first estimated the parameters for the background input (with click-triggered inputs
set to zero) from the spontaneous spike trains during periods of silence using method 1a, and then estimated
the parameters of the additional inputs from the data during click trains using method 2.

To assess whether the complexity of this model is adequate given the available data we considered simpler
models for comparison. For spontaneous activity, we compared our model to a Poisson process with constant
rate. For click-evoked activity, we examined two additional models: (i) the leaky I&F model with only one
(either excitatory or inhibitory) click-triggered input described by a delayed alpha function; (ii) a model in
which the stimulus induced only a constant additional input. As a measure of quality we applied the AIC (cf.
Results section 5).

The I&F model appears to be the preferred one for spontaneous activity for almost all cells according to
the AIC (Fig. 8A). Examples of baseline data in terms of ISI histograms together with estimation results
are shown in Fig. 8B, and estimated parameter values of the background input for all cells are visualized
in Fig. 8C. The I&F model with fluctuating background input captures well a range of ISI histograms that
characterize the baseline spiking activity of cortical neurons.

For click-evoked activity, the I&F model with click-triggered feed-forward excitatory and inhibitory inputs
is the preferred one for 46 % of the cells, the simpler I&F model with a single click-triggered (dynamic) input
is preferred for 14 % of the cells, and the I&F model with constant mean input fits best for 40 % of the
cells which did not respond phasically to clicks. Examples of spiking activity across click trains measured by
peri-stimulus time histograms (PSTHs) together with the spike rates and estimated click-triggered inputs
of the fitted model neurons are shown in Fig. 8D, and distributions of the parameter estimates for the
click-triggered inputs are visualized in Fig. 8E,F. It should be noted that the (trial-averaged) PSTHs were
not used for parameter estimation, but they allow to conveniently visualize the spiking activity of real and
model neurons. The estimated inputs generate spike rates that match well with a range of observed PSTHs.

In cells for which click-triggered excitatory-inhibitory inputs provided the best fits, we found that the
values of the estimated input strengths and timescales were strongly correlated between the excitatory and
the inhibitory components for each cell (Fig. 8E,F). Visual inspection shows that such balance between
excitatory and inhibitory inputs is required to produce strongly biphasic responses to individual clicks seen in
the PSTHs. This result is reminiscent of the finding (obtained through intra-cellular voltage-clamp recordings)
that excitatory and inhibitory inputs are equalized throughout the population at the level of individual cells
in the primary visual cortex [56]. Fitting only spike-trains, our approach therefore uncovers fundamental
constraints on synaptic inputs and the local microcircuit without access to the values of the intra-cellular
membrane potential.
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Figure 8. Estimation results using spike trains from in-vivo recordings in the ferret auditory cortex.
A, top: histogram of AIC difference (∆AIC) between the Poisson and I&F models for spontaneous activity (silence);
bottom: number of wins according to AIC for the models compared for spontaneous and click-evoked activity (dynamic
e/i: I&F with click-triggered excitatory or inhibitory input, dynamic e+i: I&F with click-triggered excitatory and
inhibitory inputs). Numbers of estimated parameters are indicated in parentheses. For details see Methods section
7. B: examples of baseline ISI histograms and densities pISI (from method 1a) that correspond to the estimated
parameter values for the leaky I&F model (indicated). C: estimates of parameters for the background input together
with lines of equal spike rate and ISI coefficient of variation (CV) calculated from pISI. D: examples of PSTHs across
the click train periods and spike rates r (from method 2) that correspond to the estimated parameter values for the
dynamic e+i model; below, time series of the click-triggered inputs with click times indicated. Dotted lines visualize
the estimated baseline spike rates. In the last example (bottom right) the model with constant input (solid lines)
performed best. E, F: estimated magnitudes (Je, |Ji|) and time constants (τe, τi) of the click-triggered inputs for cells
where the dynamic e+i model was preferred according to AIC. Pearson correlation coefficients (%) are indicated.

7. Implementation and computational complexity

We have implemented all three methods for parameter estimation using the Python programming language
and applying the libraries Scipy [57] for optimization and Numba [58] for low-level machine acceleration. The
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code for representative estimation examples from sections 2–5 is available as open source software under a free
license at GitHub: https://github.com/neuromethods/inference-for-integrate-and-fire-models. Computation
times for example inference problems are summarized in table 1.

Table 1. Computation times for estimation examples in Figs. 1–6.

Figure 1A 3A† 4A‡ 4D‡ 4G‡ 6B

Method 1a 1a 2 1a 1a 1a 1b
Multiprocessing no no no yes yes yes no
Estimation times (min.) < 0.2 < 10 < 2 < 2.5 < 25 3.5–8.5 < 7

All computations were performed on a hexa-core personal computer. †Applies to each of the three examples.
‡Computation time scaled sub-linearly with recording time (hence with number of observed spikes) and
supra-linearly with number of observed neurons.

Discussion

We presented efficient methods to fit simple integrate-and-fire circuit models to single-trial spike train data,
and we evaluated and validated them extensively using in-silico, in-vitro and in-vivo ground truth data.
Our approach allows to accurately infer hidden neuronal input statistics and adaptation currents as well as
coupling strengths for I&F networks. We demonstrated that (i) the mean and variance of neuronal inputs
are well recovered even for relatively short spike trains; (ii) for a sufficient, experimentally plausible number
of spikes, weak input perturbations are detected with high sensitivity, (iii) coupling strengths are faithfully
estimated even for partially observed (sub-sampled) networks, and (iv) neuronal adaptation strength and
timescale are accurately inferred. By applying our methods to suitable electrophysiological datasets, we
successfully validated our approach on inference of the statistics for in-vivo-like fluctuating inputs, intrinsic
adaptation mechanisms, as well as in-vivo synaptic connectivity. Finally, we showed as a proof of principle
that our methods can provide insights about local micro-circuitry using data from extracellular recordings of
awake behaving animals.

