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Abstract

Background: While the reconstruction of transcripts from a sample of RNA-Seq
data is a computationally expensive and complicated task, the detection of
splicing events from RNA-Seq data and a gene annotation is computationally
feasible. The latter task, which is adequate for many transcriptome analyses, is
usually achieved by aligning the reads to a reference genome, followed by
comparing the alignments with a gene annotation, often implicitly represented by
a graph: the splicing graph.

Results: We present ASGAL (Alternative Splicing Graph ALigner): a tool for
mapping RNA-Seq data to the splicing graph, with the main goal of detecting
novel alternative splicing events. ASGAL receives in input the annotated transcripts
of a gene and an RNA-Seq sample, and it computes (1) the spliced alignments of
each read, and (2) a list of novel events with respect to the gene annotation.

Conclusions: An experimental analysis shows that, by aligning reads directly to
the splicing graph, ASGAL better predicts alternative splicing events when
compared to tools requiring spliced alignments of the RNA-Seq data to a
reference genome. To the best of our knowledge, ASGAL is the first tool that
detects novel alternative splicing events by directly aligning reads to a splicing
graph.

Availability: Source code, documentation, and data are available for download at
http://asgal.algolab.eu.

Keywords: Graph Alignment; Spliced Alignment; Alternative Splicing events;
RNA-Seq

Background

Data coming from high throughput sequencing of RNA (RNA-Seq) can shed light

on the diversity of transcripts that result from Alternative Splicing (AS). Three

main computational approaches characterize transcriptome analysis from RNA-Seq

data: (i) de novo assembly of transcript isoforms, (ii) gene annotation guided re-

construction of isoforms, and (iii) detection of AS events from a gene annotation

or from an assembly graph. Various tools have been proposed in the literature that

use the first two approaches. Examples of tools in category (i) that do not require

a reference genome are Trinity [1] and ABySS [2]. Cufflinks [3], Scripture [4],

and Traph [5], among many others, are known tools of category (ii). The first two
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tools were originally designed for de novo isoform prediction and can make limited

use of existing annotations.

The final goal of reconstructing transcripts may be the detection of AS events

that characterize gene expression. This step usually requires the comparison of a

large number of transcripts that may arise from a sample of RNA-Seq reads. Such

a comparison is performed by AStalavista [6], a popular tool for the exhaustive

extraction and visualization of complex AS events from full-length transcripts. This

tool does not use RNA-Seq reads as input but only the gene annotation, and it does

not focus on single events (such as exon skipping, alternative splice sites, etc.) but

rather uses a flexible coding of AS events [7] to list all the AS events between each

pair of transcripts.

Since reconstructing full-length isoforms (either de novo or using a reference)

from RNA-Seq reads is a difficult and computationally expensive problem, one may

restrict the task to the direct detection of AS events from RNA-Seq data. Along

this line of research, we propose a computational approach to predict AS events,

and we implement this procedure in a tool belonging to category (iii). Similar tools

are SpliceGrapher [8] and SplAdder [9] which take as input the spliced alignments

of sequencing data (RNA-Seq data for SplAdder, and RNA-Seq data in addition to

EST data for SpliceGrapher) against a reference genome, and produce as output

a set of AS events. To do so, they exploit an augmented graph representation of the

annotated transcripts, traditionally known as the splicing graph [10], with nodes and

arcs that may represent novel AS events. In any case, while SpliceGrapher does not

explicitly infer novel AS events, the main task of SplAdder is the prediction of AS

events that are expressed by an input sample, and the quantification of those events

by testing the differences between multiple samples. Two crucial computational

instruments are usually required by tools of category (iii): an input file consisting of

the alignment of RNA-Seq data to a reference genome, and the splicing graph. The

first input may significantly change the performance of such tools, as the accuracy

of the alignment may effect the predictions of AS events.

To avoid the possible bias due to the alignment against a reference genome, and

motivated by the need of a direct comparison of RNA-Seq reads to the splicing

graph, we propose ASGAL (Alternative Splicing Graph ALigner), a tool that consists

of two parts: (i) a splice-aware aligner of RNA-Seq reads to a splicing graph, and

(ii) a predictor of AS events supported by the RNA-Seq mappings. Currently, there

are several tools for the spliced alignment of RNA-Seq reads against a reference

genome or a collection of transcripts, but, to the best of our knowledge, ASGAL is

the first tool specifically designed for mapping RNA-Seq data directly to a splicing

graph. Differently from SplAdder, which enriches a splicing graph representing the

gene annotation using the splicing information contained in the input spliced align-

ments, and then analyzes this enriched graph to detect the AS events differentially

expressed in the input samples, ASGAL directly aligns the input sample to the splic-

ing graph of the gene of interest and then detects the AS events which are novel

with respect to the input gene annotation, comparing the obtained alignments with

it. For this reason, ASGAL is designed to detect AS events also from an RNA-Seq

sample, where the current annotation may differ by a single transcript per gene.

The approach of inferring AS events directly from RNA-Seq reads, without as-

sembling isoforms, is also proposed in [11], where the main idea is to perform a de
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novo prediction of some AS events from the De Brujin graph assembly of RNA-

Seq data, i.e. without using any gene annotation. An investigation of the de novo

prediction of AS events directly from RNA-Seq data is also given in [12], where a

characterization of the splicing graph that may be detected in absence of a gene

annotation (either given as a reference or as a list of transcripts) is provided.

The ASGAL mapping algorithm improves a previous solution to the approximate

pattern matching problem to a hypertext (an open problem faced in [13]). The

approximate matching of a string to a graph with labeled vertices is a compu-

tational problem first introduced by Manber and Wu [14] and attacked by many

researchers [15, 16, 17]. Navarro [18] improved all previous results in both time and

space complexity, proposing an algorithm which requires O(m(n+ e)) time, where

m is the length of the pattern, n is the length of the concatenation of all vertex

labels, and e is the total number of edges. The method in [13] improves the latest re-

sult by Thachuk [19]: an algorithm with time complexity O
(
m+ γ2

)
using succinct

data structures to solve the exact version of matching a pattern to a graph — i.e.

without errors — where γ is number of occurrences of the node texts as substrings

of the pattern. The algorithm in [13] is based on the concept of Maximal Exact

Match and it uses a succinct data structure to solve the approximate matching of

a pattern to a hypertext in O
(
m+ η2

)
time, where η is the number of Maximal

Exact Matches between the pattern and the concatenation of all vertex labels. In

this paper we improve the results in [13] by extending the algorithm to implement

an RNA-Seq data aligner for detecting general AS events from the splicing graph.

