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Abstract 

Cytochrome (CYP) P450 enzymes have a primary role in antidepressant metabolism and variants in 

these polymorphic genes are targets for pharmacogenetic investigation.  This is the first meta-

analysis to investigate how CYP2C19 polymorphisms predict citalopram/escitalopram efficacy and 

side effects.  

CYP2C19 phenotypes comprise poor metabolizers (PM), intermediate and intermediate+ 

metabolizers (IM; IM+), extensive and extensive+ metabolizers (EM [wild type]; EM+) and ultra-

rapid metabolizers (UM) defined by the two most common CYP2C19 functional polymorphisms 

(rs4244285 and rs12248560) in Caucasians. These polymorphisms were genotyped or imputed from 

genome-wide data in four samples treated with citalopram or escitalopram (GENDEP, STAR*D, 

GenPod, PGRN-AMPS). Treatment efficacy was percentage symptom improvement and remission. 

Side effect data were available at weeks 2-4, 6 and 9 in three of the investigated samples. A fixed-

effects meta-analysis was performed using EM as the reference group. 

Analysis of 2558 patients for efficacy and 2037 patients for side effects showed that PMs had 

higher symptom improvement (SMD=0.43, CI=0.19-0.66) and higher remission rates (OR=1.55, 

CI=1.23-1.96) compared to EMs. At weeks 2-4, PMs showed higher risk of gastro-intestinal 

(OR=1.26, CI=1.08-1.47), neurological (OR=1.28, CI=1.07-1.53) and sexual side effects (OR=1.52, 

CI=1.23-1.87; week 6 values similar). No difference was seen at week 9 or in total side effect 

burden. PMs did not have higher risk of dropout at week 4 compared to EMs. Antidepressant dose 

was not different among CYP2C19 groups. 

CYP2C19 polymorphisms may provide helpful information for guiding citalopram/escitalopram 

treatment, despite PMs are relatively rare among Caucasians (~2%).  
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1. Introduction 

Major depressive disorder (MDD) is a leading cause of disability-adjusted life years worldwide 

(GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, 2016). Although anti-

depressant drugs can be an effective therapy, remission rates are disappointing, largely as a 

consequence of high variability in efficacy among individuals combined with early discontinuation 

or poor compliance due to side effects (Hodgson et al., 2012); (Crawford et al., 2014). Genetic 

variants are considered key modulators of antidepressant efficacy and side effects (Cacabelos et al., 

2012). Common variants were estimated to explain approximately 42% of inter-individual 

variability in antidepressant response (Tansey et al., 2013), confirming the role of genetic 

polymorphisms as promising markers to provide personalized treatments.  

Previous pharmacogenetic studies for antidepressant efficacy and side effects have focused on 

genes involved in antidepressant mechanisms of action (pharmacodynamics) or in antidepressant 

transport/metabolism (pharmacokinetics), including the cytochrome P450 genes (CYP450) (Fabbri 

and Serretti, 2015). These CYP450 genes are included in commercial pharmacogenetic tests (e.g. 

GeneSight Psychotropic, Genecept Assay™, YouScript Psychotropic (GTR: Genetic Testing 

Registry, 2017)). They form promising targets for personalizing antidepressant treatment, since they 

are responsible for antidepressant drug metabolism and their polymorphisms define phenotypic 

groups with different level of metabolic activity (Porcelli et al., 2011). An association between 

CYP450 metabolizer status (CYP450 phenotypes) and metabolite plasma levels has been 

consistently reported for antidepressants, but the association of CYP450 phenotypes with 

antidepressant efficacy and side effects is more controversial (Porcelli et al., 2011).  

 CYP2C19 is the primary CYP450 isoform responsible for the metabolism of citalopram and 

escitalopram, two commonly prescribed SSRIs (selective serotonin reuptake inhibitors) (Hicks et 

al., 2015). Elevated drug concentrations have been observed in CYP2C19 poor metabolizers (PMs), 

which may increase the risk of adverse drug reactions, while CYP2C19 ultrarapid metabolizers 

(UMs) may have lower exposure to these drugs leading to treatment failure. CYP2C19-adjusted 

doses for citalopram and escitalopram have been estimated, but these were based on observed 

differences in drug pharmacokinetics, not differences in clinical outcomes of efficacy and side 

effects (Hicks et al., 2015).  