Related approaches

Previously a small number of likelihood-based methods related to ours have been proposed, considering
uncoupled I&F neurons with [59] or without adaptation [28,60,61] for constant [60] or time-varying [28,59,61]
input statistics. The methods presented in Refs. [60, 61] only rely on observed spike trains, while those
in Refs. [28, 59] additionally require the neuronal (mean) input time series to be known. All of these
approaches employ the Fokker-Planck equation and numerically calculate the spike train likelihood [60] or use
approximations [28, 59, 61]. Therefore, our methods differ from and extend the mentioned approaches in that
they allow to efficiently infer, without knowledge of the neuronal input, (i) background input statistics for
nonlinear I&F neurons, (ii) synaptic coupling of neuronal networks, and (iii) neuronal adaptation properties.

In the absence of likelihoods, methods for parameter fitting typically involve numerical simulations and
distance measures that are defined on possibly multiple features of interest [31–33, 62, 63]. Evolutionary
algorithms [31,32,62], brute-force search [33] or more principled Bayesian techniques [63] are then used to
minimize the distances between observed and model-derived features. While these likelihood-free, simulation-
based methods can be applied to more complex models they exhibit two disadvantages: the distance measures
usually depend on (additional) parameters and their evaluation depends on the particular realization of noise
or randomness considered in the model. Optimization can therefore be exceedingly time-consuming.
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Estimation of synaptic coupling

Here we directly estimated synaptic coupling strengths for leaky I&F networks with fluctuating external
inputs from observed spike trains. Our method is conceptually similar to those presented in [64, 65], but
does not rely on an approximation of the ISI probability density that assumes vanishing [64] or small [65]
amplitudes of input fluctuations (background noise).

We validated our approach first using simulations of network models. Applying our methods to a subset
of randomly selected neurons, we found that our approach accurately uncovers the true connections and
coupling strengths in spite of co-modulation from unobserved units in the network. We next tested our
approach on in-vivo, extracellularly recorded data [35]. Comparison with ground-truth estimates obtained
using juxta-cellular stimulations showed that our methods accurately identified the existing connections,
although the network activity was highly non-stationary and generated strong co-modulations. Note that in
that case, we did not have access to ground truth estimates of coupling strengths, and could therefore only
validate the detection of connections.

Alternative approaches to infer connectivity from spike trains have employed phenomenological, generalized
linear models [3,35,66], models of sparsely and linearly interacting point processes [67], or have been designed
in a model-free manner, for example, using spike train cross-correlations [35,68]. One of the advantages of
our approach is that it includes an explicit (principled) mechanism to account for the effects of unobserved
units (network co-modulation) which are condensed in the estimated dynamics of the background mean input
for each neuron. This enables to better isolate pairwise interactions from (ubiquitous) fluctuating drive which
has the potential to synchronize neurons that lack direct synaptic coupling. Considering its demonstrated
high sensitivity to detect elicited weak inputs (cf. Fig. 3D), excellent agreement with (CCG-derived) ground
truth (cf. Fig. 5) and superior fitting performance compared to simpler models in a basic setting (cf. Fig. 8A)
our mechanistic model approach thus seems promising for inference of couplings in comparison with more
phenomenological approaches.

Several related studies have focused on a theoretical link between network structure and correlated
spiking activity recorded from a large number of neurons (without attempt to explicitly estimate synaptic
connections) [69–73] and [74] for review. Of major relevance in this regard is the extent to which effective
interactions among observed neurons are reshaped by coupling to unobserved neurons [75, 76]. Current
methods to estimate coupling strengths from observed spike trains may be further advanced using these
theoretical insights.

Possible methodological extensions

Here we described synaptic interaction by a simple form of delayed current pulses that cause (connection-
specific) post-synaptic potentials. A conductance-based model of synaptic coupling could also be considered
in principle. For this case the presented methods may be adjusted accordingly using results from [77], but it
would generally complicate the calculations in methods 1 and 2.

Throughout this work we assumed that the mean input trajectory across an ISI can be determined using
available knowledge (e.g., about the parameters and previous spike times). A useful extension may be to
incorporate an additional fluctuating component for the mean input, using a separate stochastic process that
governs the evolution of µ(t) (on a slower time scale than the fluctuations ξ(t)), which results in a doubly
stochastic model [61]. This could be advantageous for assessing shared variations of the external drive in
terms of correlated fluctuating mean input caused from unobserved neurons on the population level. Here we
accounted for network co-modulation by estimating the mean input dynamics from instantaneous neuronal
spike rates at multiple (chosen) timescales (cf. Results section 4.2). A doubly stochastic model would allow to
extract the most appropriate timescale from the data, which in turn could benefit the estimation of synaptic
couplings using our mechanistic approach.

An important direction for future work would be to extend our approach to include various forms of
synaptic plasticity, such as short-term depression/facilitation and spike-timing-dependent plasticity, and to
infer its (additional) parameters from observed spike trains [78–80]. In term, short-term plasticity is particular
apparent in in-vivo recordings [35], and including it in our models would be important for estimating coupling
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strengths.

Towards a quantitative inference of neural circuits from spiking activity

Integrate-and-fire neurons are a popular tool for interpreting spiking activity in terms of simple circuit models
(see, e.g., [13–15,17–19]). Such approaches typically start by hypothesizing a structure for the underlying
circuit based on available physiological information, and then examine the behavior of the resulting model as
a function of the critical biophysical parameters. The model is then validated by qualitatively comparing the
model output with experimental data. Specifically, the model activity is required to resemble key features of
the experimental data in an extended region of the parameter space. If that is not the case, the model is
rejected and a different one is sought.

