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ABSTRACT
Isogenic cells living in the same environment show a natural heterogeneity associated with fluctuations

in gene expression. When these fluctuations propagate through cellular regulatory networks, they can
give rise to noise regulons, whereby multiple genes fluctuate in a coordinated fashion in single cells. The
propagation of these fluctuations has been extensively characterized at the transcriptional level. For
example, variations in transcription factor concentration induce correlated fluctuations in the
abundance of target gene products. Here, we find that such noise regulons can also stem from protein
degradation. We expressed pairs of yellow and red fluorescent proteins, subjected them to differential
translation or degradation, and analyzed their fluctuations in single cells. While differential translation
had little impact on fluctuations, protein degradation was found to be a dominant contributor. A
mathematical model to decompose fluctuations arising from multiple sources of regulation revealed
that cells with higher protein production capacity also exhibited higher protein degradation capacity.
This association uncouples fluctuations in protein abundance from fluctuations in production rate, and

can generate orthogonal noise regulons even for proteins relying on the same transcriptional program.

Keywords: protein expression, intrinsic noise, extrinsic noise, post-transcriptional regulation, misfolding,

proteostasis, noise propagation, pathway noise, single-cell technology
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Introduction

Molecular noise is ubiquitous in biological systems (1-7) and originates from two distinct sources (8-11).
A first, intrinsic source stems from the stochastic nature of chemical reactions within cells. Considering
proteins, intrinsic noise measures the variation of a protein's concentration, when all cellular
parameters are kept constant. The second source of noise is the extrinsic component, which
corresponds to the variability of a protein's concentration across different cell states. Isogenic cells living
in the same environment indeed naturally explore a multitude of states reflected in differences in size,
shape, cell cycle phase, concentrations of polymerases, ribosomes, regulation factors, etc. (12, 13). Such
extrinsic noise is sometimes referred to as pathway noise (14, 15). Recent advances in single-cell RNA-
seq have also contributed to unveiling the natural heterogeneity of cell populations and cell states, even
allowing the identification of novel cell types (16-19).

Understanding the molecular bases driving cellular heterogeneity can yield fundamental insights into
mechanisms of cell function and regulation (20-33). This idea was explored by Perdaza et al. who
expressed two fluorescent proteins in a cascade and observed that fluctuations of the regulator
propagated to the regulatee (20). More generally, correlated fluctuations of protein abundance have
been widely observed in S. cerevisiae (21). In that work, the authors observed that proteins undergoing
correlated fluctuations with a stress response factor were involved in stress response themselves. These
correlations proved predictive of regulatory mechanisms although they were measured in unstressed
cells (21). Identification of sources of extrinsic noise affecting a specific protein can thus reveal how
proteins are regulated (22-30). Based on this idea, Farkash-Amar et al. used correlation in protein
abundance and localization to identify 74 genes related to human cell motility (29). In another example,
it was observed in yeast that cell-specific growth rate and stress resistance were anti-correlated, and the
cellular abundance of Tsll, a trehalose synthase component, correlated with slow-growing, stress-
resistant cell states (31).

At the root of heterogeneity lies the question, how can extrinsic noise be produced? Sources of extrinsic
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noise have been extensively characterized at the transcriptional level (5, 15, 20, 23, 34-41), and recent
advances of single cell transcriptomics by RNA-seq have contributed to consolidating that view (42, 43).
Theoretically, however, any regulatory mechanism that can affect a protein's level could also influence
its noise (34), e.g., by changing translation, mRNA, or protein degradation rates across cells. Importantly,
recent advances in transcriptomics and proteomics methods have shown that post-transcriptional
regulation greatly contributes to homeostasis of protein abundance (44, 45), a view also supported by
single-cell measurements of mRNA and protein levels (44, 46). The fundamental role of post-
transcriptional regulation in regulating protein levels is particularly well illustrated in a recent work,
where yeast proteins were all expressed from the same constitutive promoter, but showed highly
variable abundances, spanning over two orders of magnitude (47). At the functional level, post-
transcriptional regulation is indeed crucial for many key cellular processes such as the cell cycle (48).
More generally, entire classes of proteins can be subject to strict post-transcriptional regulation (49-51).
For example, Gsponer et al. observed across several species that proteins rich in disordered regions are
tightly regulated throughout their lifetime, from transcript synthesis to protein clearance (50).