An experimental analysis on real and simulated data was performed with the pur-

pose of assessing the quality of ASGAL in detecting AS events. We compared ASGAL

with SplAdder, this latter using both Hisat2 [20] (the successor of TopHat2 [21])

and STAR [22] as spliced aligners. Since ASGAL aligns reads directly to the splicing

graph, it reveals a higher precision in predicting AS events. Although ASGAL works

under different assumptions than other existing tools, we decided to compare ASGAL

with SplAdder, since in [9] the authors showed that SplAdder achieves better re-

sults than other similar tools such as rMATS [23] and JuncBASE [24]. In particular,

rMATS and JuncBASE are tools that only detect AS events from the differential ex-

pression of transcripts in multiple samples of RNA-Seq data. To do this, JuncBASE

uses a complex pipeline containing other tools such as Cufflinks and requires long

running times, while rMATS has limited capacity to infer AS event from RNA-Seq

data alignments [9].

Methods
ASGAL (Alternative Splicing Graph ALigner) is a tool for performing a mapping

of RNA-Seq data in a sample against the splicing graph of a gene with the main

goal of detecting the novel splicing events expressed by the reads of the sample

with respect to the annotation of the gene. More precisely, ASGAL takes as input the

annotation of a gene together with the related reference sequence, and a set of RNA-

Seq reads, to output (i) the spliced alignments of each read in the sample and (ii) the

alternative splicing events expressed in the sample which are novel with respect to

the annotation. We point out that ASGAL uses the input reference sequence mainly

for building the splicing graph. Each identified event is described by its type, i.e.
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exon skipping, intron retention, alternative acceptor splice site, alternative donor

splice site, its genomic positions, and a measure of its quantification, i.e. the number

of reads that support it.

This section is organized as follows. We first introduce the basic definitions and

notions that we will use in the section spliced graph-alignment, and finally we de-

scribe the steps of our method.

Definitions

From a computational point of view, a genome is a sequence of characters, i.e. a

string, drawn from an alphabet of size 4 (A, C, G, and T). A gene is a locus of

the genome, that is, a gene is a substring of the genome. Exons and introns of

a gene locus will be uniquely identified by their starting and ending positions on

the genome. A transcript T of gene G is a sequence 〈[a1, b1], [a2, b2], . . . , [an, bn]〉
of exons on the genome, where ai and bi are respectively the start and the end

positions of the i-th exon of the transcript. Observe that a1 and bn are the starting

and ending positions of transcript T on the genome, and each [bi + 1, ai+1−1] is an

intron represented as a pair of positions on the genome. In the following, we denote

by EG the set of all the exons of the transcripts of gene G, that is EG = ∪T∈T E(T ),

where E(T ) is the set of exons of transcript T and T is the set of transcripts of G,

called the annotation of G. Given two exons ei = [ai, bi] and ej = [aj , bj ] of EG,

we say that ei precedes ej if bi < aj and we denote this by ei ≺ ej . Moreover, we

say that ei and ej are consecutive if there exists a transcript T ∈ T and an index

k such that ek = ei and ek+1 = ej .

The splicing graph of a gene G is the directed acyclic graph SG = (EG, E), i.e. the

vertex set is the set of the exons of G, and the edge set E is the set of pairs (vi, vj)

such that vi and vj are consecutive. For each vertex v, we denote by seq(v), the

genomic sequence of the exon associated to v. Finally, we say that S?G is the graph

obtained by adding to SG all the edges (vi, vj) /∈ E such that vi ≺ vj . We call these

edges novel edges. Note that the novel edges represent putative junctions between

two exons that are not consecutive in any transcript of G and will be used to detect

novel alternative splicing events of G induced by a set of RNA-Seq reads.

In the following, we will use the notion of Maximal Exact Match (MEM) to per-

form the spliced graph-alignment of an RNA-Seq read to SG. Given the two strings

H and R, a MEM is a triple m = (iH , iR, `) representing the common substring of

length ` between the two strings that starts at position iH in H, at position iR in R,

and that cannot be extended in either direction without introducing a mismatch.

Computing the MEMs between a string R and a splicing graph SG can be done

by concatenating the labels of all the vertices and interposing the special symbol

φ, obtaining a string H that we call the linearization of the splicing graph. Then,

by employing the algorithm by Ohlebusch et al [25], all the MEMs between R and

SG can be computed in linear time with respect to the length of the reads and the

number of MEMs. It is immediate to see that, given a vertex v of SG, the label

seq(v) is a substring H[iv, jv] of the linearization of SG and a MEM must occur

inside a vertex label. In the following, given a read R and the linearization H of

SG, we say that a MEM m = (iH , iR, l) occurs inside the vertex label seq(v) if iH

is a position of the interval [iv, jv]. We say that a MEM m = (iH , iR, l) precedes
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another MEM m′ = (i′H , i
′
R, l
′) in R if iR < i′R and iR + l < i′R + l′, and we denote

this by m ≺R m′. Similarly, when m precedes m′ in H, we denote it by m ≺H m′,

if the previous properties hold and the two MEMs belong to the same vertex label

seq(v). When m precedes m′ in R (in H, respectively), we say that gR = i′R−(iR+l)

(gH = i′H − (iH + l), respectively) is the gap between the two MEMs. If the gaps

gR or gH (or both) are positive, we refer to the gap strings as GR and GH , while

when they are negative, we say that m and m′ overlap either in R or H (or both).

Given a MEM m belonging to the vertex labeled seq(v), we denote as PREFH(m)

and SUFFH(m) the prefix and the suffix of seq(v) upstream and downstream from

the start and the end of m, respectively.

Spliced graph-alignment

We are now able to define the fundamental concepts that will be used in our method.

In particular, we first define a general notion of gap graph-alignment and then we

introduce specific constraints on the use of gaps to formalize a splice-aware graph-

alignment that is fundamental for the detection of alternative splicing events in

ASGAL.

A gap graph-alignment of R to graph SG is a pair (A, π) where π = 〈v1, . . . , vk〉
is a path of the graph S?G and

A = 〈(p1, r1), (p′1, r
′
1), . . . , (p′n−1, r

′
n−1), (pn, rn)〉

is a sequence of pairs of strings such that seq(v1) = x · p1 and seq(vn) = pn · y, for

x, y eventually empty strings and P = p1 · p′1 · p2 · p′2 · p3 · · · p′n−1 · pn is the string

labeling the path π and R = r1 · r′1 · r2 · · · r′n−1, rn.