An important benefit of this approach is that it provides a mechanistic interpretation and understanding
of recorded activity in terms of biological parameters in a neural circuit. A major limitation is, however,
that it typically relies on a qualitative comparison with the data to select or reject models. The methods
presented here open the door to a more quantitative, data-driven approach, in which mechanistic circuit
models can be evaluated and compared based on their fitting performance (cf. Figs. 7B and 8A for such
comparisons) as is routinely the case for more abstract statistical models (see, e.g., [4]).

Materials and Methods

1. Neuron and network models

1.1 Integrate-and-fire neuron models

We consider typical I&F models subject to a fluctuating input. The dynamics of the membrane voltage V
are governed by

dV

dt
= f(V ) + µ(t) + σξ(t) (9)

if V (t) ≥ Vs then V (t)← Vr, (10)

where µ is the mean input, σ the standard deviation of the input, ξ a (unit) Gaussian white noise process,
i.e., 〈ξ(t)ξ(t+ τ)〉 = δ(τ) with expectation 〈·〉, Vs is the threshold (or spike) voltage and Vr the reset voltage.
For the leaky I&F model the function f is given by

f(V ) := − V

τm
(11)

where τm denotes the membrane time constant, whereas for the exponential I&F model f is defined by

f(V ) :=
∆T

τm
exp

(
V − VT

∆T

)
− V

τm
, (12)

where ∆T is the threshold slope factor and VT denotes the effective threshold voltage. The exponential term
in Eq. (12) effectively approximates the rapidly increasing Na+ current at spike initiation [38] and yields an
improved fit to intracellular measurements of current-voltage relationships (typically obtained in-vitro) [7,11].
For the exponential I&F model Vs does not play an important role as long as it is sufficiently larger than the
effective threshold VT. In fact, when V increases beyond VT, it diverges to infinity in finite time due to the
exponential term, which defines a spike. In practice, however, the spike is said to occur when V reaches Vs.
It should be noted that for the methods used in this paper f can be any arbitrary (well-behaved) real-valued
function.

The parameter values were Vs = −40 mV, Vr = −70 mV, τm = 20 ms, ∆T = 1.5 mV, VT = −50 mV,
µ = −1.75 mV/ms, σ = 2.5 mV/

√
ms if not stated otherwise in figures or captions.
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1.2 Voltage scaling

It is not meaningful to estimate all model parameters: a change of Vs or Vr in the leaky I&F model can be
completely compensated in terms of spiking dynamics (in particular, the ISI density pISI) by appropriate
changes of µ and σ; similarly, a change of VT or ∆T in the exponential I&F model can be completely
compensated by appropriate changes of µ, σ, Vr and Vs. This can be seen using the change of variables
Ṽ := (V − Vr)/(Vs − Vr) for the leaky I&F model and Ṽ := (V − VT)/∆T for the exponential I&F model
model. Consequently, we may restrict the estimation to µ, σ, τm (leaky I&F model), and additionally Vr
(exponential I&F model) and set the remaining parameters to reasonable values.

1.3 Input perturbations

In Results section 3 we consider input perturbations of the form µ(t) = µ0 + Jµ1(t) (cf. Eq. (5)) with µ1(t)
given by the superposition of alpha functions with time constant τ , triggered at times t̃1, . . . , t̃L,

µ1(t) =
L∑
l=1

H(t− t̃l)
t− t̃l
τ

exp

(
1− t− t̃l

τ

)
(13)

with Heaviside step function H. The alpha functions are normalized such that their maximum value is 1
(when considered in isolation). The perturbation onset (trigger) times were generated by randomly sampling
successive separation intervals t̃l+1 − t̃l from a Gaussian distribution with 200 ms mean and 50 ms standard
deviation.

1.4 Network model

In Results section 4 we consider networks of Ntot coupled leaky I&F neurons from which the spike trains of
N ≤ Ntot neurons have been observed. These networks are given by

dVi
dt

= − Vi
τm

+ µi(t) +

Ntot∑
j=1

Ji,jµ
1
j (t) + σiηi(t) (14)

µ1
i (t) =

Ki∑
k=1

δ(t− tki − d) (15)

if Vi(t) ≥ Vs then Vi(t)← Vr (16)

for i ∈ {1, . . . , Ntot}, where Ji,j denotes the coupling strength between pre-synaptic neuron j and post-
synaptic neuron i, tki is the k-th of Ki spike times of neuron i, and d is the delay which we set to 1 ms. ηi
describes the fluctuations of external input received from unobserved neurons,

ηi(t) =
√

1− c ξi(t) +
√
c ξc(t), (17)

where ξi, ξc are independent unit Gaussian white noise processes, i.e., 〈ξi(t)ξj(t + τ)〉 = δijδ(τ), i, j ∈
{1, . . . , Ntot, c}, and c is the input correlation coefficient. We exclude autapses, i.e., Ji,i = 0, and consider
uncorrelated or weakly correlated external input fluctuations, 0 ≤ c ≤ 0.1. Note that the input variation for
neuron i caused by neuron j across the interval [tki , t

k+1
i ], denoted by Ji,jµ

1
j [t

k
i , t

k+1
i ] (as used in Eq. (8)), is

determined by the (observed) spike times of neuron j that occur in the interval [tki − d, t
k+1
i − d]. In Results

section 4.1 the mean input µi(t) was assumed constant, whereas in section 4.2 it varied between ISIs.
The (logarithmized) spike train likelihood (8) was optimized in the following way, justified by the

assumption of (reasonably) weak coupling: first, the parameters for the background input were estimated for
each neuron in isolation (all Ji,j = 0); then, the coupling strength Ji,j was estimated given µi(t) and σi for
each i, j - pair.