The fact that post-transcriptional regulation mechanisms play a major role in cellular circuits prompts us
to ask whether they represent a source of extrinsic noise on top of transcription. For example, if a
protein requires a specific factor to be degraded, the fluctuations in the abundance of the protein will be
coupled the fluctuations of the degradation factor.

To evaluate whether post-transcriptional processes can impact fluctuations of protein abundance in
single cells, we compared fluctuation patterns of fluorescent proteins in presence or absence of
sequence tags inducing either decreased translation rate or increased degradation. We used a two-color
reporter strategy (8, 9) to quantify the extent of change in extrinsic noise caused by the sequence tags
(Fig 1). We observed that decreased translation rate did not significantly impact extrinsic noise despite
inducing a 3-fold reduction in protein abundance. Increased degradation, however, which was triggered

by a misfolded polypeptide tag, caused a dramatic change in the pattern of cell-to-cell fluctuations.
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84 Fig 1. Assessing the impact of post-transcriptional regulation (post-TR) on protein abundance noise.
85 (A) Two proteins, YFP and RFP are expressed under the same promoter and at the same genomic locus in diploid
86 yeast cells. Identical promoters subject the two proteins to identical transcriptional regulation across cells, e.g., if a
87 particular cell has a lower concentration of transcription factor, it will produce less of both YFP and RFP. Thus,
88 correlated fluctuations of YFP and RFP across single cells are expected.
89 (B) RFP* now differs from RFP and YFP by a specific sequence tag (star). If a regulator modulates RFP* abundance
90 through that tag, e.g., by degradation, then cell states with higher concentrations of the regulator will result in
91 lower concentrations of RFP*. This new layer of regulation may confound the transcriptional layer, resulting in
92 decreased correlation between RFP* and YFP.
93 (C) Adding the same tag to YFP would restore the correlation because both proteins would once again be
94 subjected to identical regulation.
95 (D) We constructed yeast strains to assess whether post-TR can impact fluctuations of protein abundance across
96 single cells. We used two sequence tags fused to the fluorescent proteins. The first is a sequence with low
97 translation efficiency and the second is a truncated, misfolded protein. Combinations of these variants were
98 expressed in yeast cells and their abundance was measured.
99

100

101  Results
102  Measuring protein abundance noise using a two-color reporter strategy. The noise of protein

103 abundance in single cells can be decomposed into intrinsic and extrinsic components using two
104  fluorescent reporter proteins of different colors, as originally proposed (8, 9). In this strategy, cell-to-cell
105 differences impact the expression of the two reporters in the same way, such that correlation in their
106 abundance across cells measures extrinsic noise, whereas differences in reporter abundance within cells

107 reflect intrinsic noise.
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108

109 We adopted this strategy and expressed a yellow and a red fluorescent protein in S. cerevisiae. The
110  genes coding for the two reporters were integrated at homologous loci and used identical promoters
111 (Details of constructs, strains, and sequences are given in Fig S1, Text S1 and Tables S1-S2). We
112 measured the fluorescence of diploid yeast cells expressing the reporters using an automated confocal
113 spinning disk microscope (Fig 1D). As expected, YFP and RFP abundance were highly correlated across
114 cells (R=0.83, Fig 2), reflecting that both reporters were indeed influenced by identical sources of

115 extrinsic noise.
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119 Figure 2. Post-transcriptional regulation can either maintain or abolish protein abundance coupling in single-

120  cells.

121 (A) The abundance of YFP (x-axis) and RFP variants (y-axis) are measured in single cells (points). We use three RFP
122 variants: untagged RFP (grey), RFP fused to a sequence acting as a translation bottleneck (purple), and RFP fused to
123 a misfolded protein (cyan). The YFP and RFP variants are under GPD promoter expression.