The pair (pi, ri), called a factor of the alignment A, consists of a non-empty

substring ri of R and a non-empty substring pi of the label of a vertex in π. The

pair (p′i, r
′
i), called a gap-factor of the alignment A, consists of at least an empty

substring ε. Moreover, either p′i is empty or |p′i| > α, and either r′i is empty or

|r′i| > α, for a fixed value α.

We associate to each factor (pi, ri) the cost δ(pi, ri), and to each gap-factor (p′i, r
′
i)

the cost δ(p′i, r
′
i), by using a function δ(·, ·) with positive values. Then the cost of

the alignment (A, π) is given by the expression:

cost(A, π) =
n∑

i=1

δ(pi, ri) +
n−1∑
i=1

δ(p′i, r
′
i).

Notice that the constraint on the length of strings in a gap-factor derives from

the intuition that we want gap-factors to represent events induced by a gap of a

given length. Moreover, we define the error of a gap graph-alignment as the sum of

the edit distance of each factor (but not of gap-factors). Formally, the error of the

alignment (A, π) is:

Err(A, π) =
n∑

i=1

d(pi, ri),
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where d(·, ·) is the edit distance between two strings. Intuitively, in a gap graph-

alignment, factors correspond to portions of exons covered by portions of the read,

while gap-factors correspond to new splice junctions or new splicing events induced

by the alignment of the read. To define a splice-aware alignment, that we call spliced

graph-alignment, we need to classify each gap-factor and to assign it a cost. Our

primary goal is to compute a gap graph-alignment of the read to the splicing graph

that possibly reconciles to the gene annotation; if this is not possible, then we want

to minimize the number of novel events. For this reason we distinguish three types of

gap-factors: annotated, novel, and impossible. Intuitively, an annotated gap-factor

models an annotated intron, a novel gap-factor represents a novel intron which

can represent an alternative splicing event, while an impossible gap-factor does not

represent any intron.

Formally, we classify a gap-factor (p′i, r
′
i) as annotated if and only if p′i = r′i = ε

and the two strings pi, pi+1 are on two different vertices that are linked by an edge

in SG.

We classify a gap-factor (p′i, r
′
i) as novel in the following cases:

1 p′i = ε occurs between the strings pi and pi+1 which belong to two distinct

vertices linked by an edge in S?G (i.e. this gap-factor represents an exon skip-

ping, an alternative splicing site or a cassette exon event - Figure 1, cases a

and d).

2 p′i 6= ε occurs between the strings pi and pi+1 which belong to the same vertex

of S?G (i.e. this gap-factor represents an intron retention event - Figure 1, case

b).

3 p′i 6= ε occurs between the strings pi and pi+1 which belong to two distinct

vertices linked by an edge in S?G (i.e. this gap-factor represents an alternative

splice site event - Figure 1, case c).

In the remaining cases, which are (i) r′i = ε and p′i = ε occurs between strings pi

and pi+1 which belong to the same vertex, and (ii) r′i 6= ε and p′i = ε occurs between

strings pi and pi+1 which belong to the same vertex, the gap-factor is classified as

impossible. We notice that in the former case, factors (pi, ri) and (pi+1, ri+1) can

be joined into an unique factor.

Let GF be the set of novel gap-factors of a gap graph-alignment A. Then a spliced

graph-alignment (A, π) of R to SG is a gap graph-alignment in which impossible

gap-factors are not allowed, whose cost is defined as the number of novel gap-factors,

and whose error is at most β — for a given constant β. In other words, in a spliced

graph-alignment (A, π), we cannot have impossible gap-factors, and the δ function

assigns a cost 1 to each novel gap-factor and a cost 0 to all other factors: thus

cost(A, π) = |GF | and Err(A, π) ≤ β. We focus on a bi-criteria version of the

computational problem of computing the optimal spliced graph-alignment (A, π) of

R to a graph SG, where first we minimize the cost, then we minimize the error. The

intuition is that we want a spliced graph-alignment of a read that is consistent with

the fewest novel splicing events that are not in the annotation. Moreover, among

all such alignments we look for the alignment that has the smallest edit distance

(which is likely due to sequencing errors) in the non-empty regions that are aligned

(i.e. the factors). Figure 2 shows an example of spliced graph-alignment of error

value 2, and cost 2 — since it has two novel gap-factors.
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In this paper we propose an algorithm that, given a read R, a splicing graph

SG, two constants α and β, computes an optimal spliced graph-alignment — that

is, a spliced graph-alignment with minimum cost and, among all spliced graph-

alignments with minimum cost, we compute the alignment with minimum error.

Once the spliced graph-alignments are computed, the novel gap-factors are com-

pared with the reference genome to determine which novel AS events are induced.

The next section details how ASGAL computes the spliced graph-alignments of a set

of reads to the splicing graph SG, how it selects an optimal spliced graph-alignment,

and how it exploits novel gap-factors to detect AS events.

ASGAL approach

We now describe the algorithm employed by ASGAL to compute optimal spliced

graph-alignments, i.e. by aligning the RNA-Seq reads of a sample to the splicing

graph of a gene. Then alignments to the splicing graph are used to identify the

Alternative Splicing events. The ASGAL tool implements a pipeline consisting of the

following steps: (1) construction of the splicing graph of the gene, (2) computation of

the spliced graph-alignments of the RNA-Seq reads, (3) translation of the alignments

from the splicing graph to the genome, and (4) detection of the novel alternative

splicing events.

In the first step, ASGAL builds the splicing graph SG of the input gene using the

reference genome and the gene annotation, and adds the novel edges to obtain the

graph S?G which will be used in the next steps.

The second step of ASGAL computes the spliced graph-alignments of each read R

in the input RNA-Seq sample by combining MEMs in factors and gap-factors. To do

so, we extend the approximate pattern matching algorithm of Beretta et al. [13] to

obtain the spliced graph-alignments of the reads, which will be used in the following

steps to detect novel alternative splicing events.

As anticipated before, we use the approach proposed by Ohlebusch et al. in [25]

to compute, for each input read R, the set of MEMs between H, the linearization

of the splicing graph SG, and R with minimum length L, a user-defined parameter

(we note that the approach of [25] allows to specify the minimum length of MEMs).

We recall that the string H is obtained by concatenating the strings seq(v) and φ

for each vertex v of the splicing graph. We point out that the concatenation order

does not affect the resulting alignment and that the splicing graph linearization is

performed only once before aligning the input reads to the splicing graph.