Inconsistent associations between CYP2C19 phenotypes and citalopram/escitalopram outcomes 

have been observed, and several factors may have led to the contradictory results (Peters et al., 

2008) (Mrazek et al., 2011)(Hodgson et al., 2014)(Hodgson et al., 2015):  
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1) Only a weak correlation exists between SSRI dose and efficacy and drug plasma levels may not 

be associated with either efficacy or side effects (Jakubovski et al., 2016) (Hodgson et al., 2014) 

(Hodgson et al., 2015);  

2) Pharmacodynamic mechanisms may modulate the association between CYP2C19 phenotypes 

and citalopram/escitalopram efficacy and some side effects, weakening the association between 

pharmacokinetic parameters and treatment outcomes (Jukić et al., 2016);  

3) CYP2C19 PM phenotypes are rare, and studies may have lacked power to detect a 

pharmacogenetic association with this phenotype.  

In this study, we present the first meta-analysis to investigate association between CYP2C19 

phenotypes and citalopram/escitalopram efficacy and side effects. This large study aimed to identify 

a link between CYP2C19 phenotypes and treatment outcomes and to determine whether dose 

adjustments based on CYP2C19 phenotypes should be part of personalized medicine for 

antidepressant treatment.  

 

2. Experimental procedures 

2.1. Samples  

2.1.1. GENDEP 

The Genome-Based Therapeutic Drugs for Depression (GENDEP) project was a 12-week partially 

randomized open-label pharmacogenetic study with two active treatment arms. 867 patients with 

unipolar depression (ICD-10 or DSM-IV criteria) aged 19–72 years were recruited at nine European 

centres. Eligible participants were allocated to flexible-dosage treatment with either escitalopram 

(10–30 mg daily) or nortriptyline. Only 499 patients treated with escitalopram were included in the 

current meta-analysis. Severity of depression was assessed weekly by the Montgomery-Asberg 

Depression Rating Scale (MADRS) (Montgomery and Asberg, 1979), Hamilton Rating Scale for 

Depression (HRSD–17) (Hamilton, 1967) and other measures. Side effects were assessed at 

baseline and then weekly using the Antidepressant Side-Effect Checklist (ASEC) and UKU Side 

Effect Rating Scale, with good agreement between them.  The ASEC data were analysed for this 

study, since they have lower rates of missing data (Uher et al., 2009). Detailed information about 

the GENDEP study has been previously reported (Uher et al., 2010).  

2.1.2 STAR*D 

The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study was a NIMH-

funded study to determine the effectiveness of different treatments for patients with MDD who have 

not responded to the first antidepressant treatment. Non-psychotic MDD (DSM-IV criteria) patients 

with age between 18 and 75 years were enrolled from primary care or psychiatric outpatient clinics. 
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Severity of depression was assessed using the 16-item Quick Inventory of Depressive 

Symptomatology-Clinician Rated (QIDS-C16) (Trivedi et al., 2004) at baseline, weeks 2, 4, 6, 9, 

and 12. Side effects were measured at the same time points using the Patient-Rated Inventory of 

Side Effects (PRISE). This study uses data from level 1, where all patients received citalopram. 

Detailed description of the study design and population are reported elsewhere (Rush et al., 2004).  

 

2.1.3. PGRN-AMPS 

The Pharmacogenomic Research Network Antidepressant Medication Pharmacogenomic Study 

(PGRN-AMPS) included 529 participants with nonpsychotic MDD recruited at inpatient and 

outpatient practices of the Department of Psychiatry and Psychology, Mayo Clinic, Rochester, 

Minnesota. Participants were offered an eight-week course of treatment with either citalopram or 

escitalopram and depressive symptoms were rated using QIDS-C16 as in STAR*D. Side effects 

were assessed using the PRISE scale at weeks 4 and 8. Further details were reported elsewhere (Ji 

et al., 2013). 

2.1.4. GenPod 

The GENetic and clinical Predictors Of treatment response in Depression (GenPod) was a multi-

centre randomized clinical trial of 601 patients recruited in primary care who had an ICD-10 

diagnosis of major depression of at least moderate severity as assessed by the Clinical Interview 

Schedule-Revised (CIS-R) (Lewis et al., 1992) and the Beck Depression Inventory (BDI) (Beck et 

al., 1961). Individuals were randomly allocated to either reboxetine (4 mg twice daily) or 

citalopram (20 mg/day). 240 patients of European ancestry and treated with citalopram were 

included in this meta-analysis.  Further details about this study can be found elsewhere (Thomas et 

al., 2008). 