124 (B) Pearson correlation between YFP and each RFP variant. Independent experiments are shown using either GPD
125 or TEF promoters.

126 (C) The total squared noise (7%,,) was calculated by the variance of the log-transformed fluorescence intensities
127 (Equation 9, Methods). Error-bars in panels B and C correspond to two standard deviations calculated based on six
128 biological replicates.

129
130 Decreasing translation rate minimally impacts protein abundance fluctuations. We then altered the

131 post-transcriptional regulation of only one of the reporters and analyzed the resulting impact on
132 extrinsic noise (Fig 1B). In a first experiment, we fused an amino acid sequence at the C-terminus of RFP,

133 which contained seven repeats of "CTT," a leucine codon with low tRNA adaptation index in S. cerevisiae
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134 (52) (Methods, Text S2). We call this sequence a “translation bottleneck” (tb) and use RFP-tb to refer to
135 this variant of RFP. As expected by design, the average cellular abundance of RFP-tb was lower than that
136 of untagged RFP, by ~3-fold (Fig 2). Interestingly, the correlation remained close to the original value
137 (R=0.79), indicating that fluctuations were not affected by the translation bottleneck. The total noise for
138 RFP-tb was comparable to RFP (7%, =0.039 and 0.032 respectively, Fig 2C). Overall, the similarity in
139 correlation in presence and absence of the translation bottleneck indicates that all cells, irrespective of
140  their state (here represented by YFP abundance), deal with the bottleneck sequence with comparable
141 efficiency. Lastly, we repeated these experiments using a different promoter and our observations
142 remained highly similar (Fig 2).
143
144 A misfolded protein tag decouples protein abundance fluctuations. In a second experiment, we fused a
145 misfolded protein to RFP (53) and refer to this variant as RFP-misP. Protein misfolding is a pervasive
146 process that can be triggered by a stress such as heat shock (54), but can also occur during the normal
147 life cycle of proteins due to translational errors, for example (55). As a result, cells have evolved
148 elaborate quality-control machineries (56). By expressing RFP-misP with YFP, we tested whether the cell
149 machinery dealing with RFP-misP would subject it to a new source of extrinsic noise, and whether that
150 new source could decouple the fluctuations between RFP-misP and untagged YFP. We observed a 20-
151 fold decrease in RFP-misP expression. This decrease likely originates from a change of protein stability
152 rather than a change of mRNA stability or translation efficiency, because fusion of RFP-misP to an
153 additional solubilizing tag rescues protein abundance (Fig S2). Strikingly, the correlation between RFP-
154 misP and YFP underwent a large decrease, down to R=0.32. We also observed a two-fold increase in
155  total noise (nZ,; = 0.065) relative to RFP alone (nZ,, = 0.032, Fig 2C and Methods).
156
157 We performed the same measurements using a different promoter and observed similar results: the

158 correlation between YFP and RFP-misP decreased (R=0.18), and the total noise increased due to the
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159  misP tag (n%; = 0.055) compared to RFP alone (nZ,; = 0.034). In another control, we swapped
160 fluorescent reporters, using YFP-misP together with RFP, and we observed similar results. The

161 correlation vanished (R < 0.1), and the total noise increased due to the misP tag (Fig. S3).
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164 Fig 3. Post-transcriptional co-regulation re-couples fluctuations of protein abundance in single cells

165 (A) Fluorescence intensities measured in single cells for YFP (x-axis) and RFP-misP (y-axis), showing a weak
166 correlation of their abundance across cells (fluorescence arbitrary units).

167 (B) Expression of YFP-misP with RFP-misP restores the correlation of fluctuations across single cells.

168 (C) Correlation for different pairs of proteins subjected to different post-transcriptional regulations: untagged YFP
169 + untagged RFP (grey), untagged YFP + RFP-misP (cyan), or YFP-misP + RFP-misP (blue). Average of six biological
170 replicates, error-bars show two standard deviations.