Once the set M of MEMs between R and H is computed, we build a weighted

graph GM = (M,EM ) based on a given parameter α and the two precedence

relations between MEMs, ≺R and ≺H , respectively. Then we use such graph to

extract factors and gap-factors. More precisely, the vertex set is the set M of MEMs

between H and R, and there exists an edge from m to m′, with m,m′ ∈M , if and

only if m ≺R m′ and one of the following conditions, also depicted in Figure 3,

holds:

1 m and m′ are inside the same vertex label of H, m ≺H m′, and either (i)

gR > 0 and gH > 0, or (ii) gR = 0 and 0 < gH ≤ α. The weight of the edge

(m,m′) is set to the edit distance between GR and GH .

2 m and m′ are inside the same vertex label of H, m ≺H m′, gR ≤ 0, and

gH ≤ 0. The weight of the edge (m,m′) is set to |gR − gH |.
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3 m and m′ are inside the same vertex label of H, m ≺H m′, gR ≤ 0 and

gH > α. The weight of the edge (m,m′) is set to 0.

4 m and m′ are on two different vertex labels seq(v1) and seq(v2), with v1 ≺ v2,

and gR ≤ 0. The weight of the edge (m,m′) is set to 0.

5 m and m′ are on two different vertex labels seq(v1) and seq(v2), with v1 ≺ v2,

gR > 0, and SUFFH(m) = PREFH(m′) = ε. The weight of the edge (m,m′) is

set to 0 if gR > α, and to gR otherwise.

6 m and m′ are on two different vertex labels seq(v1) and seq(v2), with v1 ≺ v2,

gR > 0, at least one between SUFFH(m) and PREFH(m′) is not ε. The weight of

the edge (m,m′) is set to the edit distance between GR and the concatenation

of SUFFH(m) and PREFH(m′).

Notice that the aforementioned conditions do not cover all of the possible situations

that can occur between two MEMs, but they represent those that are relevant for

computing the spliced graph-alignments of the considered read. Intuitively, condi-

tions 1 and 2 are used to handle the possible presence of alignment errors, conditions

3, 4, and 5 are used to model annotated or novel gap-factors of the alignment, and

condition 6 is used for both these purposes.

The spliced graph-alignment of each read R is computed by a visit of the graph

GM . More precisely, each path πM of this graph represents a spliced graph-alignment

and the weight of the path is the number of differences between the pair of strings

in R and H covered by πM . For this reason, for read R, we select the lightest

path in GM , with weight less than β (a given error threshold) which also contains

the minimum number of novel gap-factors, i.e. we select an optimal spliced graph-

alignment. In detail, given an edge (m,m′), if either condition 1 holds or condition

2 holds, m and m′ are candidates to be merged inside a factor. If condition 3

holds, then m and m′ are candidates to be located respectively in the suffix and

the prefix of two consecutive factors of the alignment which are separated by the

novel gap-factor (p′i, ε), with p′i representing the string between the two MEMs in

S?G (gap-factor of type 2 in the classification of novel gap-factors given in Section

Spliced graph-alignment). If one of the remaining conditions 4, 5, 6 holds, then m

and m′ are candidates to be located respectively in the suffix and in the prefix of

two consecutive factors (pi, ri) and (pi+1, ri+1) of the alignment separated by the

gap-factor (p′i,r
′
i). Moreover, if condition 4 holds, then r′i is ε and p′i is the string

between the two MEMs in S?G. Then, if p′i = ε, then (p′i, ε) is a novel gap-factor

of type 1 or an annotated gap-factor; otherwise, it is a novel gap-factor of type 3.

If condition 5 holds, then r′i is the string between the two MEMs in R and p′i is

ε. In this case, (ε, r′i) is a novel gap-factor of type 1 or an annotated gap factor.

Finally, if condition 6 holds, then both r′i and p′i are ε and they identify either a

novel gap-factor of type 1 or an annotated gap-factor.

The third step of ASGAL computes the spliced alignments of each input read with

respect to the reference genome starting from the spliced graph-alignments com-

puted in the previous step. Exploiting the annotation of the gene, we convert the

coordinates of factors and gap-factors in the spliced graph-alignment to positions

on the reference genome. In fact, observe that factors map to coding regions of

the genome whereas gap-factors identify the skipped regions of the reference, i.e.

the introns induced by the alignment, modeling the possible presence of AS events
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(see Figure 1 for details). We note here that converting the coordinates of factors

and gap-factors to positions on the reference genome is pretty trivial except when

factors pi and pi+1 are on two different vertices and only p′i is ε (case d of Figure 1).

In this case, the portion r′i must be aligned to the intron between the two exons

whose labels contains pi and pi+1 as a suffix and prefix, respectively. If r′i aligns

to a prefix or a suffix of this intron (taking into account possible errors within the

total error bound α), then the left or right coordinate of the examined intron is

modified according to the length of r′i (first and second cases of Figure 1(d)). In

the other cases (third and fourth cases of Figure 1(d)), the portion r′i is not aligned

to the intron and it is represented as an insertion in the alignment. Notice that in

these latter cases, r′i may support either a novel exon on the genome, two alterna-

tive splice sites or even a more complex combination of these events. Moreover, the

third step of our approach performs a further refinement of the splice sites of the

introns in the obtained spliced alignment since it searches for the splice sites (in a

maximum range of 3 bases with respect to the original ones) determining the best

intron pattern (firstly GT-AG, secondly GC-AG if GT-AG has not been found).

In the fourth step, ASGAL uses the set I of introns supported by the spliced

alignments computed in the previous step, i.e. the set of introns associated to each

pair of gap-factors, to detect the alternative splicing events expressed in the given

RNA-Seq sample with respect to the given annotation. Let In be the subset of I
composed of the introns which are not present in the annotation, that is, the novel

introns. For each novel intron [ps, pe] ∈ In with at least ω supporting alignments,

ASGAL identifies one of the following events:

- exon skipping, if there exists an annotated transcript containing two non-

consecutive exons [ai, ps − 1] and [pe + 1, bj ].

- intron retention, if there exists an annotated transcript containing an exon

[ai, bi] such that (i) ai < ps < pe < bi, (ii) there exists an intron in I ending

at ai−1 or ai is the start of the transcript and (iii) there exists another intron

in I starting at bi + 1 or bi is the end of the transcript.