2.2. Outcomes 

2.2.1. Treatment efficacy 

Treatment efficacy was measured by percentage symptom improvement and by remission at study 

endpoint. Continuous measures, such as percentage improvement, capture more information and 

have higher power than cutoff-based dichotomous measures, however remission has a particular 

clinical relevance since it is associated with MDD prognosis (Streiner, 2002)(Gaynes et al., 2009).  

The percentage symptom improvement was corrected for possible confounding variables (age, 

baseline severity, and center for multi-center studies) and then standardized to allow comparability 

across studies.  

Remission was defined as a binary variable according to standard definitions (HRSD–17 ≤ 7 in 

GENDEP; QIDS-C16 ≤ 5 in STAR*D and PGRN-AMPS; BDI < 10 in GenPod). In GENDEP 
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symptom improvement was calculated using the MADRS scale similarly to previous studies (Uher 

et al., 2010) while HRSD–17 was used to define remission given the stronger consensus about the 

threshold to identify remission on this scale in contrast to MADRS, where different definitions of 

remission have been reported (Li et al., 2016) (Jacobsen et al., 2015). 

HRSD–17 and QIDS-C16 missing values at follow-up were imputed using the best unbiased 

estimate from a mixed-effect linear regression model, with fixed linear and quadratic effects of time 

and random effects of individual and center of recruitment, following previously reported methods 

(Uher et al., 2010).  

2.2.2. Side effects 

Measures of side effects were available in GENDEP, STAR*D and PGRN-AMPS. In GENDEP we 

chose to use the ASEC because data was more complete than the UKU (Uher et al., 2009). In 

STAR*D and PGRN-AMPS side effects were assessed using the PRISE scale. Both scales use a 

rating of severity for each side effect (coded 0-3 in ASEC, and 0-2 in PRISE) which was 

dichotomized (0=absent, 1=present) for the meta-analysis. Side effects were grouped in categories 

that were assessed in both samples: gastro-intestinal (dry mouth, diarrhea, constipation, nausea or 

vomiting), cardiovascular (palpitations, dizziness or feeling light-headed on standing), central 

nervous system (headache, tremor, feeling like the room is spinning), sleep (insomnia, drowsiness 

or oversleeping) and sexual (loss of desire, trouble achieving orgasm, trouble with erection). These 

categories were analysed as dichotomous variables (presence of at least one side effect in each 

category). To assess the overall severity of side effects across both studies, we summed the number 

of side effects reported, and dichotomized at the 3rd quartile of the distribution in each sample. 

Study retention at week 4 was compared among CYP2C19 phenotypes since patients who did not 

benefit from treatment or had troubling side effects are expected to be lost from follow-up early in 

the study.  

Antidepressant-induced side effects are more frequent at the beginning of treatment and then 

decrease (Uher et al., 2009). We therefore meta-analysed side effects at weeks 2-4 (no assessment 

was performed at week 2 in PGRN-AMPS), week 6 and weeks 8-9 (no assessment was performed 

at week 8 in STAR*D while in GENDEP we used week 8 data because of lower missing rate 

compared to week 9).  

In GENDEP side effects were common at baseline in medication-free patients (Uher et al., 2009). 

We therefore performed a sensitivity analysis excluding side effects there were present also at 

baseline in drug-free GENDEP patients. 

2.3. Genotyping and definition of CYP2C19 phenotypes 
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CYP2C19 phenotypes comprise poor metabolizers (PM), intermediate and intermediate+ 

metabolizers (IM; IM+), extensive and extensive+ metabolizers (EM [wild type]; EM+) and ultra-

rapid metabolizers (UM) defined by the two most common CYP2C19 functional polymorphisms 

(rs4244285 and rs12248560) which capture the CYP2C19 *1, *2 and *17 functional alleles 

(Supplementary Table 1) (Hodgson et al., 2014). These polymorphisms were directly genotyped in 

GENDEP using the AmpliChip CYP450 test (Hodgson et al., 2014) and they were imputed in the 

other samples using the Haplotype Reference Consortium (HRC version r1.1 2016) panel as 

reference and Minimac3. Pre-imputation quality control was performed according to standard 

criteria (variants with missing rate ≥ 5%; monomorphic variants; subjects with genotyping rate < 

97%; subjects with gender discrepancies; subjects with abnormal heterozygosity; related subjects 

(identity by descent (IBD) >0.1875 (Anderson et al., 2010)); population outliers according to 

Eigensoft analysis of linkage-disequilibrium-pruned genetic data (Price et al., 2006); and non-white 

subjects). Imputation quality was assessed using R2 (Li et al., 2010) and comparing imputed and 

genotyped CYP2C19 phenotypes in GENDEP. 