171
172 Post-transcriptional co-regulation re-couples fluctuations of protein abundance in single cells. Two

173 hypotheses could explain the decoupling of YFP and RFP-misP expression. One possibility is that tagging
174 RFP with misP increases its intrinsic noise. In that case, tagging RFP and YFP simultaneously with misP
175 should not re-couple fluctuations. Alternatively, RFP-misP may be subject to a new source of extrinsic
176 noise. In this case, tagging both RFP and YFP with misP should restore the coupling in protein
177 expression. We observed the latter scenario, where tagging both proteins with misP restored their
178 correlation (R=0.76, Fig 3). The same experiments based on a different promoter gave similar
179  observations (R=0.71, Fig 3C).

180

181  Thus, subjecting proteins to a new layer of post-transcriptional regulation can change their pattern of
182 fluctuation at the single cell level. Moreover, the restoration of the correlation that we observed

183 indicates that this change is caused by a source of extrinsic noise, supposedly reflecting the

7
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184 “degradation capacity” of misfolded proteins in each cell. We assessed whether this cell-specific
185 degradation capacity could be linked to the cell cycle, and measured the correlation between the
186 abundance of YFP-misP and RFP-misP in sub-populations of cells grouped by size or cell cycle stage. The
187 correlation depended on neither property (Fig S4, S5), indicating that cell size and cell-cycle stage do not
188 influence the extrinsic factor represented by the “degradation capacity.”

189

190 Post-transcriptional regulation creates anti-fluctuations that partially cancel the transcriptional
191 fluctuations in our system. To explain the decoupling and recoupling of protein fluctuations by post-
192 transcriptional regulation, we introduce a mathematical model of the fluctuations of reporters subjected
193 to multiple noise sources. Two reporters G and R sharing the same promoter and lacking the misP tag
194 share the same source of extrinsic noise Z. Following a framework introduced by Elowitz et al. (8), we

195 model the fluorescence of the reporters as

196
197 G =bgZe; (1)
198 R =DbrZeg.(2)
199

200  where G and R represent the single cell fluorescence of the green (GFP or YFP) and red (RFP) reporters.
201  The b constants account for differences in average protein abundances and differences in abundance-to-
202 fluorescence scaling. € is the intrinsic noise due to stochasticity inherent to gene expression. We use a
203 multiplicative model because, with mass action kinetics, fluctuations in protein production and
204 degradation have multiplicative effects on protein abundance (Methods).

205 Adding a misfolded tag to one reporter subjects it to a new source of extrinsic noise W. In the case of
206 RFP-misP for example, W accounts for the effect of the misP tag on fluorescence in single cells now
207 denoted R*, with

208
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209 R* =bp ZW €g- . (3)
210
211 By log-transforming fluorescence (log(G) — G,log(R*) — R*) to linearize these equations, we can
212 compute how the noise sources Z and W impact the correlation between log protein abundance of the

213  tworeporters G and R* across a cell population by

214

r(GR") _ |Var(R) Cov(ZW)
215 r(GR) \}Var(R*)(l + Var(Z) ) (4)
216

217  This equation (see Methods for details of the derivation) formalizes the intuition of Fig 1: subjecting R*
218 to a new source of noise W can decrease the correlation between the reporters in two distinct
219 mechanisms. First, W can inject extra noise into R* to increase Var(R*). As the first term of Equation 4
220 shows, increasing Var(R*) decreases the correlation between G and R*. Second, if the coupling between
221  Zand W is negative, fluctuations in Z are (partially) canceled by anti-fluctuations in W which decouple R*
222 from G. This is reflected in the second term of Equation 4, where Cov(Z, W) << 0 decreases the
223 correlation between G and R*.

r(G,R")
r(G,R)

224 In our experiments, = 0.38 and /% = 0.70, which implies Cov(Z,W) < 0. The data thus

225 suggest that the loss of correlation between G and R* is due both to increased noise in R* and to
226 negative coupling between Z and W, with the latter effect being slightly stronger than the former.