- alternative acceptor site, if there exists an annotated transcript containing two

consecutive exons [ai, ps − 1] and [aj , bj ] such that pe < bj , and there exists

an intron in I starting at bj + 1 or bj is the end of the transcript.

- alternative donor site, if there exists an annotated transcript containing two

consecutive exons [ai, bi] and [pe + 1, bj ] such that ps > ai, and there exists

an intron in I ending at ai − 1 or ai is the start of the transcript.

Results
In this section we will describe the experimental evaluation we performed to check

the ability of ASGAL to align the reads to the splicing graph and to detect alternative

splicing events. Such experimental analysis was done on both simulated and real

data, in which the former had the specific goal of measuring the quality of our tool,

whereas the latter of proving the ability of ASGAL in dealing with real datasets. In

all our experiments, we have run ASGAL with its default values: the minimum length

of the MEMs L is 15, α and β is 3% of the maximum length of an input read, and

the minimum support for AS events ω is 3.
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Simulated Data

In the first phase of our experimental analysis, we evaluated our tool using simulated

data. The goal of this analysis was twofold: to assess the efficiency of our method in

aligning a set of RNA-Seq reads against a splicing graph, and to assess the usefulness

of the alignment method to detect the alternative splicing events expressed by the

sample with respect to a given annotation.

Since the alignment steps of ASGAL were tailored to the identification of novel

alternative splicing events, the quality of the alignments was not directly assessed

by a comparison with other spliced aligners. In fact, a first part of the experi-

mental analysis measures how often each read is mapped to the correct gene by

our approach, STAR [22], and Hisat2 [20] (the successor of TopHat2 [21], another

well-known spliced aligner).

Then, in a second step we compared ASGAL with SplAdder [9] to assess their accu-

racy in identifying alternative splicing events. To avoid any bias in the experiments,

we decided to use the same reference genome, annotations and simulated data[1]

used in [9]. From these data, simulated using Flux [26], we considered two different

RNA-Seq datasets with 5 million and 10 million reads respectively, each covering

1000 genes randomly selected from the human GENCODE annotation (v19) [27].

Then, we divided each dataset into 24 samples, that is one for each chromosome,

and we used cutadapt [28] to remove poly-A tails.

Since our tool works at gene level — that is, it considers the splicing graph of

each gene independently — to perform a fair comparison, in the first step of our

experiments on simulated data, we ran STAR and Hisat2 on the exact genomic re-

gion of each gene, cut from the reference genome based on the given annotation.

We ran all tools using a single thread, to measure the time performance, and pro-

viding the default parameters. The only exception to the latter condition is that

the genomeSAindexNbases option of STAR was set according to the length of the

genomic regions[2] to avoid crashes during the alignment step: the default values

of STAR are suitable only for longer reference sequences than what we used in our

experiments.

Table 1 summarizes the precision, recall, and F-measure of the three tools on the

dataset composed of 5M reads. These quality measures were computed for each gene

by considering the number of reads simulated from the gene and aligned to that

gene (true positives), the number of reads simulated from other genes and aligned

to that gene (false positives), and the number of reads simulated from that gene

and not aligned to it (false negatives). In this evaluation, we considered only the

primary alignments of each read provided by the tested tool.

Our comparison of the aligners (Table 1) shows that ASGAL has the best precision

and the worst recall, while STAR has the worst precision and the best recall. More-

over, Hisat2 has the best F-measure, and ASGAL is within 1% of that. This confirms

the ability of the method we propose to align a read to the correct gene, which was

the main goal of this task. Notice that ASGAL considers only exonic regions encoded

in a splicing graphs, while both Hisat2 and STAR align against a genomic region.

[1]http://public.bmi.inf.ethz.ch/projects/2015/spladder/

[2]Given the genomic region G of a gene, we compute the correct value as log2(|G|)
2 − 1

as described in STAR manual.
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For this reason, these two latter tools align reads also in intronic regions. Moreover,

due to error rate (set to 3%) and the read length (100bp), ASGAL computes only pri-

mary alignments with maximum 3 errors while the other tools, by default, accept

also primary alignments with a higher number of errors. This is the main reason for

the worse recall of ASGAL.

Table 2 summarizes the computational resources (total time and memory peak)

required in the alignment step by the considered tools. Analyses were performed

on a 64 bit Linux (Kernel 4.4.0) system equipped with Four 8-core Intel ® Xeon

2.30GHz processors and 256GB of RAM. The time is the sum of the times required

to compute the index of the input reference (the genomic sequence for Hisat2 and

STAR, the splicing graph for ASGAL) and then to align the reads.

While the memory peak usage is below 300MB for all tools, the running time

varies greatly, with STAR using more than 100× the running time of Hisat2 and

ASGAL using more than 10× the running time of Hisat2. Notice that each gene was

processed independently, hence the execution of the pipelines is embarrassingly par-

allel and we can fully use all available cores. Moreover, STAR is tailored for aligning

against a complete reference genome, not against a set of much smaller genomic

regions. For these reasons, we are not interested in comparing the computational

efficiency of the tools, but only in assessing the feasibility of the approach.

The main goal of our experimental analysis on simulated data was to evaluate the

capability of our tool to detect alternative splicing events. We decided to compare

our tool with SplAdder, a software for identifying and quantifying alternative splic-

ing events starting from a given annotation and the alignment files, since it is the

best approach for detecting alternative splicing events, from the results obtained

in [9].

Before comparing the results obtained by ASGAL with those computed by

SplAdder, we would like to highlight that these two tools, although they could

look similar, perform different tasks. More precisely, as proved by our experiments,

SplAdder builds a splicing graph starting from a given annotation and enriches it

by exploiting the spliced alignments, but to identify the AS events it requires that

all the isoforms involved in the event are supported by reads in the sample. On

the other hand, ASGAL identifies the alternative splicing events even if the sample

contains only reads extracted from a single isoform, since it uses the annotation as a

reference for the identification of the novel AS events. This case is especially impor-

tant, since usually there is a single transcript expressed per gene, when considering

a single sample [29]. As said in SplAdder’s supplemental material, the default be-

haviour of SplAdder can be modified by adapting different parameters that guide

the confirmation process of each alternative splicing event found. However, it is not

an easy task to modify these parameters since they are hard-coded and it is not

even clear how to choose the best values without the risk of introducing undesired

behaviors.