2.4. Statistical analysis 

Individual-level phenotypes and genotypes were available for all studies. A fixed-effects meta-

analysis was performed with the R package “Netmeta” (https://cran.r-

project.org/web/packages/netmeta/index.html). This package has been created for performing 

network meta-analysis and it was useful for this study since multiple groups needed to be compared 

to the reference group even if there were not indirect comparisons (i.e. all the studies provided data 

for each of the considered CYP2C19 phenotypes). Phenotypic groups were compared using the 

wild-type EM as the reference group.  A random-effects meta-analysis was carried out for 

completeness and comparison of findings. Standardized mean difference (SMD) or odds ratio (OR) 

with 95% confidence intervals (CI) were calculated. Heterogeneity across studies was assessed 

using I2 and Cochran’s Q (Higgins et al., 2003).  

This meta-analysis provided 80% power to identify an effect size (SMD) of d=0.40 when 

comparing PMs (the smallest group, n=51) with EMs (the reference group, n=1049) for a 

continuous outcome and OR=2.21 for a binary outcome, at a significance level of 0.05 (Faul et al., 

2007). 

We estimated that a corrected p value of 0.008 would account for the six independent tests that 

were carried out (improvement and response were correlated and considered as one test; gastro-

intestinal side effects, cardiovascular side effects, sleep side effects, sexual side effects, and CNS 

side effects were considered as independent outcomes). Side effects at different weeks are not 
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independent and CYP2C19 metabolic groups are not considered independent (they all derive from 

two functional SNPs in the gene), and they have specific functional meaning.  

 

3. Results 

A description of the clinical-demographic characteristics of the included samples is provided in 

Supplementary Table 2. There was no difference in mean citalopram or escitalopram dose by 

CYP2C19 phenotypes at study endpoint in GENDEP, STAR*D and PGRN-AMPS (dose 

information was not available in GenPod). The distribution of phenotypic groups in the analysed 

samples is reported in Supplementary Table 3A. Imputation quality was high in all samples for both 

polymorphisms (R2 between 0.95 and 0.99 (Li et al., 2010)). GENDEP participants had 97.6% 

consistency between genotyped and imputed SNPs (Supplementary Table 3B).  

 

3.1. Treatment efficacy 

In total, 2558 patients were included in the meta-analysis. The distribution of efficacy outcomes 

across CYP2C19 phenotypes was reported in Supplementary Table 4. Compared to EMs, PMs had 

higher symptom improvement scores (SMD=0.43, CI=0.19-0.66, p=0.00037) and higher remission 

rates (OR=1.55, CI=1.23-1.96, p=0.00025), with low or absent heterogeneity (I2 was 11.5% and 

0%, respectively). Other CYP2C19 phenotypes did not show different outcomes compared to EMs 

(Figure 1). Results did not change using a random-effects model.   

3.2. Treatment side effects  

Across STAR*D, GENDEP and PGRN-AMPS 2037 patients were included in the analysis. The 

distribution of side effects across CYP2C19 phenotypes was reported in Supplementary Table 5. At 

weeks 2-4, PMs showed higher risk of gastro-intestinal side effects (OR=1.26, CI=1.08-1.47, 

p=0.0033), of CNS side effects (OR=1.28, CI=1.07-1.53, p=0.0068) and of sexual side effects 

(OR=1.52, CI=1.23-1.87, p=0.0001) (Figure 2). Considering a corrected p threshold of 0.008, all 

these side effects were significantly more frequent in PMs. At week 6, PMs showed higher risk of  

sexual side effects (OR=1.64, CI=1.23-2.17, p=0.0007) but no higher risk of other side effects. For 

all these comparisons heterogeneity was low (I2 range 0%-24%).  No difference was seen at week 