227 If YFP abundance captures the production capacity Z of individual cells, and if fluctuations induced by
228 the misP tag W depend on the capacity to degrade proteins, our results imply that cells with a higher
229 production capacity have a higher degradation capacity. The correlation coefficient between Z and W

230 can, in fact, be computed from measurements of G, R and R* (Equation 18, Methods). We find R(Z W) =

231  -0.54, confirming that Z and W are anti-correlated.

232
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233 Numeric simulations confirm the coupling between protein production and degradation in single cells.
234  To confirm that coupling between production and degradation leads to decoupling between passively-
235 degraded (YFP) and actively degraded proteins (RFP-misP) we simulated the stochastic variability of
236 proteins using the Gillespie algorithm with rate constants determined to yield average mRNA and
237 protein copy numbers matching those of the literature (Fig 4A, Methods). Each simulated “yeast cell”
238 consisted of a unique set of rate constants shared by all four proteins, except for protein degradation
239 rates. Those were always identical for equivalent proteins but differed between passively (YFP and RFP)
240 and actively degraded variants (YFP-misP, RFP-misP). The expression of all four proteins was simulated
241 for 80 hours to reach equilibrium, at the end of which protein abundance was recorded for the four
242 proteins. Finally, one thousand of these simulations were performed to obtain cell population statistics.
243 We implemented two models of protein degradation. First, degradation rates were normally distributed
244 across cells but were identical for YFP-misP and RFP-misP within cells. This simulates extrinsic noise in
245 protein degradation. As expected, such cell-specific degradation rates reproduced the correlation
246 between RFP-misP and YFP-misP observed experimentally (Fig 4B, model 1, R=0.8). However, the noise
247 added by degradation did not decrease the correlation between YFP and RFP-misP to the extent
248 observed experimentally (Rsm(G,R*)=0.65). In a second model, the rate of protein degradation (ks) was
249 coupled to the rate of production (arbitrarily chosen as k;). Equation 18 (Methods) enabled us to
250 calculate the correlation that should exist between those rates to recapitulate the experimental results.
251 We thus sampled values of k5 such that, on average, the correlation between log(k;) and log(ks) would
252 be 0.54. With this added constraint, the correlation between YFP-misP and RFP-misP remained high,
253 with Rn(G* R*)=0.72, but the correlation between YFP and RFP-misP decreased to R,;,(G,R*) = 0.28, in

254  good agreement with our experimental results where R.,,(G,R*) = 0.32.

255
256
257
258
259

10
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260
261 Fig 4. Stochastic simulations confirm that degradation capacity is coupled to production capacity in single cells.

262 (A) Kinetic model used for the numeric simulations. Protein homeostasis was dependent on six parameters: the

A @ @ rate of DNA opening (k;) and closing (k.y),
ki kot I transcription from opened DNA (k;), mRNA
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distribution across cells distribution across cells model 1, ks was chosen randomly in each cell

and k5 is coupled to k2 and stayed constant during simulations,
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o " ¢ degradation rates within cells, but to different
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302 Fig 5. Protein degradation can decouple fluctuations in protein abundance. The expression of the fluorescent
303 reporters is influenced by two sources of extrinsic noise, Z, and W, which capture effects associated with
304 production and degradation respectively. The untagged RFP and YFP are both influenced by Z. The misP tag (blue
305 star) couples RFP and YFP to an additional source of extrinsic noise, W, creating an incoherent feedforward loop. In
306 the absence of coupling between Z and W, YFP and RFP-misP expression remain correlated. A positive coupling
307 between Z and W results in RFP-misP being more degraded when YFP abundance is high, thus decreasing the
308 correlation between YFP and RFP-misP in single cells.

309
310

311 Discussion and conclusions

312 Functional implications of the findings. The fact that fluctuations in protein abundance can be coupled
313 at the level of single cells brings about the question of function (4). The variability inherent to gene
314 expression can be a constraint that is costly to suppress (57), but can also represent a beneficial, tunable
315 and selectable trait as a primitive form of gene regulation (58), and in a bet-hedging context (31, 59-62).
316 While bet-hedging is generally studied through variability of a single component, correlated fluctuations
317 can be exploited to couple the fluctuations of many components together (63). The possibility to tune
318 cell-to-cell fluctuations of multiple components could, for example, contribute to adjusting the
319  stoichiometry of subunits in complexes at the level of single cells.