Network simulations for Figs. 4F,G were performed using the Python-based Brian2 simulator [81]. A
discrimination threshold Jthresh for the presence/absence of connections was applied to estimated coupling
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strengths Ĵi,j . Accordingly, the presence of a connection (i, j - pair) was assured by the condition |Ĵi,j | >
Jthresh. The true positive rate (sensitivity) was given by the number TP of connections for which the
estimation satisfied |Ĵi,j | > Jthresh and a true connection was present (|Ji,j | > 0), divided by the number P of
true connections. The true negative rate (specificity) was given by the number TN of connections for which
|Ĵi,j | ≤ Jthresh and a true connection was absent (Ji,j = 0), divided by the number N of absent connections.
Receiver operating characteristic (ROC) curves were generated from sensitivity and specificity as a function
of Jthresh. Accuracy (ACC) and balanced accuracy (BACC) are defined as ACC = (TP + TN)/(P + N),
BACC = (TP/P + TN/N)/2. The value of Jthresh used in Fig. 4F corresponds to the maximal BACC.

1.5 Spike rate adaptation

In Results section 5 we consider an extended I&F neuron model that includes an additional adaptation
(current) variable w that is incremented at spike times, slowly decays, and counteracts the input to the
neuron [39,40]: Eqs. (9) and (10) where the mean input µ(t) is replaced by an effective mean input µ(t)−w(t),
with

dw

dt
= − w

τw
(18)

if V (t) ≥ Vs then w(t)← w(t) + ∆w. (19)

τw is the adaptation time constant and ∆w denotes the spike-triggered increment.
For known spike times (contained in set D) the effective mean input can be written as µ(t)−∆wµ1(t|D, τw),

where µ1 between spike times tk and tk+1 is explicitly expressed by

µ1(t|D, τw) =
k∑
i=1

H(t− ti) exp

(
− t− ti

τw

)
, (20)

t ∈ [tk, tk+1], with Heaviside step function H, assuming the adaptation current just prior to the first spike
is zero, w(t−1 ) = 0. This means, for given parameters µ, ∆w, τw the effective mean input time series is
determined by the observed spike train (up to tk). Note, that in general the mean input perturbations caused
by adaptation vary from spike to spike, µ1(tk|D, τw) 6= µ1(tl|D, τw) for tk 6= tl ∈ D. To efficiently evaluate the
likelihood p(D|θ) using Eqs. (3) and (4) we calculate pISI(s|µISI[0, s],θ) with µISI(s) = µ(s)−w0 exp(−s/τw),
s ≥ 0 for a reasonable range of values for w0 and interpolate to obtain pISI(sk|µISI[0, sk],θ) with µISI[0, sk] =
µ[tk, tk+1]−∆wµ1[tk, tk+1] using Eq. (20).

2. Method 1: calculation of ISI density

Given a spike at t = t0 the probability density of the next spike time is equal to the ISI probability density
pISI(s) where s := t− t0 ≥ 0 denotes the time since the last spike. This quantity can be approximated by
numerical simulation in an intuitive way: starting with initial condition V (t0) = Vr one follows the neuronal
dynamics given by Eq. (9) in each of n realizations (of the noise process) until the membrane voltage crosses
the value Vs and records that spike time ti (i-th realization). The set of times {ti} can then be used to
compute pISI, where the approximation error decreases as n increases. Fortunately, we can calculate pISI
analytically in the limit n→∞ by solving the Fokker-Planck partial differential equation (PDE) [82,83] that
governs the dynamics of the membrane voltage probability density pV (V, s),

∂pV
∂s

+
∂qV
∂V

= 0 (21)

qV := [f(V ) + µISI(s)] pV −
σ2

2

∂pV
∂V

(22)
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with mean input µISI(s) = µ(t) (µISI(s) = µ(t)−w(t) in case of the adaptive I&F model, cf. Methods section
1.5), subject to the initial and boundary conditions

pV (V, 0) = δ(V − Vr) (23)

pV (Vs, s) = 0 (24)

lim
V↘−∞

qV (V, s) = 0. (25)

The ISI probability density is then given by the probability flux at Vs,

pISI(s|µISI[0, s],θ) = qV (Vs, s). (26)

In the field of probability theory pISI is also known as first passage time density.

2.1 Method 1a: numerical solution based on Fourier transform

The method described below is inspired by [41] and provides a solution of Eqs. (21)–(25) for constant mean
input or small amplitude variations of it through a perturbative approach. It extends the technique proposed
in [41] to the case of time-varying mean input within the ISI, and can be adjusted for small amplitude
variations of other parameters in a straightforward way.

We consider µISI(s) = µ0
ISI +Jµ1

ISI(s) with small |J | according to Eq. (5). The solution of the first passage
time system to first order in J can be expressed as pV (V, s) ≈ p0V (V, s) + Jp1V (V, s). We insert this in the
Fokker-Planck system and neglect terms of order > 1 in J . The resulting system is then Fourier-transformed
over time using separation of variables, pV (V, s) = x(V )y(s), such that p̂V (V ;ω) = F [pV (V, s)] = x(V )ŷ(ω),
with Fourier transform and the inverse transform defined by

ŷ(ω) := F [y(s)] =

∫ ∞
−∞

y(s)e−iωsds, y(s) = F−1[ŷ(ω)] =

∫ ∞
−∞

ŷ(ω)