As done in [9], to assess the accuracy of the two tools, we provided them a reduced

annotation, obtained in the following way. First of all, we used AStalavista [6] to

extract all the alternative splicing events contained in the annotations of the 1000

considered genes. This resulted in a total of 2568 alternative splicing events: 1574

exon skippings, 416 alternative acceptor sites, 290 alternative donor sites, and 288
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intron retentions. Then, for each gene and for each event identified by AStalavista,

we created a new reduced annotation containing all the transcripts except those

responsible for such event. Here, we focused our attention on exon skippings, al-

ternative splice sites (both acceptor and donor), and intron retentions caused by

the insertion of a new intron inside an exon. For completeness, we notice that we

doubled the alternative splice sites events in order to test the considered tools in

the detection of both alternative splicing sites events shortening and extending an

exon while we did not consider in this experiments the possible insertion of a new

exon inside an intron (cassette exon) and the intron retentions caused by the union

of two exons. Moreover, when different events on the same gene produced the same

reduced annotation, we considered the annotation only once. We obtained a total

of 3274 AS events and 2792 reduced annotations.

We did not replicate exactly the experiments done in [9] — where the reduced

annotation contained only the first transcript of each gene — since it would not

have been a fair comparison. In fact, our tool heavily depends on the alignments

of RNA-Seq reads against the splicing graph, while SplAdder takes as input the

alignments against the full genome reference sequence.

For each gene and for each reduced annotation, we run the two tools and we

evaluated their accuracy in identifying the events found by comparing the reduced

and the full annotations. We have used two datasets of reads, respectively with 5M

and 10M reads. For each kind of alternative splicing event we analyzed the predic-

tions over the set of 1000 genes, computing the corresponding values of precision,

recall, and F-measure. More precisely, given a gene and its reduced annotation, we

consider as ground truth the set of events found by AStalavista in the original

annotation, but not in the reduced annotation. To compute the values of precision,

recall, and F-measure, we considered the number of events inducing the reduced

annotation and found by the tool (true positives), the number of events inducing

the reduced annotation not found by the tool (false negatives), and the number

of events found not contained in the output of AStalavista for that gene (false

positives). As anticipated, for each gene it is possible to have more events expressed

in the reduced annotation than the wanted ones: these cases correspond to anno-

tations in which the removal of the annotated transcript generated more than a

single alternative splicing event. This offered the possibility to evaluate the behav-

ior of ASGAL in dealing with complex scenarios. Table 3 summarizes the number of

reduced annotations containing 1, 2, 3, 4, and 5 different alternative splicing events

and how many events of each type they contain.

We reported in Table 4 the quality results, for the different alternative splicing

events, obtained by ASGAL and SplAdder— for the latter we used Hisat2 and STAR

as spliced aligner. More precisely, we computed the precision, recall, and F-measure

values for the cases where we have only one event — distinguishing between exon

skippings (ES), alternative acceptor (A3) and donor (A5) sites, and intron retentions

(IR) — as well as complex scenarios composed of 2 to 5 events. Since the number

of cases with more than one event is quite uncommon, we did not further refined

these kind of events.

The results show that ASGAL achieved the best values of precision, recall and F-

measure in almost all the alternative splicing events with the only exception of the
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recall of the alternative splicing sites (A5 and A3). We investigated those cases and

we found out that our method shows some limitations in detecting the alternative

splicing site events that extend an annotated events: as previously described, to

detect this kind of event, our method requires that the reads align leaving a gap on

them, and requires the presence of sufficiently long anchors on two different exons.

These requirements proved to be a bit too restrictive, and limited the capacity of

our method to detect alternative splice site extending an exon.

However, our method achieved the best values of F-Measure in all the alternative

splicing events, highlighting the ability of ASGAL in detecting the novel alterna-

tive splicing events. We note here that the row corresponding to cases with 4 AS

events reports the worst values for ASGAL, while the same is not true for SplAdder.

Therefore, we have investigated those cases and we observed that (and as shown

in Table 3) the great majority (around 90%) of these events are alternative splic-

ing sites (A5 and A3), which are the type of event achieving the worst results, as

explained before. Moreover, as expected, by increasing the number of reads in the

input set, both the tested methods achieve almost always better recall and worst

precision.

Finally, for what concerns the efficiency of the two tested methods, the step of

event identifications of ASGAL required ∼ 2.7 seconds per annotation and 443MB of

memory, while SplAdder required ∼ 3.25 seconds and 47MB. Our approach used

more memory since one of the steps consists in aligning the gaps left on the read

against an intron, in order to detect the possible presence of alternative splice site

events extending an annotated exon.

Real Data

We also applied our method to a real dataset of RNA-Seq reads in order to assess

its performance in detecting events from RNA-Seq data that are likely to be the

result of the expression of a single transcript in each gene: this situation is the most

common in real samples [29].

To do this, we considered the study proposed in [30], in which the role of the

BRAF oncogene was investigated in melanoma cell migration. They considered

the BRAFV600E mutation in melanoma skin cancer and on melanocytes over-

expressing oncogenic BRAF to assess the effect on transcript expressions. The RNA-

Seq experiments, conducted using the Illumina HiSeq 2000 sequencer, consisted of 2

BRAFv600e melanomas (SRR354042 and SRR354043), melanocytes+RFP control

(SRR354040) and melanocytes + BRAFv600e (SRR354041) datasets of paired-end

reads (GEO accession GSE33092). Since the goal of the presented analysis was to

perform an in-depth analysis of the novel alternative splicing events induced by ex-

pressed transcripts, we decided to restrict ourselves only to genes with differentially

expressed transcripts in the aforementioned datasets. In this way, we can ensure

that all the transcripts we considered have a good support in terms of reads.

This was done by starting from the analysis done in [30], in which a list of differen-

tially expressed transcripts of the BRAFv600e and the two melanoma datasets with

respect to the control dataset. The list was obtained by running the pipeline pre-

sented in [31], in which Cufflinks [3] was applied to the spliced alignments computed

by TopHat2 [21]. Table 5 summarizes the datasets.
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As for the simulated dataset, we aligned the RNA-Seq reads of the three datasets

to the reference genome with STAR [22] and we split each dataset into subsets corre-

sponding to single genes based on read alignments, according to the human GEN-

CODE annotation. Then, we selected only the subset of RNA-Seq reads correspond-

ing to genes for which (at least) one transcript was found as differentially expressed

in that dataset in [30]. This resulted in 630 genes for each dataset, which were used

as input for ASGAL. As done in the simulated scenario, we built our ground truth

using AStalavista extracting from its output all the alternative splicing events

involving the transcripts of interests. This results in a total of 903 alternative splic-

ing events: 366 exon skippings, 245 alternative acceptor sites, 156 alternative donor

sites, and 136 intron retentions. Finally, for each gene, we generated a reduced an-

notation by removing the transcript found as differentially expressed. Using such

reduced annotation, we run ASGAL and SplAdder comparing their results. Since

we could not obtain any useful information from SplAdder when run with default

parameters, we ran it providing different inputs to improve its results. First, we

ran it setting the confidence level parameter to the smallest possible value to allow

SplAdder to keep events with low support. Then, we used as input the alignments

of the three samples simultaneously to provide a global view of the three samples

and, finally, we merged the three alignments files into a single file and used it as

input to check whether a single view of all the transcripts expressed could improve

SplAdder results.