320 There may also be contexts where coupling is not desirable. For example, if preparing for all possible
321 environmental stresses is too costly or hard to achieve functionally, cells may benefit from decoupling
322 the expression of gene modules needed to overcome different types of stresses. Decoupling the
323 expression of stress-response genes could allow individual cells to prepare to different kinds of stress,

324 instead of all individuals preparing for all stresses. Doing so may increase the chance that at least a few

12
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325 cells survive sudden environmental stresses. In support of this conjecture, proteins involved in chemical
326 homeostasis and defense response have high decay rates (64).
327
328 Interaction between protein degradation and protein production. Modeling the experimental data
329 suggested a connection between the rates of protein production and degradation (Fig 5). At the mRNA
330 level, such dependence has been observed and is implemented through several mechanisms. For
331 example, two RNA polymerase subunits (Rpb4 and Rpb7) were found to bind the transcribed mRNA to
332 later direct it for degradation (65, 66). In another mechanism, a promoter element binding Raplp
333 stimulates both transcription and mRNA degradation (67). Additionally, RNA decay factors such as Xrnl
334 have been observed to enhance both the transcription and degradation of certain RNAs (68).
335 Our data imply a similar linkage between production and degradation at the protein level. However,
336 because untagged proteins are not subject to rapid degradation despite having the same promoter
337 region as tagged proteins, the coupling between production and degradation is unlikely to involve a
338 signal associated with the mRNA. The underlying mechanisms must thus be different from those
339 described above. We hypothesize that the production-degradation linkage we observed reflects a more
340 general mechanism. According to this hypothesis, a global extrinsic component — or, as coined by
341 Stewart-Ornstein et al., a “noise regulon” would be composed of proteins needed for growth, and
342 include ribosome and metabolic enzymes, but also degradation factors. All the proteins in such a
343 regulon would fluctuate together, thus simultaneously increasing production and degradation in a cell-
344 specific manner. Such association may reflect a natural optimization of cells where, like in a factory,
345 ramping up production naturally produces excess waste that needs to be cleared.
346
347 Exploiting cellular noise may help characterize post-transcriptional regulation mechanisms. The
348 strategy described in this work, whereby two fluorescent proteins differing in a specific feature capture

349 the extrinsic noise component acting on that feature, is readily generalizable to dissect more regulatory

13
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350 mechanisms and pathways. The use of modified or synthetic proteins as “queries” could indeed reveal
351 regulators of specific features. Yeast proteins that anti-correlate with RFP-misP could be candidate
352 degradation factors. In contrast, yeast proteins that correlate with RFP-misP could be hypothesized as
353 stabilizing chaperones or proteins subjected to the same degradation mechanism. We thus anticipate
354  that cellular noise and co-fluctuating proteins will reveal mechanisms of regulation in biological systems,
355 of and beyond transcriptional regulatory networks. To this aim, the framework introduced in this work,
356 to analyze the extrinsic noise of non-equivalent reporters, will be instrumental.

357

358 Materials and Methods

359  Strains and plasmids. We employed two fluorescent proteins, Venus (YFP) and mCherry (RFP), which
360  were cloned into plasmids suitable for genome integration at the TRP1 locus (Supplementary Text 1).
361 For genome integration, the plasmids were restricted by Accl (YFP) or BamHI (RFP), which released the
362 cassette flanked by sequences bearing homology to the TRP1 locus. The restricted fragment was
363 transformed to BY4741 (YFP), or BY4742 (RFP) following an established protocol (69). Transformants
364  were selected by antibiotic resistance (G418 for YFP, Hygromycin for RFP) and correct locus integration
365 was verified by tryptophan auxotrophy. Mating was done by growth on solid YPD agar overnight
366 followed by selection on synthetic media lacking methionine, lysine and supplemented with antibiotics
367 selecting for the presence of both cassettes. The yeast strains used in this work are described in Tables
368  S1andS2.