2π
eiωsdω, (27)

where ω denotes angular frequency. This yields the following two (coupled) systems, one for the steady-state
solution p̂0V (V ;ω),

dq̂0V
dV

= −iωp̂0V (28)

dp̂0V
dV

=
2

σ2

(
[f(V ) + µ0

ISI] p̂
0
V − q̂0V

)
(29)

subject to

p̂0V (Vs;ω) = 0, lim
V↘−∞

q̂0V (V ;ω) = 0 (30)

lim
V↘Vr

q̂0V (V ;ω)− lim
V↗Vr

q̂0V (V ;ω) = 1 (31)

and one for p̂1V (V ;ω),

dq̂1V
dV

= −iωp̂1V (32)

dp̂1V
dV

=
2

σ2

(
[f(V ) + µ0

ISI] p̂
1
V + ĥ(V ;ω)− q̂1V

)
(33)

with function ĥ(V ;ω) = F [µ1
ISI(s)p

0
V (V, s)], subject to

p̂1V (Vs;ω) = 0, lim
V↘−∞

q̂1V (V ;ω) = 0. (34)

The ISI density (in the frequency domain) is then given by

p̂ISI(ω) ≈ p̂0ISI(ω) + Jp̂1ISI(ω) = q̂0V (Vs;ω) + Jq̂1V (Vs;ω). (35)
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We solve the linear ordinary differential equations (boundary value problems) (28)–(34) for each fixed
frequency ω by splitting the solutions,

p̂0V (V ;ω) = p̂0ISI(ω)p̂0α(V ;ω) + p̂0β(V ;ω), q̂0V (V ;ω) = p̂0ISI(ω)q̂0α(V ;ω) + q̂0β(V ;ω) (36)

and analogously for p̂1V (V ;ω), q̂1V (V ;ω). The components (p̂0α, q̂
0
α) and (p̂0β , q̂

0
β) respectively solve Eqs. (28)–

(29) with p̂0α = 0, q̂0α = 1 and p̂0β = q̂0β = 0 at V = Vs and limV↘Vr
q̂0β − limV↗Vr

q̂0β = 1. The components

(p̂1α, q̂
1
α) and (p̂1β , q̂

1
β) solve Eqs. (32)–(33) with p̂1α = 0, q̂1α = 1 and p̂1β = q̂1β = 0 at V = Vs. These solution

components can be conveniently computed by backward integration from Vs to a sufficiently small lower
bound Vlb < Vr. We then obtain p̂0ISI and p̂1ISI by satisfying the reflecting boundary conditions (in (30) and
(34)):

p̂0ISI(ω) = −
q̂0β(Vlb;ω)

q̂0α(Vlb;ω)
, p̂1ISI(ω) = −

q̂1β(Vlb;ω)

q̂1α(Vlb;ω)
. (37)

The ISI density (in the time domain) is finally calculated by the inverse transform, pISI(s|µISI[0, s],θ) =
F−1[p̂ISI(ω)] using Eqs. (35) and (37).

In practice, we first solve the steady-state system (28)–(31), evaluate the function ĥ which appears in
Eq. (33) and then solve the system for the change in ISI density due to the perturbation, (32)–(34). Note

that knowledge of µ1
ISI(s) for s ≥ 0 is required to calculate ĥ. If the input perturbations are given by delta

pulses (as for the network in Results section 4) the calculation of ĥ is greatly simplified; e.g., for a pulse at

s = s0, µ1
ISI(s) = δ(s− s0) we have ĥ(V ;ω) = e−iωs0p0V (V, s0).

2.2 Method 1b: numerical solution based on finite volume discretization

This method employs a recently developed finite volume numerical scheme with implicit time discretization
and Scharfetter-Gummel flux approximation, adapted from [42] for the first passage time problem. It
provides an accurate solution of Eqs. (21)–(25) for arbitrary variations of the mean input. In brief, we first
discretize the domain [Vlb, Vs] into NV equidistant grid cells [Vm− 1

2
, Vm+ 1

2
] with centers Vm, m ∈ {1, . . . , NV },

V1 < V2 < · · · < VNV
, where V 1

2
= Vlb and VNV + 1

2
= Vs are the out-most cell borders. Within each cell the

numerical approximation of pV (V, s) is assumed to be constant and corresponds to the average value denoted
by pV (Vm, s). Integrating Eq. (21) over the volume of cell m, and applying the divergence theorem, yields

∂

∂s
pV (Vm, s) =

qV (Vm− 1
2
, s)− qV (Vm+ 1

2
, s)

∆V
, (38)

where ∆V = V2 − V1. To solve Eq. (38) forward in time (represented by the ISI variable s) the fluxes at the
borders of each cell are approximated using the first order Scharfetter-Gummel flux [84],

qV (Vm+ 1
2
, s) = vm+ 1

2
(s)

pV (Vm, s)− pV (Vm+1, s) exp
(
−vm+ 1

2
(s)∆V/D

)
1− exp

(
−vm+ 1

2
(s)∆V/D

) , (39)

where vm+ 1
2
(s) = f(Vm+ 1

2
) + µISI(s) and D = 1

2σ
2 denote the drift and diffusion coefficients, respectively.