8-9 for any side effect, except a weak non-significant trend for sexual side effects; no difference in 

total side effects burden was observed at any time point (Figure 2). CYP2C19 IM+ group was the 

only phenotype to show higher risk of drop out at week 4 (OR=1.80, 95% CI=1.08-3.00, p=0.024), 

but this association did not survive multiple-testing correction. PMs did not show higher risk of 

dropout at week 4 (OR=1.16, CI=0.38-3.58). Other CYP2C19 phenotypic groups did not show 

relevant differences compared to EMs, except lower risk of cardiovascular side effects and sleep 
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side effects in EM+ at weeks 2-4 (OR=0.77, CI=0.64-0.92, p=0.0048) and 6 (OR=0.84, CI=0.75-

0.95, p=0.0039), respectively, and higher risk of CNS side effects at week 8 in UMs (OR=1.26, 

95% CI=1.04-1.53, p=0.019), but the latter did not survive multiple-testing correction. 

The use of a random-effects model did not change the results.  

Excluding those side effects there were already present at baseline in drug-free patients in 

GENDEP, results did not change, except that PMs showed higher risk of gastro-intestinal side 

effects also at week 6 (OR=1.47, CI=1.13-1.92, p=0.004). In addition, the trend of higher sexual 

side effects in PMs at weeks 8-9 was not observed, the lower risk of cardiovascular side effects in 

EM+ at weeks 2-4 became a non-significant trend (OR=0.82, CI=0.67-0.99) and there was a non-

significant trend of higher gastro-intestinal side effects in PMs at weeks 8-9 (OR=1.35, CI=1.01-

1.81).   

 

4. Discussion 

This study shows that CYP2C19 PMs had higher symptom improvement and higher remission 

probability compared to EMs during treatment with citalopram or escitalopram (Figure 1). The 

observed SMD of 0.43 in symptom improvement between PMs and EMs is statistically considered 

close to a medium effect size (0.50) (Faraone, 2008). Statistical outcomes cannot be equated with 

clinical relevance and a clinical relevance cutoff of SMD=0.24 was proposed based on the effect 

size observed for antidepressant drugs (SMD=0.31, CI=0.27-0.35) and psychotherapy (SMD=0.25, 

CI= 0.14-0.36) in depression (Cuijpers et al., 2014). Other CYP2C19 phenotypes, including UMs, 

showed no differences in efficacy outcomes compared to EMs. In addition to increased treatment 

efficacy, PMs showed higher risk of gastro-intestinal, CNS and sexual side effects early in 

treatment (particularly during the first 2-4 weeks), but not later in treatment (weeks 8-9) (Figure 2). 

At week 4, PMs did not show a higher burden of total side effects and had no higher risk of drop-

out. Mean antidepressant dose was not different among CYP2C19 metabolizing groups. These 

results suggest that although some side effects were more common in PMs in the first weeks of 

treatment, overall they were not more troubling than in other CYP2C19 groups and they may be 

balanced by higher improvement in depressive symptoms.  

These findings are consistent with a previous STAR*D study that investigated remission and 

tolerance to citalopram (Mrazek et al., 2011), where tolerance represents a measure of side effect 

level. Tolerance was defined as continuation of citalopram treatment after the completion of Level 1 

of the STAR*D trial. Previous studies in GENDEP and STAR*D failed to establish association 

between CYP2C19 metabolizer status (PM vs. EM) and response, side effects or study retention 

(Peters et al., 2008) (Hodgson et al., 2015)(Hodgson et al., 2014), but individual studies would have 
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limited power given the low number of subjects with PM phenotype (~2% of all patients analysed), 

particularly in GENDEP which has only six PM subjects. A previous analysis of CYP2C19 in 

GENDEP used different definitions of side-effect, investigating each ASEC item and the sum of 

ASEC items (Hodgson et al., 2015). 

No difference in treatment efficacy or side effects was identified between UMs and EMs, except for 

a non-significant higher risk of CNS side effects only at weeks 8-9 (Figure 2) that was probably the 

effect of random noise.  

The only phenotypic group that showed lower risk of side effects was EM+ (lower risk of sleep side 

effects at week 6 and of cardiovascular side effects at weeks 2-4), suggesting that weak differences 

may depend on metabolic level but the UM group may have not provided enough power to observe 

them (~4-5% of patients were UMs in the analysed samples).  

In addition to pharmacokinetic mechanisms, pharmacodynamic mechanisms may be involved in the 

association between CYP2C19 and antidepressant response, since CYP2C19 activity was reported 

to influence central neurotransmitters and neurotrophins relevant to antidepressant mechanisms of 

action (Jukić et al., 2016).  