369

370 Microscope imaging. Cells were inoculated from their glycerol stock in 384-well glass-bottom optical
371 plates (Matrical) with a pintool (FP1 pins, V&P Scientific) operated by a Tecan robot (Tecan Evo200 with
372 MCA384 head). Cells were grown in YPD for a minimum of ten hours before they reached an optical
373 density of at most 1, and were imaged. Imaging was performed with an automated Olympus microscope

374  X83 coupled to a spinning disk confocal scanner (Yokogawa W1), using a 60X objective (Olympus, plan
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375 apo, 1.42 NA). Excitation was achieved with a green L.E.D for brightfield images, a 488 nm laser (Toptica,
376 100 mW) for YFP, and 561 nm laser (Obis, 75 mW) for RFP. Emission filter sets used to acquire the
377 brightfield, YFP and RFP images were 520/28, 520/28 and 645/75 respectively. The same triple-band
378  dichroic mirror was used for all channels (405/488/561, Yokogawa). Images were recorded on two
379 Hamamatsu Flash4-V2 cameras, one for the brightfield and YFP channels and the second for the RFP
380 channel. Each image set was composed of two brightfield (BF) images (one in focus and one defocused
381 to facilitate cell segmentation, each with 50 ms exposure) as well as one image for each fluorescent
382 channel (500 ms exposure for YFP and 700 ms exposure for RFP). The focus was maintained throughout
383 the experiment by hardware autofocus (Olympus z-drift compensation system).
384
385 Image analysis. Images were processed with Imagel) by custom algorithms. Individual cells were
386 segmented from the brightfield images and statistics for all four images (in-focus brightfield, out-of-
387 focus brightfield, YFP, and RFP) were recorded. Fluorescence intensity was estimated from the 30"
388 quantile of pixel intensity within each cell. All tabulated data were analyzed in R. Several filters were
389  applied to the data extracted from the images (Text S3, Fig S6).
390
391 Modeling reporters subject to a common noise source. Untagged fluorescent reporters are considered
392 equivalent and share the same extrinsic noise Z. We model their expression using the framework

393 introduced by Elowitz et al. (8), with

394
395 G =bgZeg (5)
396 R =bg Z €g . (6)
397

398 Here, G and R are single-cell fluorescence measured in the green (GFP or YFP) and red (RFP) channels

399 respectively. Z represents the extrinsic noise, while € models the noise intrinsic to the process of gene
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expression. The b constants account for differences in average protein abundances and differences in
abundance-to-fluorescence scaling between the two reporters. We use a multiplicative model between
sources of noise because protein abundance is the result of chemical reactions with mass action
kinetics. With such kinetics, protein abundance is given by the product of kinetic rates. For example,
consider a cell with 3-fold more transcription activity and 3-fold more translation activity for a particular
gene when compared to average. In such a cell, the fold change at the protein level will be 9-fold
compared to average, and not 6-fold. This aspect of the model is important when comparing and
modeling the correlation between fluorescent reporters whose abundance we alter experimentally, as

we do here.

Log-transforming the equations linearizes them. We apply x:=log(x) for all the variables in the model and

redefine the b constants such that Z and € have mean 0 which yields

G=bG+Z+EG (7)

R=bR+Z+ER. (8)

In this context, the total variance of single-cell fluorescence can be decomposed into contributions of
extrinsic and intrinsic noise, with

2 2 2
Mtot Mext Mint

Var(G) = Var(Z) + Var(eg). (9)

To determine how coupling reporters to different sources of noise alter the correlation between
fluorescence, we note that reporters lacking the misP tag are only influenced by Z. In this simple case,

the correlation between G and R is derived from Equations 7 and 8 as
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Cov(G,R) _ Var(Z)

424 TGk = eove® - e@va®m:

(10)

425

426 Here, the correlation r(G,R) quantifies the amount of extrinsic noise Var(Z) relative to the total noise of
427 the fluorescent proteins. This formula, based on the correlation coefficient, is a normalized form of the
428 original formula based on the covariance to estimate extrinsic noise (8).