For the time discretization we rewrite Eq. (38) (with Eq. (39)) in vectorized form and approximate the
involved time derivative as first order backward difference to ensure numerical stability. This yields in each
time step of length ∆s a linear system for the vector pn+1 of probability density values at sn+1, given the
values pn at the previous time step sn, with vector elements pnm = pV (Vm, sn),

(I− ∆s

∆V
Gn)pn+1 = pn, (40)

where I is the identity matrix and Gn ∈ RNV ×NV is a tridiagonal matrix that contains the discretization
of the membrane voltage (cf. Eqs. (38), (39)), including the absorbing and reflecting boundary conditions
(Eqs. (24) and (25)).
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The ISI density, Eq. (26), in this representation is obtained by evaluating the flux, Eq. (39), at the spike
voltage Vs, taking into account the absorbing boundary condition, Eq. (24), and introducing an auxiliary
ghost cell [85] with center VNV +1, which yields

pISI(sn+1|µISI[0, sn],θ) = qV (VNV + 1
2
, sn+1) = vNV + 1

2
(sn)

1 + exp(−vNV + 1
2
(sn)∆V/D)

1− exp(−vNV + 1
2
(sn)∆V/D)

pn+1
NV

. (41)

For additional details we refer to [42] (incl. supplemental material therein). Note that this method also allows
for the variation of other parameters (in addition to the mean input) within the ISI. Naturally, the finite volume
scheme can also be used as an alternative to the Fourier-based technique for computing p0ISI and p1ISI in method
1a (using small amplitude variations of the mean input, cf. Eqs. (5) and (6)), which may be computationally
more efficient in some cases; a comparison is provided at https://github.com/neuromethods/inference-for-
integrate-and-fire-models.

3. Method 2: derived spike rate model

Method 2 requires the (instantaneous) spike rate r(t) of the model neuron described by Eqs. (9) and (10),
which can be calculated by solving a Fokker-Planck system similar to Eqs. (21)–(25):

∂pV
∂t

+
∂qV
∂V

= 0, qV := [f(V ) + µ(t)] pV −
σ2

2

∂pV
∂V

, r(t) = qV (Vs, t), (42)

subject to the conditions

pV (Vs, t) = 0 lim
V↘−∞

qV (V, t) = 0 (43)

lim
V↘Vr

qV (V, t)− lim
V↗Vr

qV (V, t) = qV (Vs, t), (44)

where Eq. (44) accounts for the reset condition (10). The steady-state solution of this system (for constant
mean input) can be conveniently calculated [41]. To obtain the time-varying solution of Eqs. (42)–(44) is
computationally more demanding and can be achieved, e.g., using a finite volume method as described in the
previous section (see [42]).

As an efficient alternative reduced models have been developed which approximate the spike rate dynamics
of this Fokker-Planck system by a low-dimensional ODE that can be solved much faster [42–44,86]. Here we
employ a simple yet accurate reduced model from [42] (the LNexp model, based on [43]) adapted for leaky
I&F neurons with constant input variance σ2. This model is derived via a linear-nonlinear cascade ansatz,
where the mean input is first linearly filtered and then passed though a nonlinear function to yield the spike
rate. Both components are determined from the Fokker-Planck system and can be conveniently calculated
without having to solve Eqs. (42)–(44) forward in time: the linear temporal filter is obtained from the first
order spike rate response to small amplitude modulations of the mean input and the nonlinearity is obtained
from the steady-state solution [42,43]. The filter is approximated by an exponential function and adapted
to the input in order to allow for large deviations of µ. This yields a one-dimensional ODE for the filter
application,

dµf

dt
=
µ(t)− µf

τµ(µf)
, (45)

where µf is the filtered mean input and τµ is the (state dependent) time constant. The spike rate is given by
the steady-state spike rate of the Fokker-Planck system evaluated at µ = µf ,

r(t) = r∞(µf). (46)

In order to efficiently simulate this model we pre-calculate τµ and r∞ for a reasonable range of mean input
values and use look-up tables during time integration. We would like to remark that this model is based on
the derivation in [43] with filter approximation scheme proposed in [42] which leads to improved accuracy of
spike rate reproduction for the sensitive low input regime [42]. For a given mean input time series µ[t0, t] we
calculate r(t|µ[t0, t],θ) using the initial condition µf(t0) = µ(t0).
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4. Likelihood maximization

We maximized the logarithm of the likelihood (log-likelihood),

argmaxθ log p(D|θ) = argmaxθ

K−1∑
k=1

log p(tk+1|tk, µ[tk, tk+1],θ) (47)

for individual neurons (where we have used Eq. (3)) and similarly for networks (using the logarithm in
Eq. (8)). Optimization was performed using a simplex algorithm [87] as implemented in the Scipy package for
Python. It should be noted that our method is not restricted to this algorithm, other (e.g., gradient-based)
optimization techniques may also be applied.

5. Fisher information per ISI

To quantify how well the parameters can be estimated we calculate the Fisher information per ISI for
parameter θ (component of θ) defined by

I(θ) :=

∫ ∞
0

(
∂

∂θ
log
(
pISI(s|µ[0, s], θ)

))2
pISI(s|µ[0, s], θ) ds. (48)

In case of a single (non-adapting) model neuron with constant input moments the Fisher information for
spike trains with K spikes is given by (K− 1) I(θ) due to additivity. In this case we can analytically calculate
the Cramer-Rao bound by [(K − 1) I(θ)]−1, which limits the variance of any unbiased estimator of θ from
below. A maximum likelihood estimator is known to achieve this bound as the sample size grows large (i.e.,
K →∞).

6. Detection of input perturbations

We quantified the sensitivity to detect weak input perturbations using our estimation methods (1a and
2) in comparison with a detection method based on the generated data only. For a given parametrization
Nr spike trains were simulated using different realizations of neuronal input noise and perturbation onset
(trigger) times. Detection sensitivity based on the estimation methods was assessed by the fraction of Nr = 50
estimates of J for true J > 0 (J < 0) that exceeded the 95 %-ile (fell below the 5 %-ile) of estimates without
perturbation (i.e., J = 0).

The data-driven reference method was based on CCGs between the spike trains and perturbation times
(in other words, spike density curves aligned to perturbation onset times). For each of Nr = 300 realizations
one such curve was calculated by the differences between spike times and the perturbation onset times using a
Gaussian kernel with 3 ms standard deviation (kernel density estimation). Detection sensitivity was assessed
by the fraction of spike density curves for which a significant peak (for J > 0) or trough (for J < 0) appeared
in the interval [0, 100 ms]. Significance was achieved for true J > 0 (J < 0) if the curve maximum (minimum)
exceeded the 95 %-ile (fell below the 5 %-ile) of maxima (minima) without perturbation in that interval.