Table 6 shows the total number of alternative splicing events found by ASGAL and

SplAdder in each of the considered RNA-Seq sample with respect to the reduced

annotation while Table 7 shows the results of SplAdder obtained by considering

the alignments of each sample simultaneously and by merging the three alignments

files into a single file. The results obtained by our tool are similar to the results

obtained with simulated data. Indeed, ASGAL is more effective in detecting exon

skipping events than other splicing events, a common behaviour among tools for

the detection of alternative splicing events [9], since exon skipping events are the

easiest to detect. SplAdder achieved poor results compared to ASGAL in all the

settings we tested, although the different settings improved its results. SplAdder

obtains the best results when run providing a single input file containing all the

alignments of all the sample; the main reason of this fact is that SplAdder is able

to identify an event only if all the isoforms involved in it are supported by reads in

the sample. This proves that SplAdder, at least when used without modifying the

hard-coded parameters, is not suited to manage cases in which only one transcript

is potentially expressed in the input RNA-Seq sample.

Notice that ASGAL detected twice as many AS events as AStalavista. Since we

could not measure the precision of ASGAL on real data, we verified that all the

splicing events detected on real data were potentially expressed in the samples

as follows. First, we extracted from the alignments computed with STAR all the

identified introns, and then we compared them with the introns found by ASGAL

used to detect the alternative splicing events. The results of this investigation show

that 98% of the events identified by ASGAL but not by AStalavista are induced

by an intron effectively expressed in the considered sample, confirming the novel

alternative splicing events found by ASGAL.
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Conclusions
In this paper we propose ASGAL, a tool for predicting alternative splicing (AS) events

from an RNA-Seq sample and a gene annotation given by a collection of annotated

transcripts.

ASGAL differs from similar tools since it implements a splice-aware algorithm for

mapping RNA-Seq data to a splicing graph. The alignments of the read to the splic-

ing graph are then analyzed to detect differences, at the intron level, between the

known annotation and the one obtained by the alignments, in order to reconstruct

AS events.

Indeed, tools for AS prediction rely on a previously computed spliced-alignment

of reads to a linear reference genome. While the spliced-alignment to a reference is

a well understood notion, in this paper we investigate the problem of optimally

mapping reads to a splicing graph by formalizing the notion of spliced graph-

alignment and then propose an algorithmic approach to compute optimal spliced

graph-alignments. Indeed, the graph aligner module of ASGAL can be used indepen-

dently to produce spliced graph-alignments of RNA-seq reads to a general splicing

graph.

Notice that our notion of spliced graph-alignment is tailored for detecting AS

events that are either simple, or are a combination of two different simple events

(see for example Figure 2, where the combination of an exon-skipping event with a

competing event is represented). Such a notion deserves to be further investigated

to detect more complex combinations of AS events. This will be the goal of a future

development of the tool.

The experimental analysis discussed in this paper shows advantages in using a

splice-aware aligner of RNA-seq data, and how it is useful in mitigating some recur-

rent problems that affect tools that detect AS events from differential expression of

transcripts in multiple samples of RNA-seq data.

A problem which is related to mapping RNA-Seq reads to a splicing graph is

mapping genomic reads directly to a graph representation of multiple genomes (pan-

genome): this problem is tackled by vg [32]. Despite this, how to apply a read

mapper to a pan-genome graph for transcriptome analysis remains an interesting

open problem.
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Figure 1 Relationship between novel gap-factors, introns, and AS events. All the possible
gap-factors (p′i, r

′
i) that can occur in a spliced graph-alignment are shown. Each subfigure depicts

a splicing graph (actually, S?
G), a read R and a portion of a possible spliced graph-alignment: the

green squares represent the factors while the gray ones represent the gap-factors. The red line
below each splicing graph, instead, represents the intron supported by the alignment that is used
to infer the possible presence of alternative splicing events. In more detail, case (a) shows an exon
skipping, case (b) shows an intron retention, case (c) shows alternative splice sites shortening an
exon, and case (d) shows alternative splice sites extending an exon or a cassette exon.
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AGCGAAGCGCAGTGGA AGATATCGCGATAGGTAA ATTGGGATTCGGAAGTP
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R

Figure 2 Spliced graph-alignment. Example of spliced graph-alignment of a read R to the
splicing graph of a simple gene with four exons (A, B, C, and D) and two transcripts. The
splicing graph S?

G is depicted where dashed edges represent the novel edges. The read R has been
factorized in three strings r1, r2 and r3 matching to strings p1, p2 and p3 of P (which is the
concatenation of exon labels of path π = 〈A,C,D〉). We observe that (p′1, r

′
1), (p

′
2, r

′
2) are two

novel gap-factors, r1 matches p1 with an error of substitution while r3 matches p3 with an error
of insertion: both the error and the cost of this spliced-graph alignment are equal to 2. This
alignment of R to the splicing graph of G supports the evidence of two novel alternative splicing
events: the skipping of exon B and the alternative donor site of exon C.
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Figure 3 Conditions for linking two different MEMs All the conditions used to connect two
different MEMs and then to build the factors and gap-factors of a spliced graph-alignment are
shown. In all the conditions, the first MEM must precede the second one on the read. In condition
(1) and (2), the two MEMs occur inside the same vertex label and leave a gap (condition 1) or
overlap (condition 2) on the read or on the vertex label. In these conditions, the two MEMs are
joined in the same factor of the alignment. In condition 3, instead, the two MEMs occur inside the
same vertex label but they leave a long gap only on the vertex label and not on the read. In this
case, the two MEMs belong to two different factors linked by a gap-factor. In the other
conditions, instead, the two MEMs are inside the labels of two different vertices of the splicing
graph, linked by a (possible novel) edge. For this reason, in any of these cases, the two MEMs
belong to two different factors of the alignment. In condition 4, the two MEMs leave a gap only
the path, in condition 5 they leave a gap only on the read, and in condition 6, they leave a gap on
both the path and the read.