Our results conflict with the recommendation, based on pharmacokinetic parameters, of a 50% 

reduction in the starting dose of citalopram/escitalopram in CYP2C19 PMs (Hicks et al., 2015), 

since we showed that a standard dose was associated with greater efficacy without higher drop-out 

rates or higher total burden of side effects. Antidepressant treatment with citalopram/escitalopram 

may be particularly indicated in CYP2C19 PMs given the efficacy profile, if appropriate clinical 

support and monitoring is provided and the patient is informed of potential side effects at the 

beginning of the treatment. Effective plasma (and brain) drug concentrations may be reached in a 

higher proportion of PMs than other phenotypes, at the price of more frequent early side effects. 

The good tolerability profile of citalopram/escitalopram implies that these side effects are usually 

not troubling, which may not be true for other antidepressants, such as tricyclic antidepressants 

(TCAs) or venlafaxine (Cipriani et al., 2012)(Cipriani et al., 2009). It should be noted that TCAs 

and venlafaxine have specific profiles of efficacy and they represent valid alternatives to SSRIs as 

currently reported in clinical guidelines, but it should not be assumed that the current results 

referred to CYP2C19 PMs can be applied to antidepressants different from citalopram and 

escitalopram. 

The limitations and strengths of this study should be considered. This was the first meta-analysis to 

investigate the role of CYP2C19 phenotypes in citalopram/escitalopram efficacy/side effects, 

individual level data were available in all samples and the total sample size was the largest ever 

used for investigating this topic. On the other hand, PMs are rare in the Caucasian population 
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resulting in limited power to identify differences involving this group even in this sample of 2558 

patients. Side effect assessment was not available in all samples, and at weeks 6 and 8-9 part of 

patients dropped from the study and side effects data could not be imputed because it would be 

unreliable. At weeks 6 and 8-9, respectively, side effects were available in 84.4% and 73.6% of the 

initial sample in STAR*D, while in 85.9% and 83.3% of the initial sample in GENDEP. In PGRN-

AMPS 0.87% of patients initially included had side effect data at week 4 and 80% at week 8. Our 

findings suggest that CYP2C19 PMs may benefit from standard doses of citalopram/escitalopram, 

with a higher response than other phenotypes. No conclusions could be drawn for UMs since which 

showed no significant differences in outcomes compared to EMs, and the study was probably 

under-powered to detect weak effects. EM+ was the only group showing lower risk of some side 

effects compared to EMs. We observed no to low heterogeneity among studies for both efficacy and 

side effects. For the former group all samples showed similar better outcome in PMs compared to 

EMs except GENPOD, which included only three PM patients explaining the marginal effect on 

heterogeneity. Finally, the possible confounding effect of CYP2C19 enhancers/inhibitors was not 

assessed, but a previous analysis in GENDEP concluded that the exclusion of subjects with 

concomitant use of enhancers/inhibitors did not change the pattern of results (Hodgson et al., 2014).  

In conclusion, this meta-analysis shows good efficacy in CYP2C19 poor metabolisers with 

citalopram/escitalopram, contrasting previous pharmacokinetic findings (Hicks et al., 2015). Our 

results show better treatment outcomes in PMs treated with standard doses with no relevant impact 

on late side effects (after the 6th week of treatment). Careful information for patients and monitoring 

of side effects during the early phase of treatment are recommended. Other CYP2C19 phenotypes, 

including UMs, did not show differences in efficacy or side-effect outcomes compared to EMs. An 

interesting implication of this study is the possibility to derive CYP2C19 metabolic groups from 

standard genome-wide data with a good level of quality. 
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Figure 1: meta-analysis results for improvement and remission. PM=poor metabolizers: 
IM=intermediate metabolizers; IM+= intermediate metabolizers plus; EM=extensive metabolizers; 
EM+= extensive metabolizers+; UM=ultrarapid metabolizers. EM was taken as reference group. 
SMD=standardized mean difference. CI=confidence interval. 
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Figure 2: meta-analysis results for side effects. PM=poor metabolizers: IM=intermediate metabolizers; IM+= intermediate metabol
EM=extensive metabolizers; EM+= extensive metabolizers+; UM=ultrarapid metabolizers. EM was taken as reference group. SMD=st
mean difference. CI=confidence interval. For each comparison heterogeneity is quantified using tau^2, I^2 and assessed using Q test.  
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