7. Fitting I&F neurons to spike trains from electrophysiological recordings

7.1 Estimation of neuronal input statistics using in-vitro ground truth data

We used somatic whole-cell current clamp recordings from primary somatosensory cortex in acute brain slices
(for details see [34]). Layer 5 PYRs were recorded in wild-type mice [34], fast-spiking layer 5 INTs were
selected among the fluorescing cells of a GAD67-GFP transgenic line [88]. Only cells with an access resistance
≤25 MΩ (PYR: 18.3±1.5 MΩ, n = 7; INT: 19.5±4.0 MΩ, n = 6) and a drift in the resting membrane potential
≤7.5 mV (PYR: 3.2±3.0 mV, n = 7; INT: 3.1±3.7 mV, n = 6) throughout the recording were retained
for further analysis. Seven PYRs and six INTs were stimulated with a fluctuating current I(t) generated
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according to an Ornstein-Uhlenbeck process,

dI

dt
=
µI − I
τI

+

√
2

τI
σIξ(t), (49)

where τI denotes the correlation time, µI and σI are the mean and standard deviation of the stationary
normal distribution, i.e., limt→∞ I(t) ∼ N (µI , σ

2
I ), and ξ is a unit Gaussian white noise process. Somatic

current injections lasted 5 s and were separated by inter-stimulus intervals of at least 25 s. Different values
for µI and σI were used and each combination was repeated three times. The correlation time was set to
3 ms. Spike times were defined by the time at which the membrane voltage crossed 0 mV from below, which
was consistent with a large depolarization rate dV/dt > 10 mV/ms [34]. An absolute refractory period of
3 ms was assumed.

For each neuron we fitted a leaky I&F model with and without adaptation (cf. Methods sections 1.1 and
1.4). Note that the injected current I(t) can be well approximated by a Gaussian white noise process as
considered in our model because of the small correlation time τI . In Results section 2 we estimated the input
parameters µ and σ for nonadaptive model neurons from each 5 s-long spike train recording as well as from
each combined 3×5 s-long recording (using the three repetitions with identical stimulus parameters which
effectively yielded 15 s long stimuli). To exclude onset transients (i.e., increased spike rate upon stimulus
onset) we used the central 90% of ISIs for each stimulus, ensuring that ISIs lasted > 5 ms. In Results section
5 we additionally estimated the adaptation parameters ∆w and τw per neuron across all available stimuli
in the combined 15 s stimulus setting. Here we used all ISIs (including the short ones at stimulus onset)
in order to unmask adaptation effects. Parameter estimation was accomplished using methods 1a and 1b.
To compare the quality of the two models and avoid over-fitting we used the Akaike information criterion
(AIC, [36,89]), given by 2Nθ −maxθ log p(D|θ), where Nθ denotes the number of estimated parameters for a
particular model. The preferred model from a set of candidate models is the one with the smallest AIC value.

7.2 Estimation of synaptic connections using in-vivo ground truth data

We used combined juxtacellular-extracellular recordings of neuronal ensembles from the hippocampal CA1
region in awake mice (for details see [35]). Neurons were separated into PYRs and INTs according to their
spiking statistics. Spikes were evoked in single PYRs by short current pulses (50-100 ms) applied at intervals
of variable length using juxtacellular electrodes while recording extracellular spikes of local INTs. PYR spikes
which occurred during a stimulus were considered as evoked, and those which occurred at all other times were
considered as spontaneous. All spikes that occurred during sharp-wave ripple events were discarded from the
analyses, and we only considered INTs that fired at least 3 spikes/s on average. A total of 78 PYR-INT pairs
were included for estimation of synaptic couplings.

For each INT we considered a leaky I&F neuron receiving background input and (potential) synaptic
input from the recorded PYR such that each presynaptic spike causes a delayed (with delay d) postsynaptic
potential of size J :

dV

dt
= − V

τm
+ µ(t) + J

K∑
k=1

δ(t− tk − d) + σξ(t) (50)

if V (t) ≥ Vs then V (t)← Vr, (51)

where tk denotes the k-th spike time of K PYR spikes (cf. Methods section 1.4). To account for changes in
background input statistics over the recording duration (which lasted up to ∼2h) and to reflect low-frequency
network co-modulation induced by common network drive the background mean input was allowed to vary over
time. The parameters to be estimated are thus µ(t), J , d and σ. Estimation consisted of three steps. First,
we inferred the statistics µ(t) and σ of background inputs (described by a non-stationary stochastic process)
for J = 0 in the following way. We computed the empirical instantaneous spike rate r(t) of the INT from the
observed spike train via kernel density estimation using a Gaussian kernel with width σG ∈ {0.1, 0.5, 1} s.
The estimated empirical spike rate varies over time much slower than the timescale at which changes of mean
input translate to changes of spike rate in the I&F model. This justifies the approximation r(t) ≈ r∞(µ(t))
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(cf. methods section 3), which allowed us to efficiently evaluate the spike train likelihood for fixed σ by
applying method 1a with mean input assumed constant within each ISI, given by µ(t) = r−1∞ (r(t)) (at the
center between consecutive spike times). The likelihood was then maximized with respect to σ. Given
the parameters for the background inputs (one value of µ per ISI and one for σ) we next maximized the
likelihood of the (full) model in the second step with respect to J and d using method 1a. In the third step
we assessed the significance of synaptic coupling estimates using pseudo data. We perturbed the presynaptic
spike times by a small temporal jitter (random values between -5 and +5 ms) and (re-)estimated J and d.
This was repeated 100 times and z-scores were computed from the estimated coupling strengths. Notably,
since spike times are shifted by only small values, effects due to network co-modulation (which occurs on
a slower timescale) are preserved in the pseudo data. In this way we obtained a coupling strength z-score
for each PYR-INT pair and for each of the three values of σG. In addition, we combined these results and
computed a “combined timescale” estimate as the largest absolute z-score across the three timescales (σG
values) for each connection.