Tables
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Table 1 Quality results of the alignments on the simulated datasets composed of 5M reads. For each
of the tested methods, that is, ASGAL, Hisat2, and STAR, the values of Precision, Recall, and
F-measure achieved in the alignment step on the simulated dataset are reported.

Measure ASGAL Hisat2 STAR

Precision 0.996 0.989 0.709
Recall 0.908 0.929 0.989

F-measure 0.950 0.958 0.826

Table 2 Computational resources required by the three tested methods (ASGAL, Hisat2, and STAR) to
align the simulated datasets composed of 5M reads. These results are shown in terms of time
(minutes) and memory peak (MegaBytes).

Measure ASGAL Hisat2 STAR

Time (m) 763 70 9424
Memory Peak (MB) 267 98 275

Table 3 Information about the reduced annotations considered in the experiments on simulated data.
Each row summarizes the number of reduced annotation (#Annotations) containing the
corresponding number of AS events (#Events), the total number of AS events (#TotEvents) and
their partitioning in exon skipping (ES), alternative acceptor site (A3), alternative donor site (A5),
intron retention (IR). The last row shows the sum of the values contained in each column.

#Events #Annotations #TotEvents ES A3 A5 IR

1 2393 2393 1341 (56%) 519 (22%) 380 (16%) 153 (6%)
2 329 658 205 (31%) 208 (32%) 146 (22%) 99 (15%)
3 58 174 26 (15%) 70 (40%) 48 (28%) 30 (17%)
4 11 44 2 (5%) 34 (77%) 5 (11%) 3 (7%)
5 1 5 0 (0%) 1 (20%) 1 (20%) 3 (60%)

Total 2792 3274 1574 (48%) 832 (25%) 580 (18%) 288 (9%)

Table 4 Quality measures in detecting alternative splicing events on the simulated datasets with 5M
and 10M reads. Precision (Prec), recall (Rec), and F-Measure (FM) achieved on the simulated
datasets in detecting alternative splicing events: exon skipping (ES), alternative acceptor site (A3),
alternative donor site (A5), intron retention (IR), and genes in which more (from 2 up to 5) events
were combined. Results obtained by ASGAL and SplAdder, using both Hisat2 and STAR as spliced
aligner, are reported.

ASGAL SplAdder + Hisat2 SplAdder + STAR
Sample Event Prec Rec FM Prec Rec FM Prec Rec FM

5M

ES 0.818 0.919 0.864 0.795 0.868 0.829 0.761 0.852 0.803
A3 0.761 0.743 0.751 0.677 0.780 0.724 0.657 0.774 0.709
A5 0.733 0.718 0.725 0.679 0.752 0.712 0.656 0.734 0.692
IR 0.645 0.666 0.654 0.370 0.483 0.417 0.395 0.483 0.432
2 0.848 0.721 0.778 0.800 0.670 0.729 0.737 0.656 0.693
3 0.895 0.540 0.673 0.761 0.459 0.572 0.824 0.459 0.589
4 0.760 0.431 0.549 0.720 0.409 0.520 0.680 0.386 0.491
5 1.000 0.800 0.888 1.000 0.800 0.888 1.000 0.800 0.888

10M

ES 0.810 0.961 0.878 0.735 0.923 0.817 0.723 0.920 0.809
A3 0.739 0.791 0.763 0.593 0.816 0.685 0.623 0.815 0.705
A5 0.720 0.768 0.741 0.639 0.821 0.717 0.655 0.807 0.722
IR 0.664 0.673 0.667 0.357 0.542 0.429 0.390 0.549 0.455
2 0.840 0.762 0.799 0.693 0.662 0.676 0.725 0.661 0.691
3 0.838 0.568 0.675 0.745 0.505 0.601 0.738 0.534 0.619
4 0.730 0.431 0.540 0.692 0.409 0.514 0.750 0.409 0.528
5 1.000 0.800 0.888 1.000 0.600 0.750 1.000 0.600 0.750

Table 5 Description of the real RNA-Seq datasets.

SRA Accession Condition Num. Reads

SRR354041 Melanocytes + BRAFv600e 100048222
SRR354042 Primary Melanoma 1 62884955
SRR354043 Primary Melanoma 2 71910612
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Table 6 Number of AS events identified by ASGAL and SplAdder in the real data scenario with
respect to the number of AS events identified by AStalavista. For each considered RNA-Seq sample
and for each AS event type (ES: Exon Skipping, A3: Alternative Acceptor Site, A5: Alternative Donor
Site, IR: Intron Retention), the ratio between these two numbers is shown. Results obtained by ASGAL
and SplAdder, using both Hisat2 and STAR as spliced aligner and setting the confidence level to the
default value (3) and to the minimum one (0), are reported.

Sample Event ASGAL Spl + Hisat2 Spl + STAR Spl + Hisat2 Spl + STAR
Default conf. Default conf. Conf. 0 Conf. 0

SRR354041

ES 81% 28% 28% 28% 31%
A3 68% 20% 21% 20% 23%
A5 65% 21% 21% 21% 22%
IR 66% 0% 0% 0% 0%

SRR354042

ES 78% 25% 26% 25% 27%
A3 67% 17% 21% 18% 21%
A5 66% 16% 18% 16% 18%
IR 71% 0% 0% 0% 0%

SRR354043

ES 81% 29% 30% 29% 32%
A3 70% 19% 21% 19% 23%
A5 68% 21% 23% 22% 23%
IR 73% 0% 0% 0% 0%

Table 7 Number of AS events identified by SplAdder in the real data scenario with respect to the
number of AS events identified by AStalavista. For each AS event type (ES: Exon Skipping, A3:
Alternative Acceptor Site, A5: Alternative Donor Site, IR: Intron Retention), the ratio between these
two numbers is shown. Results obtained by SplAdder, using both Hisat2 and STAR as spliced aligner,
are reported. Multiple sample columns refer to the results obtained by SplAdder considering the
alignments of each sample simultaneously while Single sample refer to the results obtained by
merging the three alignments files into a single file.

Event Spl + Hisat2 Spl + STAR Spl + Hisat2 Spl + STAR
Multiple sample Multiple sample Single sample Single sample

ES 40% 39% 42% 41%
A3 26% 30% 29% 34%
A5 29% 29% 30% 33%
IR 0% 0% 0% 0%
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