429

430 Modeling of reporters subjected to different sources of noise. The model of Equation 10 assumes the
431 two fluorescent reporters to be subject to the same source of extrinsic noise Z. However, the misP tag
432 subjects the fluorescent reporter R* to an additional source of extrinsic noise W. We model the effect of
433 W on the abundance R* as

434

435 R*=bp-+ Z+W + €p+. (11)

436

437 Coupling R* to an additional noise source W tends to increase fluctuations, as shown by computing

438 Var(R*) as a function of Var(R), which gives

439

Var(R)
440 Var(R*) = Var(Z) + Var(eg+) + Var(W) + 2Cov(Z,W) . (12)
441

442 Since Var(W) > 0, coupling R* to W tends to increase the variance of R*, unless Z and W are strongly
443 anti-coupled, i.e., Cov(Z, W) << 0. Using Equations 7 and 11 which define G and R*, we can derive how Z

444  and W impact the correlation between G and R¥,

445

vy = Yar@+covZ W)
446 r(G,R) = e (13)
447
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By dividing this equation by Equation 10, we obtain an expression for how Z and W impact the

correlation between the two pairs of reporters,

r(GR") _ |Var(R) ( Cov(Z,W))

r(G,R) \}Var(R*) 1+ varz) /- (14)
This equation suggests two mechanisms through which the misP tag can alter the correlation between
the two reporters. In one mechanism, W injects more noise into R*. This increase Var(R*) (first term),
and thus decreases r(G,R*) relative to r(G,R). In another mechanism, W is anti-coupled to Z such that
fluctuations in Z are partially canceled by anti-fluctuations in W. In this scenario, a negative covariance

between Z and W decreases r(G,R*).

To quantify the strength of the coupling between Z and W, we compute r(Z,W). We first use Equations 7

and 8, which define G and R to find
Var(Z) = Cov(G,R). (15)
From Equation 11 which defines R* and its equivalent form for G*, we find the variance of W as
Var(W) = Cov(G*,R*) — 2Cov(G,R*) + Cov(G,R). (16)
By computing Cov(G,R) and Cov(G,R*) and solving for Cov(Z,W), we can show that
Cov(Z,W) = Cov(G,R*) — Cov(G,R). (17)

Lastly, combining Equations 15, 16 and 17, we obtain
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473
Cov(ZW)
474 r(Z,W) = (cov(G,R*)-Cov(G,R)) (18)
Cov(G,R) (Cov(G*,R*)—2Cov(G,R*)+Cov(G,R))
Var(Z) Var(W)
475

476 Numerical simulations. The simulations were based on the Gillespie algorithm (70) adapted from Bahar-
477 Halpern et al. (71). The algorithm was modified to account for protein translation and degradation, and
478 was ported to the R language. The rates used in the simulations were for gene opening (k;=5/h) and
479  closing (k4=5/h) (72), mRNA transcription (k,*N(20/h,0.12/h?) and degradation (k;=0.5/h), protein
480 translation (ks~N(30/h,0.05/h)) and protein degradation (ks=0.005/h for untagged YFP or RFP). These
481 rates gave copy numbers of mRNA (average of 20 per cell) and proteins (average of 120,000 per cell)
482  comparable to expected values (73, 74) (BNID 104745,104185). We simulated the impact of the misP tag
483 using two models of protein degradation. In model 1, values of ks ~ N(0.05/h,0.006/h?) were identical for
484  YFP-misP and RFP-misP in single cells. Model 2 was identical to model 1, with the added constraint that
485 values of ks were sampled so that log(k2) and log(k5) would show a correlation expected to be 0.54.

486

487 Statistical analysis

488  Two-tailed Welch exact t-test was used to compare mean values of measurements series. All
489  correlations in this works were calculated with the Pearson coefficient. The Fisher exact test was used to
490  evaluate the significance of the correlations.

491
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