We validated our results against ground-truth data obtained from juxtacellular evoked activity using a
model-free method based on spike train CCGs [35]. (Mono)synaptic connections were assumed to produce
excess synchrony above baseline co-modulation in a short interval following PYR spikes. To generate estimated
ground truth connection labels a CCG (0.4 ms binning) was computed for each PYR-INT pair using the
evoked PYR spikes. For positive labels the peak of the CCG in the interval [0.8, 2.8] ms needed to exceed
that from the slowly co-modulated baseline, and it needed to be significantly larger than the largest peak in
the anticausal direction (short negative lags). The lower frequency baseline was computed by convolving the
observed CCG with a “partially hollow” Gaussian kernel, with a standard deviation of 10 ms and a hollow
fraction of 60%. We estimated the probability of obtaining a spike count sc of n as observed (or higher) in
the mth time lag within [0.8, 2.8] ms of the CCG, given the expected, low frequency baseline rate λs(m) using
the Poisson distribution with a continuity correction,

Pfast(sc(m) ≥ n|λs(m)) = 1−
n−1∑
k=0

λks (m)e−λs(m)

k!
− λns (m)e−λs(m)

n! 2
. (52)

Similarly, we estimated the probability of obtaining the observed spike count n (or higher) in the mth time lag
within [0.8, 2.8] ms of the CCG as expected from the maximum rate λa across negative lags within [−2, 0] ms
using the Poisson distribution with a continuity correction,

Pcausal(sc(m) ≥ n|λa) = 1−
n−1∑
k=0

λkae
−λa

k!
− λna e

−λa

n! 2
. (53)

Connections were labeled as synapses if Pfast < 0.001 and Pcausal < 0.0026 for all (binned) lags in [0.8, 2.8] ms,
according to the rigorous criterion defined in [35].

Based on these labels we computed ROC curves as well as ACC and BACC (cf. methods section 1.4)
using a classification (z-score) threshold value Jzthresh. Accordingly, the presence of an estimated connection

was assured by the condition Ĵz > Jzthresh, where Ĵz denotes the connection strength (z-score) estimate for a
given PYR-INT pair. Note, that the ground truth labels indicate positive excitatory connections (positives)
and absent connections (negatives).

To test the validity of our approach we estimated connectivity using only the first evoked PYR spikes
of each stimulation pulse (which are maximally decoupled from network co-modulation) and compared the
results with the ground truth labels. This assessment yielded excellent agreement, with ACC and BACC
values of up to 0.97 and 0.95, respectively (for σG = 0.1 s).

7.3 Estimation of hidden neuronal inputs using data from awake animals

We further used single unit spike trains from extracellular recordings of two adult female ferrets in different
behavioral conditions. The animals were either passively listening or actively discriminating click trains of
different rates. Each stimulus trial contained a period of silence lasting 0.4 s and a periodic click train (with
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sound level 70 dB SPL) over a duration of 0.75 s. Neural activity from primary auditory cortex was recorded
using a 24 channel electrode and spike sorted using an automatic clustering algorithm followed by a manual
adjustment of the clusters (for details see [53]: click rate discrimination task with spike sorting performed
on the pre-passive and active sessions). Spike trains with > 50 ISIs during silence periods were considered
for model fitting. 71 single units (out of 82 in total) passed that threshold in each of the two behavioral
conditions.

Model neurons were fit in either behavioral condition separately (resulting in 142 sets of estimated
parameters). We employed the leaky I&F model (Eqs. (9), (10)) with µ(t) = µ0 + Jeµe(t) + Jiµi(t), Je ≥ 0,
Ji ≤ 0, where µe(t), µi(t) are given by the superposition of alpha functions with time constants τe, τi,
respectively, triggered at the click times (cf. Eq. (13)). The parameters of the background input (µ0 and σ)
were first estimated from baseline spike train data using method 1a with Je = Ji = 0. For robust estimation
we used the central 95% of ISIs, ensuring that ISIs lasted > 2.5 ms. The parameters of the click-triggered
inputs (Je, τe, Ji and τi) were then estimated from the data during click train periods using method 2, where
we omitted the first click to exclude transients related to the noise stimulus that immediately preceded
the click period. Specifically, we minimized − log p(D|θ) + J2

e + J2
i , i.e., the negative log-likelihood plus a

quadratic regularization term to prevent solutions with large excitatory and inhibitory inputs that cancel each
other. Beforehand we re-estimated µ0 from baseline data using method 2 (with pre-determined σ) to avoid a
potential bias caused by the switch between estimation methods. Method 2 was used instead of method 1 in
order to correctly estimate potentially strong click-triggered inputs in a computationally efficient way.

For comparison we considered three simpler models: a Poisson process with constant rate for the baseline
setting, an I&F model with constant mean input µ(t) = µ0 + ∆µ for the click periods, and an I&F model
with mean input µ(t) = µ0 + Jµ1(t), where µ1(t) is given by the superposition of alpha functions with time
constant τ and latency d, triggered at the click times (i.e., using Eq. (13) with click time t̃l replaced by t̃l−d).
Parameter estimation for these models was performed using method 2 (without regularization). To compare
the quality of the models we used the AIC.
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